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Outline: Summing up (today and on Friday)

I Learning outcomes
I Overview, important concepts and exam problems V2016:

I Part 1: Multivariate RVs and the multivariate normal
distribution

I Part 2: Linear regression
I Part 3: Hypothesis testing and analysis of variance
I Part 4: Design of experiments

I Final reading list
I Exam
I Activities before the exam
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TMA4267 Linear statistical models
Learning outcome, Knowledge

I The student has strong theoretical knowledge about the most
popular statistical models and methods that are used in
science and technology, with emphasis on regression-type
statistical models.

I The statistical properties of the multivariate normal
distribution are well known to the student, and the student is
familiar with the role of the multivariate normal distribution
within linear statistical models.
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Linear Statistical Models (L1)

Simple linear regression (height of child explained by mid-parent
height):

Y = β0 + β1x + ε

Multiple linear regression (also include other explanatory variables):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?

We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, multiple hypothesis testing,
design of experiments, . . ..
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TMA4267 Linear statistical models
Learning outcome, Skills

I The student knows how to design an experiment and
I how to collect informative data of high quality to study a

phenomenon of interest.
I Subsequently, the student is able to choose a suitable

statistical model,
I apply sound statistical methods, and
I perform the analyses using statistical software.
I The student knows how to present the results from the

statistical analyses, and how to draw conclusions about the
phenomenon under study.
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TMA4267: Parts
I Part 1: Multivariate RVs and the multivariate normal

distribution [L1-L6, CompEx1, RecEx1-2]
I Data consists of simultaneous measurements on many

variables: we work with random vectors and random matrices.
I There is a strong connection between the multivariate normal

distribution and the classical linear model.

I Part 2: Linear regression [L7-L12, CompEx2, RecEx3-4]
I We want to understand the relationship between many

variables: with focus on linear relationships through the
classical linear model (multiple linear regression).

I Part 3: Hypothesis testing and analysis of variance [L13-16,
CompEx3, RecEx5]

I We need to know how the scientific process - which often lead
to performing hypotheses test (liner hypotheses), and to know
about issues with reproducibility and multiple tests.

I Part 4: Design of experiments [L17-20, CompEx4, RecEx6]
I If we want to collect data, we need to do know how to design

and perform an experiment, that we analyse using the methods
of Part 2.
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Final grade in TMA4267

I 20% of final grade from the 4 compulsory exercises,
I and the remaining 80% on the 4hrs written exam.
I Written exam:

I mostly focussed on the "knowledge learning outcome"
I 8 "questions" each with maximum 10 points score
I the plan is 3*Easy+3*Medium+2*Hard
I the plan is 3 from Part 1, 3 from Part 2, 1 from Part 3 and 1

from Part 4.
I Remember that all answers must be justified and correct

notation and vocabulary used to score well.
I The written exam must give at least 41% score (that is at

least 32-33 out of 80 points) for a passing grade.
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Part 1: Multivariate RVs and the multivariate normal
distribution [L1-L6, CompEx1, RecEx1-2]

Curriculum:
I Härdle, Simar (2015): Applied Multivariate Statistical

Analysis, Fourth edition, Springer.
I Chapter 2
I Chapter 3.3 (89-93)
I Chapter 4.1-4.5 (117-149)
I Chapter 5.1 (p.181-190)
I Chapter 11.1-11.3 (p. 319-331)

I Fahrmeir, Kneib, Lang and Marx (2013): Regression,
Springer.

I Appendix B
I Slides and handouts (∼ 200 pages): https://www.math.

ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part1.pdf
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First half of Part 1: Working with random vectors and
matrices

I X p-dimensional random vector, characterized by
I pdf f , and/or cdf F , and/or momentgenerating function

MX (t) = E(etT X).
I Moments: E and Cov, and rules for linear and quadratic forms

(here properties of idempotent matrices comes in).
I X has mean E(X) = µ and covariance matrix Cov(X) = Σ,

and C is a constant matrix. Then CX has mean E(CX) = Cµ
and Cov(CX) = CΣCT .

