TMA4267 Linear Statistical Models V2017 [L2]

Part 1: Multivariate RVs, and the multivariate normal distribution Moments: mean and covariance [H:4.2]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 13, 2017

Last lecture

- A random vector $\boldsymbol{X}_{(p \times 1)}$ is ... a p-dimensional vector of random variables.
- Weight of cork deposits in $p=4$ directions (N, E, S, W).
- Rent index in Munich: rent, area, year of construction, location, bath condition, kitchen condition, central heating, district.
- Joint distribution function: $f(\boldsymbol{x})$.
- From joint distribution function to marginal (and conditional distributions).

$$
f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}, \ldots, x_{p}\right) d x_{2} \cdots d x_{p}
$$

- Cumulative distribution (definite integrals!) used to calculate probabilites.
- Independence: $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) \cdot f\left(x_{2}\right)$ and $f\left(x_{1} \mid x_{2}\right)=f_{1}\left(x_{1}\right)$.
- From marginal cumulative distribution functions to joint using copula.

Word cloud: Probability

Today

- Moments: important properties about the distribution of \boldsymbol{X}.
- E: Mean of random vector and random matrices.
- Cov: Covariance matrix.
- Corr: Correlation matrix.
- E and Cov of multiple linear combinations.

The Cork deposit data

- Classical data set from Rao (1948).
- Weigth of bark deposits of $n=28$ cork trees in $p=4$ directions (N, E, S, W).

Tree	N	E	S	W
1	72	66	76	77
2	60	53	66	63
3	56	57	64	58
\vdots	\vdots	\vdots	\vdots	\vdots
28	48	54	57	43

How may we define a random vectors and random matrices for cork trees?

The Cork deposit data

Draw a random sample of size $n=28$ from the population of cork treed and observe a $p=4$ dimensional random vector for each tree.

$$
\boldsymbol{X}_{(28 \times 4)}=\left[\begin{array}{cccc}
X_{11} & X_{12} & X_{13} & X_{14} \\
X_{21} & X_{22} & X_{23} & X_{24} \\
X_{31} & X_{32} & X_{33} & x_{34} \\
\vdots & \vdots & \ddots & \vdots \\
X_{28,1} & X_{28,2} & x_{28,3} & x_{28,4}
\end{array}\right]
$$

and $\mathrm{E}(\boldsymbol{X})=\left\{\mathrm{E}\left(X_{i j}\right)\right\}$.

Random vectors and matrices: rules for means

- Random vector $\boldsymbol{X}_{(p \times 1)}$ with mean vector $\boldsymbol{\mu}_{(p \times 1)}$:

$$
\boldsymbol{X}_{(p \times 1)}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{p}
\end{array}\right], \quad \boldsymbol{\mu}_{(p \times 1)}=\mathrm{E}(\boldsymbol{X})=\left[\begin{array}{c}
\mathrm{E}\left(X_{1}\right) \\
\mathrm{E}\left(X_{2}\right) \\
\vdots \\
\mathrm{E}\left(X_{p}\right)
\end{array}\right]
$$

- 1) Random matrix $\boldsymbol{X}_{(n \times p)}$ and random matrix $\boldsymbol{Y}_{(n \times p)}$:

$$
\mathrm{E}(\boldsymbol{x}+\boldsymbol{y})=\mathrm{E}(\boldsymbol{x})+\mathrm{E}(\boldsymbol{y})
$$

- 2) Random matrix $\boldsymbol{X}_{(n \times p)}$ and conformable constant matrices \boldsymbol{A} and \boldsymbol{B} :

$$
\mathrm{E}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B})=\boldsymbol{A} \mathrm{E}(\boldsymbol{X}) \boldsymbol{B}
$$

