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Outline: Summing up (today and on Friday)

I Learning outcomes
I Overview, important concepts and exam problems V2016:

I Part 1: Multivariate RVs and the multivariate normal
distribution

I Part 2: Linear regression
I Part 3: Hypothesis testing and analysis of variance
I Part 4: Design of experiments

I Final reading list
I Exam
I Activities before the exam
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TMA4267 Linear statistical models
Learning outcome, Knowledge

I The student has strong theoretical knowledge about the most
popular statistical models and methods that are used in
science and technology, with emphasis on regression-type
statistical models.

I The statistical properties of the multivariate normal
distribution are well known to the student, and the student is
familiar with the role of the multivariate normal distribution
within linear statistical models.
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Linear Statistical Models (L1)

Simple linear regression (height of child explained by mid-parent
height):

Y = —
0

+ —
1

x + Á

Multiple linear regression (also include other explanatory variables):

Y = —
0

+ —
1

x
1

+ —
2

x
2

+ · · · + —
p

x
p

+ Á

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?

We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, multiple hypothesis testing,
design of experiments, . . ..

3 / 60



Linear Statistical Models (L1)

Simple linear regression (height of child explained by mid-parent
height):

Y = —
0

+ —
1

x + Á

Multiple linear regression (also include other explanatory variables):

Y = —
0

+ —
1

x
1

+ —
2

x
2

+ · · · + —
p

x
p

+ Á

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?
We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, multiple hypothesis testing,
design of experiments, . . ..

3 / 60



TMA4267 Linear statistical models
Learning outcome, Skills

I The student knows how to design an experiment and
I how to collect informative data of high quality to study a

phenomenon of interest.
I Subsequently, the student is able to choose a suitable

statistical model,
I apply sound statistical methods, and
I perform the analyses using statistical software.
I The student knows how to present the results from the

statistical analyses, and how to draw conclusions about the
phenomenon under study.
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TMA4267: Parts
I Part 1: Multivariate RVs and the multivariate normal

distribution [L1-L6, CompEx1, RecEx1-2]
I Data consists of simultaneous measurements on many

variables: we work with random vectors and random matrices.
I There is a strong connection between the multivariate normal

distribution and the classical linear model.
I Part 2: Linear regression [L7-L12, CompEx2, RecEx3-4]

I We want to understand the relationship between many
variables: with focus on linear relationships through the
classical linear model (multiple linear regression).

I Part 3: Hypothesis testing and analysis of variance [L13-16,
CompEx3, RecEx5]

I We need to know how the scientific process - which often lead
to performing hypotheses test (liner hypotheses), and to know
about issues with reproducibility and multiple tests.

I Part 4: Design of experiments [L17-20, CompEx4, RecEx6]
I If we want to collect data, we need to do know how to design

and perform an experiment, that we analyse using the methods
of Part 2.
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Final grade in TMA4267

I 20% of final grade from the 4 compulsory exercises,
I and the remaining 80% on the 4hrs written exam.
I Written exam:

I mostly focussed on the "knowledge learning outcome"
I 8 "questions" each with maximum 10 points score
I the plan is 3*Easy+3*Medium+2*Hard
I the plan is 3 from Part 1, 3 from Part 2, 1 from Part 3 and 1

from Part 4.
I Remember that all answers must be justified and correct

notation and vocabulary used to score well.
I The written exam must give at least 41% score (that is at

least 32-33 out of 80 points) for a passing grade.
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Part 1: Multivariate RVs and the multivariate normal
distribution [L1-L6, CompEx1, RecEx1-2]

Curriculum:
I Härdle, Simar (2015): Applied Multivariate Statistical

Analysis, Fourth edition, Springer.
I Chapter 2
I Chapter 3.3 (89-93)
I Chapter 4.1-4.5 (117-149)
I Chapter 5.1 (p.181-190)
I Chapter 11.1-11.3 (p. 319-331)

I Fahrmeir, Kneib, Lang and Marx (2013): Regression,
Springer.

I Appendix B
I Slides and handouts (≥ 200 pages): https://www.math.

ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part1.pdf
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First half of Part 1: Working with random vectors and
matrices

I X p-dimensional random vector, characterized by
I pdf f , and/or cdf F , and/or momentgenerating function

M
X

(t) = E(etT X).
I Moments: E and Cov, and rules for linear and quadratic forms

(here properties of idempotent matrices comes in).
I X has mean E(X) = µ and covariance matrix Cov(X) = �,

and C is a constant matrix. Then CX has mean E(CX) = Cµ
and Cov(CX) = C�CT .