I The "trace-formula": E(XT AX) = tr(AΣ)− µT Aµ.
I Understanding the covariance matrix

Σ = Cov(X) = E ((X − µ)(X − µ)T ), and spectral
decomposition for positive definite covariance matrix
Σ = PΛPT , principal components.
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Second half of Part 1: The multivariate normal distribution

I Derivation, pdf f and mgf MX (t).
I Properties galore!
I Connections to chi-square, t and F distributions.
I Connected to regression: distribution of errors!
I Connection to quadratic forms and idempotent matrices, used

in proofs in Part 2.
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Properties galore
Let X(p×1) be a random vector from Np(µ,Σ).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition). [CompEx1.1b]
2. Linear combinations of components of X are (multivariate)

normal (proof using MGF). [CompEx1.1a]
3. All subsets of the components of X are (multivariate) normal

(special case of the above).
4. Zero covariance implies that the corresponding components

are independently distributed (proof using MGF).
[CompEx1.1a]

5. AΣBT = 0⇔ AX and BX are independent (will be very
important in Part 2). [CompEx1.2b]

6. The conditional distributions of the components are
(multivariate) normal. X2 | (X1 = x1) ∼
Np2(µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 −Σ21Σ−1
11 Σ12).
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Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A2 = A, and has the
following properties (RecEx1.P7).
1. The eigenvalues are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable

quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 1+2). If a (n × n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n − r are 0.

4. The trace and rank of a symmetric projection matrix are
equal: tr(A) = rank(A).

5. The matrix I − A is also idempotent, and A(I − A) = 0.
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Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean µ and covariance matrix Σ,
symmetric constant matrix A.

I Quadratic form: XT AX .
I The "trace-formula": E(XT AX) = tr(AΣ)− µT Aµ.

Then, let X ∼ Np(0, I), and R is a symmetric and idempotent
matrix with rank r .

XT RX ∼ χ2
r

Now, also S is a symmetric and idempotent matrix with rank s,
and RS = 0.

sXT RX
rXT SX ∼ Fr ,s
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V2016: Problem 1

Independent random variables
Assume that X is a bivariate normal random variable and that
E(X) =

(
5
3

)
and Cov(X) =

(
2 1
1 2

)
. Let Y =

(
1 −1
−1 1

)
X .

Find the distribution of Y .
Specify a, b such that Y and

(
2 a
b 1

)
X are independent random

variables. Justify your answer.
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Grading V2016

Results for 53 students:

Grade A B C D E F
Frequency % 28 28 23 13 2 6

Item 1a 2a 2b 2c 2d 2e 3a 3b
Average score 9.25 8.47 7.42 4.37 5.97 4.68 8.82 6.18
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Theoretical problems - derivations and proofs

I V2016 Problem 3ab: Properties of estimator for σ2

I V2015 Problem 3abc: Problem Mallows’ Cp.
I V2014 Problem 4ab: weighted regression, omitting parts of

regression.
I K2014 Problem 4abc: idempotent H and I − H, distribution

of SSE and independence of β̂ and SSE.
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V2016 Problem 3: Properties of estimator for σ2

Let Y be an n × 1 random vector with mean µ1 and covariance
matrix σ2I, where 1 is an n × 1 vector with all elements equal to 1
and I is an n × n identity matrix. Further, denote by Yi element i
of Y , and let Ȳ = 1

n
∑n

i=1 Yi = 1
n1TY .

An estimator for σ2 is

S2 = 1
n − 1

n∑
i=1

(Yi − Ȳ )2 = 1
n − 1Y T

(
I − 1

n11T
)
Y .

