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What did we learn last lession?
I Why don’t we want to perform a full factorial experiment, but

a instead a fractional factorial? (If we have many factors we
maybe not need to be able to estimate all possible
interactions, and may accept that effects are confounded.)

I What is the easiest way to design a half-fraction of a 2k

factorial experiment? (Perform all the experiments where the
highest order interaction =-1 or +1. E.g. for k=4 we may do
16 different experiments, and now we only do the 8 possible
experiments where ABCD=+1=defining relation. This is the
same as thinking that D=ABC=generator).

I New words:
I generator(s)=how to generate the design,
I defining relation(s), found from the generators,
I resolution=length of shortest defining relation,
I alias structure=confounding pattern, found by multiplying

each effect of interest with the defining relation.
I Today: more on interpreting "confounding", interpreting

"resolution" and more fractional factorial experiments
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Box, Hunter, Hunter: Reactor example

I A=feed rate (liters/min).
I B=Catalyst (%).
I C=Agitation rate (rpm).
I D=Temperature (deg C).
I E=Concentration (%).
I Response= (%) reacted.

Full factorial with 25 = 32 experiments.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.
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Half fraction with reactor example

I Instead of running a full factorial with 25 = 32 experiments,
I we suggest running a half-fraction.
I We choose I = ABCDE as the defining relation.
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Reactor data: answer in groups

A B C D E y
1 -1 -1 -1 -1 -1 61 17 -1 -1 -1 -1 1 56
2 1 -1 -1 -1 -1 53 18 1 -1 -1 -1 1 63
3 -1 1 -1 -1 -1 63 19 -1 1 -1 -1 1 70
4 1 1 -1 -1 -1 61 20 1 1 -1 -1 1 65
5 -1 -1 1 -1 -1 53 21 -1 -1 1 -1 1 59
6 1 -1 1 -1 -1 56 22 1 -1 1 -1 1 55
7 -1 1 1 -1 -1 54 23 -1 1 1 -1 1 67
8 1 1 1 -1 -1 61 24 1 1 1 -1 1 65
9 -1 -1 -1 1 -1 69 25 -1 -1 -1 1 1 44
10 1 -1 -1 1 -1 61 26 1 -1 -1 1 1 45
11 -1 1 -1 1 -1 94 27 -1 1 -1 1 1 78
12 1 1 -1 1 -1 93 28 1 1 -1 1 1 77
13 -1 -1 1 1 -1 66 29 -1 -1 1 1 1 49
14 1 -1 1 1 -1 60 30 1 -1 1 1 1 42
15 -1 1 1 1 -1 95 31 -1 1 1 1 1 81
16 1 1 1 1 -1 98 32 1 1 1 1 1 82

I Which of the 32 experiments should be performed when
I = ABCDE is the defining relation? What is then the generator?

I What is the resolution for this design?

I Write down the aliasing pattern.
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Resolution
A design is said to be of resolution R if no p-factor effect is aliased
with an effect containing less than R-p factors.

A design of resolution
III does not confound main effects with one another, but

does confound main effects with two-factor
interactions.

IV does not confound main effects and two-factor
interactions, but does confound two-factor
interactions with other two-factor interactions.

V does not confound main effects and two-factor
interactions with each other, but does confound
two-factor interactions with three-factor interactions
and so on.

In general the resolution of a two-level factional design is the length
of the shortest word in the defining relation.
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Half fraction with reactor example: generator and defining
relation

I Instead of running a full factorial with 25 = 32 experiments,
I we suggest running a half-fraction.
I We choose I = ABCDE as the defining relation.
I Alternative thinking:

I Construct a full 24 design for A, B, C and D.
I The column of signs for the ABCD interaction is written and

used to define the levels for factor E.
I This means E = ABCD is the generator for the design, and

I = ABCDE is the defining relation.

R-code on course www-page.
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Interpretation of confounding: example

Suppose there are three factors, A, B, C, for which we know the
true effects and interaction effects:

A = 8
B = 20
C = 2

AB = 4
AC = 2
BC = 6

ABC = 4

Also is known that average response is 70.
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True regression model

The corresponding regression model is:

y = β0+β1z1+β2z2+β3z3+β12z12+β13z13+β23z23+β123z123+ε

where z12 = z1z2, z13 = z1z3, z23 = z2z3, z123 = z1z2z3, and where
the coefficients β are half the corresponding effects, while β0 = 70.
The regression model is hence

y = 70+ 4z1 + 10z2 + z3 + 2z12 + z13 + 3z23 + 2z123 + ε

In the following we shall also for simplicity assume that the errors ε
are 0. This makes it possible to compute the responses for any
experiment for which the levels of A, B, C are specified.
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Confounding example (cont.)