I The "trace-formula": E(XT AX) = tr(A�) ≠ µT Aµ.
I Understanding the covariance matrix

� = Cov(X) = E ((X ≠ µ)(X ≠ µ)T ), and spectral
decomposition for positive definite covariance matrix
� = P�PT , principal components.
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Second half of Part 1: The multivariate normal distribution

I Derivation, pdf f and mgf M
X

(t).
I Properties galore!
I Connections to chi-square, t and F distributions.
I Connected to regression: distribution of errors!
I Connection to quadratic forms and idempotent matrices, used

in proofs in Part 2.
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Properties galore
Let X

(p◊1)

be a random vector from N
p

(µ, �).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition). [CompEx1.1b]
2. Linear combinations of components of X are (multivariate)

normal (proof using MGF). [CompEx1.1a]
3. All subsets of the components of X are (multivariate) normal

(special case of the above).
4. Zero covariance implies that the corresponding components

are independently distributed (proof using MGF).
[CompEx1.1a]

5. A�BT = 0 … AX and BX are independent (will be very
important in Part 2). [CompEx1.2b]

6. The conditional distributions of the components are
(multivariate) normal. X

2

| (X
1

= x
1

) ≥
N

p2

(µ
2

+ �
21

�≠1

11

(x
1

≠ µ
1

), �
22

≠ �
21

�≠1

11

�
12

).
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Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A2 = A, and has the
following properties (RecEx1.P7).

1. The eigenvalues are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable

quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 1+2). If a (n ◊ n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n ≠ r are 0.

4. The trace and rank of a symmetric projection matrix are
equal: tr(A) = rank(A).

5. The matrix I ≠ A is also idempotent, and A(I ≠ A) = 0.
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Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean µ and covariance matrix �,
symmetric constant matrix A.

I Quadratic form: XT AX .
I The "trace-formula": E(XT AX) = tr(A�) ≠ µT Aµ.

Then, let X ≥ N
p

(0, I), and R is a symmetric and idempotent
matrix with rank r .

XT RX ≥ ‰2

r

Now, also S is a symmetric and idempotent matrix with rank s,
and RS = 0.

sXT RX
rXT SX ≥ F

r ,s
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V2016: Problem 1

Independent random variables

Assume that X is a bivariate normal random variable and that
E(X) =

A
5
3

B

and Cov(X) =
A

2 1
1 2

B

. Let Y =
A

1 ≠1
≠1 1

B

X .

Find the distribution of Y .
Specify a, b such that Y and

A
2 a
b 1

B

X are independent random

variables. Justify your answer.
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Grading V2016

Results for 53 students:
Grade A B C D E F
Frequency % 28 28 23 13 2 6

Item 1a 2a 2b 2c 2d 2e 3a 3b
Average score 9.25 8.47 7.42 4.37 5.97 4.68 8.82 6.18
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Theoretical problems - derivations and proofs

I V2016 Problem 3ab: Properties of estimator for ‡2

I V2015 Problem 3abc: Problem Mallows’ Cp.
I V2014 Problem 4ab: weighted regression, omitting parts of

regression.
I K2014 Problem 4abc: idempotent H and I ≠ H, distribution

of SSE and independence of —̂ and SSE.
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V2016 Problem 3: Properties of estimator for ‡2

Let Y be an n ◊ 1 random vector with mean µ1 and covariance
matrix ‡2I, where 1 is an n ◊ 1 vector with all elements equal to 1
and I is an n ◊ n identity matrix. Further, denote by Y

i

element i
of Y , and let Ȳ = 1

n

q
n

i=1

Y
i

= 1

n

1

TY .
An estimator for ‡2 is

S2 = 1
n ≠ 1

nÿ

i=1

(Y
i

≠ Ȳ )2 = 1
n ≠ 1Y T

1
I ≠ 1

n11

T

2
Y .

We give the following useful result. Let X be an n ◊ 1 random
vector with mean ÷ and covariance matrix �, and let C be an
n ◊ n symmetric constant matrix. Then,

E(XTCX) = tr(C�) + ÷TC÷. (1)
First, write down the value of 1

T

1, and the matrices 11

T and
I ≠ 1

n

11

T for n = 4.
What are key characteristics of the matrix I ≠ 1

n

11

T (symmetric or
not, idempotent or not, rank)?
Use Equation (1) to find E(S2).
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V 2016 # 39
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V2016 Problem 3b

Let us now assume that Y is multivariate normally distributed with
the mean and covariance given above.
Show that 1

‡2

Y T(I ≠ 1

n

11

T)Y follows a ‰2-distribution, and also
derive the number of degrees of freedom.
Use this result to find the variance of S2.
Is the random variable 1

n

1

TY and the random vector (I ≠ 1

n

11

T)Y
independent? Justify your answer.
Finally, find the distribution of

n( 1

n

1

TY ≠ µ)2

1

n≠1

Y T(I ≠ 1

n

11

T)Y
.