We give the following useful result. Let X be an n × 1 random
vector with mean η and covariance matrix Σ, and let C be an
n × n symmetric constant matrix. Then,

E(XTCX) = tr(CΣ) + ηTCη. (1)
First, write down the value of 1T1, and the matrices 11T and
I − 1

n11T for n = 4.
What are key characteristics of the matrix I − 1

n11T (symmetric or
not, idempotent or not, rank)?
Use Equation (1) to find E(S2).
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V2016 Problem 3b

Let us now assume that Y is multivariate normally distributed with
the mean and covariance given above.
Show that 1

σ2 Y T(I − 1
n11T)Y follows a χ2-distribution, and also

derive the number of degrees of freedom.
Use this result to find the variance of S2.
Is the random variable 1

n1TY and the random vector (I − 1
n11T)Y

independent? Justify your answer.
Finally, find the distribution of

n( 1
n1TY − µ)2

1
n−1Y T(I − 1

n11T)Y
.

Justify your answer.

17 / 60



Part 2: Linear regression [L7-L12, CompEx2, RecEx3-4]
Curriculum:

I Fahrmeir, Kneib, Lang and Marx (2013): Regression,
Springer.

I Chapter 3.
I Appendix B

I Slides and handouts: https://www.math.ntnu.no/emner/
TMA4267/2017v/TMA4267V2017Part2.pdf
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I.
3. The design matrix has full rank, rank(X) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
4. ε ∼ Nn(0, σ2I)

holds. For random covariates these assumptions are to be
understood conditionally on X .
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Conditional mean and covariance

If we believe that the vector with elements Y and X are
multivariate normal Nk+1(µ,Σ) we may look at the partition(

Y
X

)
∼ Nk+1

(( µY
µX

)
,

(
ΣYY ΣYX
ΣXY ΣXX

))
The conditional distributions of the components are (multivariate)
normal, with conditional mean and variance of Y | X = x are

E(Y | X = x) =µY + ΣYXΣ−1
XX (x − µX )

Var(Y | X = x) =ΣY −ΣYXΣ−1
XXΣXY

Observe: mean is linear in x and variance independent of x.
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Parameter estimation
I Least squares and maximum likelihood estimator for β:

β̂ = (XT X)−1XT Y
I Restricted maximum likelihood estimator for σ2:

σ̂2 = 1
n − p (Y − Xβ̂)T (Y − Xβ̂) = SSE

n − p
I Projection matrices: idempotent, symmetric/orthogonal:

H = X(XT X)−1XT

I − H = I − X(XT X)−1XT

with important connection:

Ŷ = HY
ε̂ = I − HY
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Alternative summery of Geometry of Least Squares

I Mean response vector: E (Y ) = Xβ
I As β varies, Xβ spans the model plane of all linear

combinations. I.e. the space spanned by the columns of X :
the column-space of X .

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X .

I LS-estimation chooses β̂ such that Xβ̂ is the point in the
column-space of X that is closes to Y .

I The residual vector ε̂ = Y − Ŷ = (I − H)Y is perpendicular
to the column-space of X .

I Multiplication by H = X(XT X)−1XT projects a vector onto
the column-space of X .

I Multiplication by I − H = I − X(XT X)−1XT projects a
vector onto the space perpendicular to the column-space of X .

22 / 60



Properties for the normal linear model
I Least squares and maximum likelihood estimator for β:

β̂ = (XT X)−1XT Y

with β̂ ∼ Np(β, σ2(XT X)−1).
I Restricted maximum likelihood estimator for σ2:

σ̂2 = 1
n − p (Y − Xβ̂)T (Y − Xβ̂) = SSE

n − p

with (n−p)σ̂2

σ2 ∼ χ2
n−p.

I Statistic for inference about βj , cjj is diagonal element j of
(XT X)−1.

Tj = β̂j − βj√cjj σ̂
∼ tn−p

I Residuals (raw): ε̂ = Y − Ŷ , E(ε̂) = 0 and
Cov(ε̂) = σ2(I −H) where H = X(XT X)−1XT .
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Are β̂ and SSE are independent?

Independence – from Part 1:
Let X(p×1) be a random vector from Np(µ,Σ). Then AX and BX
are independent iff AΣBT = 0.