Variance-covariance matrix

- Random vector $\boldsymbol{X}_{(p \times 1)}$ with mean vector $\boldsymbol{\mu}_{(p \times 1)}$:

$$
\boldsymbol{X}_{(p \times 1)}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{p}
\end{array}\right], \quad \boldsymbol{\mu}_{(p \times 1)}=\left[\begin{array}{c}
\mathrm{E}\left(X_{1}\right) \\
\mathrm{E}\left(X_{2}\right) \\
\vdots \\
\mathrm{E}\left(X_{p}\right)
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{p}
\end{array}\right]
$$

- Variance-covariance matrix $\boldsymbol{\Sigma}$ (real and symmetric)

$$
\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{12} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 p} & \sigma_{2 p} & \cdots & \sigma_{p p}
\end{array}\right]
$$

- $\sigma_{i j}=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$

Hands-on

Let $\boldsymbol{X}_{4 \times 1}$ have variance-covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

Explain to your neighbour what this means.

Correlation matrix

Correlation matrix ρ (real and symmetric)

$$
\boldsymbol{\rho}=\left[\begin{array}{cccc}
\frac{\sigma_{11}}{\sqrt{\sigma_{11} \sigma_{11}}} & \frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}} & \cdots & \frac{\sigma_{1 p}}{\sqrt{\sigma_{11} \sigma_{p p}}} \\
\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}} & \frac{\sigma_{22}}{\sqrt{\sigma_{22} \sigma_{22}}} & \cdots & \frac{\sigma_{2 p}}{\sqrt{\sigma_{22} \sigma_{p p}}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{1 p}}{\sqrt{\sigma_{11} \sigma_{p p}}} & \frac{\sigma_{2 p}}{\sqrt{\sigma_{22} \sigma_{p p}}} & \cdots & \frac{\sigma_{p p}}{\sqrt{\sigma_{p p} \sigma_{p p}}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & \rho_{12} & \cdots & \rho_{1 p} \\
\rho_{12} & 1 & \cdots & \rho_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{1 p} & \rho_{2 p} & \cdots & 1
\end{array}\right]
$$

$$
\boldsymbol{\rho}=\left(\boldsymbol{V}^{\frac{1}{2}}\right)^{-1} \boldsymbol{\Sigma}\left(\boldsymbol{V}^{\frac{1}{2}}\right)^{-1} \text {, where } \boldsymbol{V}^{\frac{1}{2}}=\left[\begin{array}{cccc}
\sqrt{\sigma_{11}} & 0 & \cdots & 0 \\
0 & \sqrt{\sigma_{22}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\sigma_{p p}}
\end{array}\right]
$$

Hands-on

Let $\boldsymbol{X}_{4 \times 1}$ have variance-covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

Find the correlation matrix.

Linear combinations

- Random vector $\boldsymbol{X}_{(p \times 1)}$ with mean vector $\boldsymbol{\mu}_{\boldsymbol{X}}=\mathrm{E}(\boldsymbol{X})$ and variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{X}}=\operatorname{Cov}(\boldsymbol{X})$.
- The linear combinations $\boldsymbol{Z}=\boldsymbol{C} \boldsymbol{X}$ have

$$
\begin{aligned}
& \boldsymbol{\mu}_{\boldsymbol{Z}}=\mathrm{E}(\boldsymbol{Z})=\mathrm{E}(\boldsymbol{C} \boldsymbol{X})=\boldsymbol{C} \boldsymbol{\mu}_{\boldsymbol{X}} \\
& \boldsymbol{\Sigma}_{\boldsymbol{Z}}=\operatorname{Cov}(\boldsymbol{Z})=\operatorname{Cov}(\boldsymbol{C} \boldsymbol{X})=\boldsymbol{C} \boldsymbol{\Sigma}_{\boldsymbol{X}} \boldsymbol{C}^{T}
\end{aligned}
$$

Hands-on: Focus on C ?