Justify your answer.
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Part 2: Linear regression [L7-L12, CompEx2, RecEx3-4]
Curriculum:

I Fahrmeir, Kneib, Lang and Marx (2013): Regression,
Springer.

I Chapter 3.
I Appendix B

I Slides and handouts: https://www.math.ntnu.no/emner/

TMA4267/2017v/TMA4267V2017Part2.pdf
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The classical linear model

The model
Y = X— + Á

is called a classical linear model if the following is true:
1. E(Á) = 0.
2. Cov(Á) = E(ÁÁT ) = ‡2I.
3. The design matrix has full rank, rank(X) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally

4. Á ≥ N
n

(0, ‡2I)
holds. For random covariates these assumptions are to be
understood conditionally on X .
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Conditional mean and covariance

If we believe that the vector with elements Y and X are
multivariate normal N

k+1

(µ, �) we may look at the partition
A

Y
X

B

≥ N
k+1

1 A
µ

Y

µX

B

,

A
�

YY

�
YX

�
XY

�
XX

B 2

The conditional distributions of the components are (multivariate)
normal, with conditional mean and variance of Y | X = x are

E(Y | X = x) =µ
Y

+ �
YX

�≠1

XX

(x ≠ µ
X

)
Var(Y | X = x) =�

Y

≠ �
YX

�≠1

XX

�
XY

Observe: mean is linear in x and variance independent of x.
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Parameter estimation
I Least squares and maximum likelihood estimator for —:

—̂ = (XT X)≠1XT Y
I Restricted maximum likelihood estimator for ‡2:

‡̂2 = 1
n ≠ p (Y ≠ X—̂)T (Y ≠ X—̂) = SSE

n ≠ p
I Projection matrices: idempotent, symmetric/orthogonal:

H = X(XT X)≠1XT

I ≠ H = I ≠ X(XT X)≠1XT

with important connection:
Ŷ = HY
Á̂ = I ≠ HY
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Alternative summery of Geometry of Least Squares

I Mean response vector: E (Y ) = X—

I As — varies, X— spans the model plane of all linear
combinations. I.e. the space spanned by the columns of X :
the column-space of X .

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X .

I LS-estimation chooses —̂ such that X—̂ is the point in the
column-space of X that is closes to Y .

I The residual vector Á̂ = Y ≠ Ŷ = (I ≠ H)Y is perpendicular
to the column-space of X .

I Multiplication by H = X(XT X)≠1XT projects a vector onto
the column-space of X .

I Multiplication by I ≠ H = I ≠ X(XT X)≠1XT projects a
vector onto the space perpendicular to the column-space of X .

22 / 60



Properties for the normal linear model
I Least squares and maximum likelihood estimator for —:

—̂ = (XT X)≠1XT Y

with —̂ ≥ N
p

(—, ‡2(XT X)≠1).
I Restricted maximum likelihood estimator for ‡2:

‡̂2 = 1
n ≠ p (Y ≠ X—̂)T (Y ≠ X—̂) = SSE

n ≠ p

with (n≠p)‡̂2

‡2

≥ ‰2

n≠p

.
I Statistic for inference about —

j

, c
jj

is diagonal element j of
(XT X)≠1.

T
j

= —̂
j

≠ —
jÔc

jj

‡̂
≥ t

n≠p

I Residuals (raw): Á̂ = Y ≠ Ŷ , E(Á̂) = 0 and
Cov(Á̂) = ‡2(I ≠ H) where H = X(XT X)≠1XT .
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Are —̂ and SSE are independent?

Independence – from Part 1:
Let X

(p◊1)

be a random vector from N
p

(µ, �). Then AX and BX
are independent i� A�BT = 0.

We have:
I Y ≥ N

n

(X—, ‡2I)
I AY = —̂ = (XT X)≠1XT Y , and
I BY = (I ≠ H)Y .
I Now A‡2IBT = ‡2ABT = ‡2(XT X)≠1XT (I ≠ H) = 0

I since X(I ≠ H) = X ≠ HX = X ≠ X = 0.
I We conclude that —̂ is independent of (I ≠ H)Y ,
I and, since SSE=function of (I ≠ H)Y : SSE=Y T (I ≠ H)Y ,
I then —̂ and SSE are independent.
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V2016 Problem 2: Plant stress
(slightly modified to reflect changes to the reading list

At the Department of Biology at NTNU researchers use the model plant
Arabidopsis thaliana to study the response of a plant to di�erent sources
of stress. In an experiment Arabidopsis thaliana seedlings were subject to
a stress situation. The following factors were fitted:

I D (damage): D = 1 means that the plant was damaged
mechanically by cutting into the leaves of the plant by a pair of
scissors. D = ≠1 means damage was not inflicted (no cutting).