We have:
I Y ∼ Nn(Xβ, σ2I)
I AY = β̂ = (XT X)−1XT Y , and
I BY = (I −H)Y .
I Now Aσ2IBT = σ2ABT = σ2(XT X)−1XT (I −H) = 0
I since X(I −H) = X −HX = X − X = 0.
I We conclude that β̂ is independent of (I −H)Y ,
I and, since SSE=function of (I −H)Y : SSE=Y T (I −H)Y ,
I then β̂ and SSE are independent.
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V2016 Problem 2: Plant stress
(slightly modified to reflect changes to the reading list

At the Department of Biology at NTNU researchers use the model plant
Arabidopsis thaliana to study the response of a plant to different sources
of stress. In an experiment Arabidopsis thaliana seedlings were subject to
a stress situation. The following factors were fitted:

I D (damage): D = 1 means that the plant was damaged
mechanically by cutting into the leaves of the plant by a pair of
scissors. D = −1 means damage was not inflicted (no cutting).

I F (flagellin): F = 1 means that the pathogen-derived peptide
flagellin was sprayed on the leaves of the plant. F = −1 means
water (not flagellin) was sprayed.

I T (time): Plants were harvested at two different time points after
the stress situation. T = 1 means that the plant was harvested 60
minutes after the stress situation and T = −1 means that the plant
was harvested 30 minutes after the stress situation.

Thus, we have three factors, D, F and T , each at two levels. In the
study experiments for all possible combinations of the three factors were
performed four times yielding 32 experiments in total.
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V2016 Problem 2: Plant stress
The response measured in the experiment, was the observed gene activity
level (a continuous measurement) of each of around 40 000 genes. We
will only focus on the gene activity level of one of these genes, the
AT1G32920 gene, and we denote the gene activity level of this gene by
Y . It is known that this gene is active in response to wounding.
For experiment number i (where i = 1, . . . , 32): Yi is the observed
response, Di is chosen value of D, Fi is chosen value of F , and Ti is
chosen value of T . A multiple regression model with all main effects, and
two- and three-way interactions, was considered,

Yi = β0+βDDi +βF Fi +βT Ti +βD:F Di Fi +βD:T Di Ti +βF :T Fi Ti +βD:F :T Di Fi Ti +εi ,

where i = 1, . . . , 32, and we assume εi independent and identically
normally distributed with mean 0 and variance σ2. We refer to this as the
full model.
Note that the interactions are simply products of the factors. The vector
of regression parameters is
β =

(
β0 βD βF βT βD:F βD:T βF :T βD:F :T

)T, and the ith row
of the design matrix X is

(
1 Di Fi Ti DiFi DiTi FiTi DiFiTi

)
.
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V2016 Problem 2: Plant stress
Here you find R-commands and print-out from fitting the full model.
# data is in "standard order" in data frame with name "ds"
> ds %showing only rows 1-6 and 27-32 for space considerations

Y D F T
1 15.45169 -1 -1 -1
2 15.15908 -1 -1 -1
3 14.93064 -1 -1 -1
4 15.06569 -1 -1 -1
5 14.51032 -1 -1 1
6 14.76922 -1 -1 1
...
27 18.23645 1 1 -1
28 17.70327 1 1 -1
29 16.66523 1 1 1
30 16.96046 1 1 1
31 16.73133 1 1 1
32 16.57248 1 1 1
> fit=lm(Y~D*F*T,data=ds)
> model.matrix(fit)%only showing rows 1-6 and 27-32

(Intercept) D F T D:F D:T F:T D:F:T
1 1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 1 1 1 -1
3 1 -1 -1 -1 1 1 1 -1
4 1 -1 -1 -1 1 1 1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 -1 -1 1 1 -1 -1 1
...
27 1 1 1 -1 1 -1 -1 -1
28 1 1 1 -1 1 -1 -1 -1
29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1
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V2016 Problem 2a: Plant stress
In the print-out from summary(fit) four numerical values are replaced
by question marks. Calculate numerical values for each of these, and
explain what each of the values means.

> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04140 ? < 2e-16
D 0.93739 0.04140 22.644 < 2e-16
F 0.28546 0.04140 6.896 3.93e-07
T -0.52354 0.04140 -12.647 4.18e-12
D:F -0.08878 0.04140 -2.145 0.04231
D:T -0.00242 ? -0.058 0.95386
F:T -0.12614 0.04140 -3.047 0.00555
D:F:T 0.09099 0.04140 2.198 ?
Residual standard error: 0.2342 on 24 degrees of freedom
Multiple R-squared: ?, Adjusted R-squared: 0.9594
F-statistic: 105.6 on 7 and 24 DF, p-value: < 2.2e-16
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Examination of model assumptions

1. Linearity of covariates: Y = Xβ + ε
2. Homoscedastic error variance: Cov(ε) = σ2I.
3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ+ε
5. Assumption of normality: ε ∼ Nn(0, σ2I)
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Plotting residuals
1. Plot the residuals, r∗i against the predicted values, ŷi .

I Dependence of the residuals on the predicted value: wrong
regression model?

I Nonconstant variance: transformation or weighted least
squares is needed?

2. Plot the residuals, r∗i , against predictor variable or functions
of predictor variables. Trend suggest that transformation of
the predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, r∗i , versus time or collection order (if
possible). Look for dependence or autocorrelation.
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Box–Cox plot
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V2016 Plant stress 2b: Residual plots
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V2016 Plant stress 2b: R-code

> library(FrF2)
> MEPlot(fit)
> IAPlot(fit)
> cubePlot(fit,"D","F","T",round=1,size=0.33,main="")
> plot(fit$fitted,rstudent(fit),pch=20)
> qqnorm(rstudent(fit),pch=20)
> qqline(rstudent(fit))
> ad.test(rstudent(fit))
Anderson-Darling normality test
data: rstudent(fit)
A = 0.43191, p-value = 0.2869
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V2016 Plant stress 2b: Cube, main effects and interaction
effects

modeled = TRUE
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V2016: Plant stress 2b

How would you, based on the figures given and the R-output,
evaluate the fit of the model?

How would you explain to a biologist what the estimated main
effect of damage means in practice? How would you explain the
estimated interaction effect between damage and flagellin?

Let γ = 2βF−βD be a new parameter of interest.
Suggest an estimator, γ̂, for γ. Use approximate methods to find
the expected value and variance of this estimator, that is, E(γ̂)
and Var(γ̂). Use results in the prinout to calculate numerical value
for γ̂, and estimated numerical values for E(γ̂) and Var(γ̂).
Hint: You may use that 2x = exp(x ln 2), where ln is the natural
logarithm.
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First order Taylor expansion: Univariate function

X is RV with E(X ) = µ, and we look at function g(X ).
First order Taylor approximation of g(X ) around µ.

g(X ) ≈ g(µ) + g ′(µ)(X − µ)

This leads to the following approximations:

E(g(X )) ≈ g(µ)
Var(g(X )) ≈ [g ′(µ)]2Var(X )
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First order Taylor expansion: Bivariate function
X1 is a RV with µ1 = E(X1) and X2 is a RV with µ2 = E(X2).
Let g be a bivariate function of X1 and X2, and define

g ′1(µ1, µ2) = ∂g(x1, x2)
∂x1

|x1=µ1,x2=µ2

g ′2(µ1, µ2) = ∂g(x1, x2)
∂x2

|x1=µ1,x2=µ2

First order Taylor approximation:

g(X1,X2) ≈ g(µ1, µ2) + g ′1(µ1, µ2)(X1−µ1) + g ′2(µ1, µ2)(X2−µ2)

E(g(X1,X2)) ≈ g(µ1, µ2)
Var(g(X1,X2)) ≈ [g ′1(µ1, µ2)]2Var(X1) + [g ′2(µ1, µ2)]2Var(X2)+

2 · g ′1(µ1, µ2) · g ′2(µ1, µ2)Cov(X1,X2)
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Topic: choosing the "best" linear regression model!
I First, debunk popular strategies (based on simulations studies

were we knew the "true" model):
I Popular 1: fit all available covariates.

Problem: overfitting (=fitting trends and noise).
I Popular 2: fit all available covariates, then remove the

insignificant ones (=those βj where H0 : βj = 0 is rejected).
Problem: may also remove important covariates that are
correlated with unimportant ones - but insignificant because
being masked by the unimportant ones.

