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Last lecture
I A random vector X (p×1) is . . . a p-dimensional vector of

random variables.
I Weight of cork deposits in p = 4 directions (N, E, S, W).
I Rent index in Munich: rent, area, year of construction,

location, bath condition, kitchen condition, central heating,
district.

I Joint distribution function:f (x).
I From joint distribution function to marginal (and conditional

distributions).

f1(x1) =

∫ ∞
−∞
· · ·

∫ ∞
−∞

f (x1, x2, . . . , xp)dx2 · · · dxp

I Cumulative distribution (definite integrals!) used to calculate
probabilites.

I Independence: f (x1, x2) = f1(x1) · f (x2) and
f (x1 | x2) = f1(x1).

I From marginal cumulative distribution functions to joint using
copula.
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Word cloud: Probability
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Today

I Moments: important properties about the distribution of X .
I E: Mean of random vector and random matrices.
I Cov: Covariance matrix.
I Corr: Correlation matrix.
I E and Cov of multiple linear combinations.
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The Cork deposit data

I Classical data set from Rao (1948).
I Weigth of bark deposits of n = 28 cork trees in p = 4

directions (N, E, S, W).

Tree N E S W
1 72 66 76 77
2 60 53 66 63
3 56 57 64 58
...

...
...

...
...

28 48 54 57 43

How may we define a random vectors and random matrices for cork
trees?
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The Cork deposit data

Draw a random sample of size n = 28 from the population of cork
treed and observe a p = 4 dimensional random vector for each tree.

X (28×4) =


X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
...

...
. . .

...
X28,1 X28,2 X28,3 X28,4


and E(X ) = {E(Xij)}.
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Random vectors and matrices: rules for means

I Random vector X (p×1) with mean vector µ(p×1):

X (p×1) =


X1
X2
...
Xp

 , µ(p×1) = E(X ) =


E(X1)
E(X2)

...
E(Xp)


I 1) Random matrix X (n×p) and random matrix Y (n×p):

E(X + Y ) = E(X ) + E(Y )

I 2) Random matrix X (n×p) and conformable constant matrices
A and B:

E(AXB) = AE(X )B
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Variance-covariance matrix

I Random vector X (p×1) with mean vector µ(p×1):

X (p×1) =


X1
X2
...
Xp

 , µ(p×1) =


E(X1)
E(X2)

...
E(Xp)

 =


µ1
µ2
...
µp


I Variance-covariance matrix Σ (real and symmetric)

Σ = Cov(X ) = E[(X−µ)(X−µ)T ] =


σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

...
. . .

...
σ1p σ2p · · · σpp


I σij = E[(Xi − µi )(Xj − µj)]
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Hands-on

Let X 4×1 have variance-covariance matrix

Σ =


2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2

 .
Explain to your neighbour what this means.
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Correlation matrix

Correlation matrix ρ (real and symmetric)

ρ =


σ11√
σ11σ11

σ12√
σ11σ22

· · · σ1p√
σ11σpp

σ12√
σ11σ22

σ22√
σ22σ22

· · · σ2p√
σ22σpp

...
...

. . .
...

σ1p√
σ11σpp

σ2p√
σ22σpp

· · · σpp√
σppσpp

 =


1 ρ12 · · · ρ1p
ρ12 1 · · · ρ2p
...

...
. . .

...
ρ1p ρ2p · · · 1



ρ = (V
1
2 )−1Σ(V

1
2 )−1, where V

1
2 =


√
σ11 0 · · · 0
0

√
σ22 · · · 0

...
...

. . .
...

0 0 · · · √σpp


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Hands-on

Let X 4×1 have variance-covariance matrix

Σ =


2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2

 .
Find the correlation matrix.
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Linear combinations

I Random vector X (p×1) with mean vector µX = E(X ) and
variance-covariance matrix ΣX = Cov(X ).

I The linear combinations Z = CX have

µZ = E(Z ) = E(CX ) = CµX

ΣZ = Cov(Z ) = Cov(CX ) = CΣXCT
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Hands-on: Focus on C?

X =


XN

XE

XS

XW

 , µ =


µN
µE
µS
µW

 , Σ =


σNN σNE σNS σNW
σNE σEE σES σEW
σNS σEE σSS σSW
σNW σEW σSW σWW


I Scientists would like to compare the following three contrasts:

N-S, E-W and (E+W)-(N+S),
I and define a new random vector Y (3×1) = C (3×4)X (4×1)

giving the three contrasts.
I Write down C .
I Use the formulas we just developed and explain how to find

E(Y1) and Cov(Y1,Y3).
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Exam V2014: Problem 1a

Let X =

 X1
X2
X3

 be a random vector with mean µ = E(X ) =

 1
1
1


and covariance matrix Σ = Cov(X ) = I =

 1 0 0
0 1 0
0 0 1

. Further, let

A =


2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

 be a matrix of constants.

Define Y =

 Y1
Y2
Y3

 = AX .

Find E(Y ) and Cov(Y ).
Are X1 and X2 independent?
Are Y1 and Y2 independent? Justify your answers.
Find the mean of XTAX .

13 / 15



The covariance matrix

Random vector X (p×1) with mean vector µ(p×1) and covariance
matrix

Σ = Cov(X ) = E[(X − µ)(X − µ)T ] =


σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

...
. . .

...
σ1p σ2p · · · σpp


The covariance matrix is by construction symmetric, and we would
only consider covariance matrices that are positive definite (PD).
Why would we only consider PD matrices?
Homework for next lecture: Read H.Chapter 2.1-2.2 to remind
yourself of spectral decomposition (diagonalization), positive
definite matrix, eigenvalues and eigenvectors.
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What have we worked with today?

I Mean: µX = E (X ) = E(Xj)

I Covariance: Cov(X ,Y ) = E((X − µX )(Y − µY )
T ).

I Variance-covariance:
Σ = Cov(X ) = E((X − µX )(X − µX )

T ), also sometimes
denoted Var(X ).

I Correlation: Corr(X ) = V−
1
2ΣV−

1
2 .

I CX : E(CX ) = CµX and Cov(CX ) = CΣCT .

Next lecture: First work with the covariance matrix and positive
definiteness, then start with the multivariate normal distribution
(where we use moment generating functions and a multivariate
version of the transformation formula).
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