I F (flagellin): F = 1 means that the pathogen-derived peptide
flagellin was sprayed on the leaves of the plant. F = ≠1 means
water (not flagellin) was sprayed.

I T (time): Plants were harvested at two di�erent time points after
the stress situation. T = 1 means that the plant was harvested 60
minutes after the stress situation and T = ≠1 means that the plant
was harvested 30 minutes after the stress situation.

Thus, we have three factors, D, F and T , each at two levels. In the
study experiments for all possible combinations of the three factors were
performed four times yielding 32 experiments in total.
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V2016 Problem 2: Plant stress
The response measured in the experiment, was the observed gene activity
level (a continuous measurement) of each of around 40 000 genes. We
will only focus on the gene activity level of one of these genes, the
AT1G32920 gene, and we denote the gene activity level of this gene by
Y . It is known that this gene is active in response to wounding.
For experiment number i (where i = 1, . . . , 32): Y

i

is the observed
response, D

i

is chosen value of D, F
i

is chosen value of F , and T
i

is
chosen value of T . A multiple regression model with all main e�ects, and
two- and three-way interactions, was considered,

Y

i

= —
0

+—
D

D

i

+—
F

F

i

+—
T

T

i

+—
D:F

D

i

F

i

+—
D:T

D

i

T

i

+—
F :T

F

i

T

i

+—
D:F :T

D

i

F

i

T

i

+Á
i

,

where i = 1, . . . , 32, and we assume Á
i

independent and identically
normally distributed with mean 0 and variance ‡2. We refer to this as the
full model.
Note that the interactions are simply products of the factors. The vector
of regression parameters is
— =

!
—

0

—
D

—
F

—
T

—
D:F

—
D:T

—
F :T

—
D:F :T

"
T, and the ith row

of the design matrix X is
!
1 D

i

F
i

T
i

D
i

F
i

D
i

T
i

F
i

T
i

D
i

F
i

T
i

"
.
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V2016 Problem 2: Plant stress
Here you find R-commands and print-out from fitting the full model.
# data is in "standard order" in data frame with name "ds"

> ds %showing only rows 1-6 and 27-32 for space considerations

Y D F T

1 15.45169 -1 -1 -1

2 15.15908 -1 -1 -1

3 14.93064 -1 -1 -1

4 15.06569 -1 -1 -1

5 14.51032 -1 -1 1

6 14.76922 -1 -1 1

...

27 18.23645 1 1 -1

28 17.70327 1 1 -1

29 16.66523 1 1 1

30 16.96046 1 1 1

31 16.73133 1 1 1

32 16.57248 1 1 1

> fit=lm(Y~D*F*T,data=ds)

> model.matrix(fit)%only showing rows 1-6 and 27-32

(Intercept) D F T D:F D:T F:T D:F:T

1 1 -1 -1 -1 1 1 1 -1

2 1 -1 -1 -1 1 1 1 -1

3 1 -1 -1 -1 1 1 1 -1

4 1 -1 -1 -1 1 1 1 -1

5 1 -1 -1 1 1 -1 -1 1

6 1 -1 -1 1 1 -1 -1 1

...

27 1 1 1 -1 1 -1 -1 -1

28 1 1 1 -1 1 -1 -1 -1

29 1 1 1 1 1 1 1 1

30 1 1 1 1 1 1 1 1

31 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1
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V2016 Problem 2a: Plant stress
In the print-out from summary(fit) four numerical values are replaced
by question marks. Calculate numerical values for each of these, and
explain what each of the values means.

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.15942 0.04140 ? < 2e-16

D 0.93739 0.04140 22.644 < 2e-16

F 0.28546 0.04140 6.896 3.93e-07

T -0.52354 0.04140 -12.647 4.18e-12

D:F -0.08878 0.04140 -2.145 0.04231

D:T -0.00242 ? -0.058 0.95386

F:T -0.12614 0.04140 -3.047 0.00555

D:F:T 0.09099 0.04140 2.198 ?