I Study of irrelevant and missing covariates:
Irrelevant : variables that are included in the regression

but should not have been (IQ of lumberjack)
missing : variables that are not included, but should

have been (omitting height in the tree volum
example)

Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model. Take home
message is the "Law of parsimony": If two models are not
very different – then always choose the simplest one. 38 / 60



Model selection
Want to choose the model that minimize the

SPSE =
J∑

j=1
E((Yj − ŶjM)2)

Several solution based on test set or cross-validation. We have
focused on using only the original data and a penalized criterion: a
first term based on SSE (or R2) for model M, and a second term
penalizing the model complexity.
R2 adjusted (corrected)
Mallows’ Cp

Akaike Information Criterion (AIC)
Bayesian Information Criterion (BIC)
NB: there is no overall best choice for criterion - all of these are
used.
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V2016 Plant stress 2d: model selection (missing part with
lasso not on reading list)

The researchers want to use the data to fit a prediction model, and want
to consider reduced versions of the full model, using best subset model
selection.
Explain briefly what is done in the best subset model selection, and
choose a good model based on the R2

adj-criterion. Write down the fitted
regression model for the model you choose.
> x <- model.matrix(fit)[,-1]; dim(x)
[1] 32 7
> y <- ds$Y
> library(leaps)
> bests <- regsubsets(x,y)
> sumbests=summary(bests)
> sumbests
1 subsets of each size up to 7
Selection Algorithm: exhaustive

D F T D:F D:T F:T D:F:T
1 ( 1 ) "*" " " " " " " " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " " " "*" " "
5 ( 1 ) "*" "*" "*" " " " " "*" "*"
6 ( 1 ) "*" "*" "*" "*" " " "*" "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
> plot(bests,scale="adjr2",col=gray(seq(0.6,0.9,length=20)))
> round(sumbests$adjr2,3)
[1] 0.661 0.874 0.938 0.950 0.955 0.961 0.959
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V2016: Plant stress 2d
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Part 3: Hypothesis testing and analysis of variance
[L13-L16, CompEx3, RecEx5]

Curriculum:
I Fahrmeir, Kneib, Lang and Marx (2013): Regression,

Springer.
I Chapter 3.3
I Appendix B

I Härdle, Simar (2015): Applied Multivariate Statistical
Analysis, Fourth edition, Springer.

I Chapter 8.1.1.
I Note: Multiple testing by Halle, Bakke and Langaas.
I Slides and handouts: https://www.math.ntnu.no/emner/

TMA4267/2017v/TMA4267V2017Part3.pdf
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MORE TO COME HERE
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V2016 Problem 2: Plant stress
At the Department of Biology at NTNU researchers use the model plant
Arabidopsis thaliana to study the response of a plant to different sources
of stress. In an experiment Arabidopsis thaliana seedlings were subject to
a stress situation. The following factors were fitted:

I D (damage): D = 1 means that the plant was damaged
mechanically by cutting into the leaves of the plant by a pair of
scissors. D = −1 means damage was not inflicted (no cutting).

I F (flagellin): F = 1 means that the pathogen-derived peptide
flagellin was sprayed on the leaves of the plant. F = −1 means
water (not flagellin) was sprayed.

I T (time): Plants were harvested at two different time points after
the stress situation. T = 1 means that the plant was harvested 60
minutes after the stress situation and T = −1 means that the plant
was harvested 30 minutes after the stress situation.