$$
\boldsymbol{X}=\left[\begin{array}{l}
X_{N} \\
X_{E} \\
X_{S} \\
X_{W}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{N} \\
\mu_{E} \\
\mu_{S} \\
\mu_{W}
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{N N} & \sigma_{N E} & \sigma_{N S} & \sigma_{N W} \\
\sigma_{N E} & \sigma_{E E} & \sigma_{E S} & \sigma_{E W} \\
\sigma_{N S} & \sigma_{E E} & \sigma_{S S} & \sigma_{S W} \\
\sigma_{N W} & \sigma_{E W} & \sigma_{S W} & \sigma_{W W}
\end{array}\right]
$$

- Scientists would like to compare the following three contrasts: $\mathrm{N}-\mathrm{S}, \mathrm{E}-\mathrm{W}$ and $(\mathrm{E}+\mathrm{W})-(\mathrm{N}+\mathrm{S})$,
- and define a new random vector $\boldsymbol{Y}_{(3 \times 1)}=\boldsymbol{C}_{(3 \times 4)} \boldsymbol{X}_{(4 \times 1)}$ giving the three contrasts.
- Write down C.
- Use the formulas we just developed and explain how to find $\mathrm{E}\left(Y_{1}\right)$ and $\operatorname{Cov}\left(Y_{1}, Y_{3}\right)$.

Exam V2014: Problem 1a

Let $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)$ be a random vector with mean $\boldsymbol{\mu}=\mathrm{E}(\boldsymbol{X})=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
and covariance matrix $\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{I}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Further, let
$\boldsymbol{A}=\left(\begin{array}{rrr}\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}\end{array}\right)$ be a matrix of constants.
Define $\boldsymbol{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right)=\boldsymbol{A} \boldsymbol{X}$.
Find $\mathrm{E}(\boldsymbol{Y})$ and $\operatorname{Cov}(\boldsymbol{Y})$.
Are X_{1} and X_{2} independent?
Are Y_{1} and Y_{2} independent? Justify your answers.
Find the mean of $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$.

The covariance matrix

Random vector $\boldsymbol{X}_{(p \times 1)}$ with mean vector $\boldsymbol{\mu}_{(p \times 1)}$ and covariance matrix
$\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]=\left[\begin{array}{cccc}\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\ \sigma_{12} & \sigma_{22} & \cdots & \sigma_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1 p} & \sigma_{2 p} & \cdots & \sigma_{p p}\end{array}\right]$
The covariance matrix is by construction symmetric, and we would only consider covariance matrices that are positive definite (PD). Why would we only consider PD matrices? Homework for next lecture: Read H.Chapter 2.1-2.2 to remind yourself of spectral decomposition (diagonalization), positive definite matrix, eigenvalues and eigenvectors.

What have we worked with today?

- Mean: $\boldsymbol{\mu}_{X}=E(\boldsymbol{X})=\mathrm{E}\left(X_{j}\right)$
- Covariance: $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\mathrm{E}\left(\left(\boldsymbol{X}-\boldsymbol{\mu}_{X}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}_{\boldsymbol{Y}}\right)^{T}\right)$.
- Variance-covariance: $\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left(\left(\boldsymbol{X}-\boldsymbol{\mu}_{X}\right)\left(\boldsymbol{X}-\boldsymbol{\mu}_{X}\right)^{T}\right)$, also sometimes denoted $\operatorname{Var}(\boldsymbol{X})$.
- Correlation: $\operatorname{Corr}(\boldsymbol{X})=\boldsymbol{V}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{V}^{-\frac{1}{2}}$.
- $\boldsymbol{C X}: \mathrm{E}(\boldsymbol{C X})=\boldsymbol{C} \boldsymbol{\mu}_{\boldsymbol{X}}$ and $\operatorname{Cov}(\boldsymbol{C X})=\boldsymbol{C} \boldsymbol{\Sigma} \boldsymbol{C}^{\top}$.

Next lecture: First work with the covariance matrix and positive definiteness, then start with the multivariate normal distribution (where we use moment generating functions and a multivariate version of the transformation formula).