Assume now that a 23−1 experiment is performed, with generator
C = AB . And responses are computed using the true regression
model (check!).
St. order A B C=AB AB AC BC ABC y

1 + - - + + - - + 57
2 + + - - - - + + 65
3 + - + - - + - + 73
4 + + + + + + + + 93

Const. z1 z2 z3 z12 z13 z23 z123
Coeff. 70 4 10 1 2 1 3 2
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Confounding example (cont.)
It is now seen that in all of these 4 experiments are

Const. = z123

z1 = z23

z2 = z13

z3 = z12

so for the performed experiment we may as well write the model as

y = (β0 + β123) + (β1 + β23)z1 + (β2 + β13)z2 + (β3 + β12)z3

Using that we know the values of the coefficients, the true model
for the data is thus

y = (70+ 2) + (4+ 3)z1 + (10+ 1)z2 + (1+ 2)z3
= 72+ 7z1 + 11z2 + 3z3
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Confounding example (cont.)

I Suppose now that we try to compute the main effect of A
from our data. Apparently this will be

`A =
65+ 93

2
− 57+ 73

2
= 79− 65 = 14

which is also found as twice the coefficient before z1 in the
regression model above.

I Similarly, the apparent interaction effect of B and C would be
computed as

`BC =
−57+ 65− 73+ 93

2
= 14

The truth (which is known to us) is, however, that A = 8 and
BC = 6, so that it is the sum of A and BC which is 14.
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This is what is meant by saying that the main effect of A and the
interaction effect between B and C are confounded (mixed). The
confounded effects are listed in R as the alias structure.

Factorial Fit: y versus A; B; C

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef
Constant 72,000
A 14,000 7,000
B 22,000 11,000
C 6,000 3,000

Alias Structure
I + A*B*C
A + B*C
B + A*C
C + A*B
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The bicycle example

From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.12.25
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The bicycle example

I Set up a full factorial design in the three variables A, B, C.
I Use the generators: D=AB, E=AC, F=BC, G=ABC.
I Defining relations: I=ABD=ACE=BCF=ABCG.
I The design is of resolution III.
I It is a 1/16 fraction of the full 27, and thus called 27−4

III .
I A design where every available contrast is associated with a

factor is called a saturated design.
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Using FrF2 in R, see file L20.R
> plan <- FrF2(nruns=8,nfactors=7,
generators=c("AB","AC","BC","ABC"),alias.info=2,randomize=FALSE)
> plan

A B C D E F G
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1
class=design, type= FrF2.generators
> summary(plan)
Call:
FrF2(nruns = 8, nfactors = 7, generators = c("AB", "AC", "BC",

"ABC"), alias.info = 2, randomize = FALSE)
Experimental design of type FrF2.generators
8 runs
Factor settings (scale ends):

A B C D E F G
1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1
Design generating information:
$legend
[1] A=A B=B C=C D=D E=E F=F G=G
$generators
[1] D=AB E=AC F=BC G=ABC
Alias structure:
$main
[1] A=BD=CE=FG B=AD=CF=EG C=AE=BF=DG D=AB=CG=EF E=AC=BG=DF F=AG=BC=DE G=AF=BE=CD
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Exam question on fractional factorials (K2014)

In a pilot study with four factors A, B, C and D, the 8 experiments
listed below were run.

A B C D
1 -1 -1 -1 1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 -1 1
5 -1 -1 1 1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 1

What type of experiment is this?
What is the generator and the defining relation for the experiment?
What is the resolution of the experiment?
Write down the alias structure of the experiment.
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Not covered: Response Surface Methods

Dates back to the 1950s, with popular book by Box and Draper.
I The method performes

sequential optimization, and
can deal with several
responses simultaneously.

I Central Composite Designs
(CCD) and Box-Behnken
Designs are two popular
methods.

I John Tyssedal supervises
5th year project and master
thesis in DOE.

https://onlinecourses.science.psu.edu/stat503/node/57
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Final word about the DOE Compulsory Exercise 4

I If you want to have 4 factors and perform 16 runs see R-code
named https://www.math.ntnu.no/emner/TMA4267/
2017v/RscriptDOEtreadmill.R

I If you want to have 3 factors, but need a block effect - look at
this code https://www.math.ntnu.no/emner/TMA4267/
2017v/DOE2in3withrepl.R, because it is best to code the
block with effect coding - FrFr use treatment coding - and
then we don’t have orthogonal columns and everything
becomes difficult...
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Summing up with Kahoot! quiz

kahoot.it
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