Thus, we have three factors, D, F and T , each at two levels. In the
study experiments for all possible combinations of the three factors were
performed four times yielding 32 experiments in total.
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V2016 Problem 2: Plant stress
The response measured in the experiment, was the observed gene activity
level (a continuous measurement) of each of around 40 000 genes. We
will only focus on the gene activity level of one of these genes, the
AT1G32920 gene, and we denote the gene activity level of this gene by
Y . It is known that this gene is active in response to wounding.
For experiment number i (where i = 1, . . . , 32): Yi is the observed
response, Di is chosen value of D, Fi is chosen value of F , and Ti is
chosen value of T . A multiple regression model with all main effects, and
two- and three-way interactions, was considered,

Yi = β0+βDDi +βF Fi +βT Ti +βD:F Di Fi +βD:T Di Ti +βF :T Fi Ti +βD:F :T Di Fi Ti +εi ,

where i = 1, . . . , 32, and we assume εi independent and identically
normally distributed with mean 0 and variance σ2. We refer to this as the
full model.
Note that the interactions are simply products of the factors. The vector
of regression parameters is
β =

(
β0 βD βF βT βD:F βD:T βF :T βD:F :T

)T, and the ith row
of the design matrix X is

(
1 Di Fi Ti DiFi DiTi FiTi DiFiTi

)
.
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V2016 Problem 2a: Plant stress
In the print-out from summary(fit) four numerical values are replaced
by question marks. Calculate numerical values for each of these, and
explain what each of the values means.

> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04140 ? < 2e-16
D 0.93739 0.04140 22.644 < 2e-16
F 0.28546 0.04140 6.896 3.93e-07
T -0.52354 0.04140 -12.647 4.18e-12
D:F -0.08878 0.04140 -2.145 0.04231
D:T -0.00242 ? -0.058 0.95386
F:T -0.12614 0.04140 -3.047 0.00555
D:F:T 0.09099 0.04140 2.198 ?
Residual standard error: 0.2342 on 24 degrees of freedom
Multiple R-squared: ?, Adjusted R-squared: 0.9594
F-statistic: 105.6 on 7 and 24 DF, p-value: < 2.2e-16
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V2016: Plant stress 2c - with the full model

The researchers want to test the hypothesis

H0 : βD:T = βF :T = βD:F :T = 0 vs.
H1 : at least one of βD:T , βF :T , βD:F :T is different from 0.

Perform the hypothesis test at a significance level of your own
choice. All the numerical values you need for the calculations are
found in the R-printout.
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Part 4: Design of experiments [L17-L20, CompEx4,
RecEx6]

Curriculum:
I Note on Design of experiments by Tyssedal (not p 19: partial

confounding and p28 fold-over).
I Slides and handouts: https://www.math.ntnu.no/emner/

TMA4267/2017v/TMA4267V2017Part4.pdf

48 / 60

https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part4.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part4.pdf


MORE TO COME HERE
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Topic: choosing the "best" linear regression model!
I First, debunk popular strategies (based on simulations studies

were we knew the "true" model):
I Popular 1: fit all available covariates.

Problem: overfitting (=fitting trends and noise).
I Popular 2: fit all available covariates, then remove the

insignificant ones (=those βj where H0 : βj = 0 is rejected).
Problem: may also remove important covariates that are
correlated with unimportant ones - but insignificant because
being masked by the unimportant ones.

I Study of irrelevant and missing covariates:
Irrelevant : variables that are included in the regression

but should not have been (IQ of lumberjack)
missing : variables that are not included, but should

have been (omitting height in the tree volum
example)

Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model. Take home
message is the "Law of parsimony": If two models are not
very different – then always choose the simplest one. 50 / 60



V2016: Problem 1e - full vs. reduced model
The researchers choose to use the following reduced model for prediction:

Yi = β0 + βDDi + βFFi + βTTi + βD:FDiFi + εi ,

where i = 1, . . . , 32, and we assume εi independent and identically
normally distributed with mean 0 and variance σ2.

Compare the estimated regression parameters and the estimated standard
deviations of the estimated regression parameters for the full model and
the reduced model, and explain what you observe.
Based on the reduced model, provide a prediction and a 95% prediction
interval for the gene activity level for the factor combination D = 1,
F = 1, T = −1.

Hint: In a multiple linear regression with n × p design matrix X ,
estimated regression coefficients β̂ and unbiased estimated error variance
s2, a (1− α)100% prediction interval at x0 is given as

xT
0 β̂ ± tα

2 ,n−p s
√
1 + xT

0 (XT X)−1x0,

where tα/2,n−p denotes the value in the t-distribution with n − p degrees
of freedom that has area α

2 to the right.
51 / 60



V2016: 2d - full vs. reduced model
> fitRED=lm(Y~D+F+T+D:F,data=ds)
> summary(fitRED)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04919 328.528 < 2e-16
D 0.93739 0.04919 19.057 < 2e-16
F 0.28546 0.04919 5.804 3.56e-06
T -0.52354 0.04919 -10.644 3.66e-11
D:F -0.08878 0.04919 -1.805 0.0822
Residual standard error: 0.2782 on 27 degrees of freedom
Multiple R-squared: 0.95,Adjusted R-squared: 0.9426
F-statistic: 128.4 on 4 and 27 DF, p-value: < 2.2e-16
> qt(0.025,32,lower.tail=FALSE)
[1] 2.036933
> qt(0.025,27,lower.tail=FALSE)
[1] 2.051831
> qt(0.025,24,lower.tail=FALSE)
[1] 2.063899
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Grading V2016

Results for 53 students:

Grade A B C D E F
Frequency % 28 28 23 13 2 6

Item 1a 2a 2b 2c 2d 2e 3a 3b
Average score 9.25 8.47 7.42 4.37 5.97 4.68 8.82 6.18
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Exam

I 9.00-13.00, May 19, 2017.
I Written.
I Makes up 80% of the final grade, the remaining 20 % from

the four compulsory exercises.
I Permitted aids: (Code C). One yellow A5 with own

handwritten notes, Rottmann: Matematisk formelsamling,
Tabeller og formler i statistikk, specified calculator.
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Why one yellow A5 sheet?

I Force you to structure the course key concepts?
I Memorizing not needed?
I Security blanket.
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Final reading list

I Fairmeir et al (2013):
Chapter 3 and Appendix B.

I Härdle et al (2015):
Chapters 2, 3.3, 4.1-4.5, 5.1, 8.1.1 and 11.1-11.3.

I Multiple testing note by Halle, Bakke and Langaas.
I DOE-note by Tyssedal.
I BoxCox: from L12 in lecture notes/handouts (and on several

exams).
I The 4 compulsory and 6 recommended exercises.

56 / 60



Comparison with reading list earlier years
Not on the reading list V2017, but on before:
Analysis of contingency tables.
The most complex parts of Design of experiments (folding, combining
blocking and fractionating).
Random effects ANOVA.
More effort made earlier with quadratic forms for ANOVA (especially
with idempotent centering matrices and sums-of-squares).
Hotelling T2.
Penalized regression: lasso and ridge (will be part of TMA4268 Statistical
learning).

New(ish) on the reading list:
Replication crises, properties of p-values.
Multiple testing with FWER and FDR.
Testing of linear hypotheses (F:3.3) (new in 2016)
Effect coding in linear regression to see analysis of variance just as a
special case of regression, and using the linear hypothesis F-test instead
of much work with sums-of-squares (new in 2016)
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Activities before the exam

I The exam is Friday, May 19, 9-13.
I Exam problems from earlier year is available from the course

www-page (also outside Bb).
I Supervision - and you may sit and work - Sentralbygg 2 -

room 822 (booked 10-14)
I Before May 15 - just stop by the office of Jacob or Mette

(better to stop by than sending email - difficult to give good
answer on email).

I Monday May 15: 10-12
I Tuesday May 16: 10-12
I Thursday May 18: 10-12

I After the exam: tentative solutions posted
I and hopefully (if allowed) automatic feedback given together

with exam grade.
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Statistics courses
I Autumn semester

I TMA4295 Statistical Inference
I TMA4285 Time series
I TMA4315 Generalized linear models

I Spring semester
I TMA4250 Spatial statistics
I TMA4268 Statistical learning
I TMA4275 Survival analysis
I TMA4300 Computational statistics
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Future studies?

What is your current plan of topic for future studies?
I A: Statistics
I B: Mathematics
I C: Numerics
I D: Other
I E: Don’t know

Use your smart phone, or other devise with internet access and go
to http://clicker.math.ntnu.no/, and then select TMA4267 as
classroom.
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