Residual standard error: 0.2342 on 24 degrees of freedom

Multiple R-squared: ?, Adjusted R-squared: 0.9594

F-statistic: 105.6 on 7 and 24 DF, p-value: < 2.2e-16
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V 2016 # 2 : Plant stress
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Examination of model assumptions

1. Linearity of covariates: Y = X— + Á

2. Homoscedastic error variance: Cov(Á) = ‡2I.
3. Uncorrelated errors: Cov(Á

i

, Á
j

) = 0.
4. Additivity of errors: Y = X—+Á

5. Assumption of normality: Á ≥ N
n

(0, ‡2I)

29 / 60



Plotting residuals
1. Plot the residuals, rú

i

against the predicted values, ŷ
i

.
I Dependence of the residuals on the predicted value: wrong

regression model?
I Nonconstant variance: transformation or weighted least

squares is needed?
2. Plot the residuals, rú

i

, against predictor variable or functions
of predictor variables. Trend suggest that transformation of
the predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, rú
i

, versus time or collection order (if
possible). Look for dependence or autocorrelation.
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Box–Cox plot
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Box–Cox transformation plot based on Model A for the Galapagos data
set, RecEx4. Line at x = 1/3.

31 / 60



V2016 Plant stress 2b: Residual plots
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V2016 Plant stress 2b: R-code

> library(FrF2)

> MEPlot(fit)

> IAPlot(fit)

> cubePlot(fit,"D","F","T",round=1,size=0.33,main="")

> plot(fit$fitted,rstudent(fit),pch=20)

> qqnorm(rstudent(fit),pch=20)

> qqline(rstudent(fit))

> ad.test(rstudent(fit))

Anderson-Darling normality test

data: rstudent(fit)

A = 0.43191, p-value = 0.2869
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V2016 Plant stress 2b: Cube, main e�ects and interaction
e�ects

modeled = TRUE

−1 1

−1

1

−1

1

D

F

T

●●

●●

●●

●●●

● ●●

●

●●

● ●

●

●

●

●●

● ●

● ●

● ●

● ●

● ●

15.2 17.4

16.3 17.9

14.5 16.4

14.9 16.7

D

Y

−1 1

15
15
.5

16
16
.5

17
17
.5

F

−1 1

T

−1 1

Y

−1

1
D

14
.5

15
.5

16
.5

17
.5

F

Y
14
.5

15
.5

16
.5

17
.5

T

Y
14
.5

15
.5

16
.5

17
.5

−1 1

D

Y
Y

−1

1
F

T

Y

−1 1

D

Y

F

Y
Y

−1

1
T

−1 1

34 / 60



V2016: Plant stress 2b

How would you, based on the figures given and the R-output,
evaluate the fit of the model?
How would you explain to a biologist what the estimated main
e�ect of damage means in practice? How would you explain the
estimated interaction e�ect between damage and flagellin?
Let “ = 2—

F

≠—
D be a new parameter of interest.

Suggest an estimator, “̂, for “. Use approximate methods to find
the expected value and variance of this estimator, that is, E(“̂)
and Var(“̂). Use results in the prinout to calculate numerical value
for “̂, and estimated numerical values for E(“̂) and Var(“̂).
Hint: You may use that 2x = exp(x ln 2), where ln is the natural
logarithm.
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First order Taylor expansion: Univariate function

X is RV with E(X ) = µ, and we look at function g(X ).
First order Taylor approximation of g(X ) around µ.

g(X ) ¥ g(µ) + g Õ(µ)(X ≠ µ)

This leads to the following approximations:

E(g(X )) ¥ g(µ)
Var(g(X )) ¥ [g Õ(µ)]2Var(X )
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First order Taylor expansion: Bivariate function
X

1

is a RV with µ
1

= E(X
1

) and X
2

is a RV with µ
2

= E(X
2

).
Let g be a bivariate function of X

1

and X
2

, and define

g Õ
1

(µ
1

, µ
2

) = ˆg(x
1

, x
2

)
ˆx

1

|
x

1

=µ
1

,x
2

=µ
2

g Õ
2

(µ
1

, µ
2

) = ˆg(x
1

, x
2

)
ˆx

2

|
x

1

=µ
1

,x
2

=µ
2

First order Taylor approximation:

g(X
1

, X
2

) ¥ g(µ
1

, µ
2

) + g Õ
1

(µ
1

, µ
2

)(X
1

≠ µ
1

) + g Õ
2

(µ
1

, µ
2

)(X
2

≠ µ
2

)

E(g(X
1

, X
2

)) ¥ g(µ
1

, µ
2

)
Var(g(X

1

, X
2

)) ¥ [g Õ
1

(µ
1

, µ
2

)]2Var(X
1

) + [g Õ
2

(µ
1

, µ
2

)]2Var(X
2

)+
2 · g Õ

1

(µ
1

, µ
2

) · g Õ
2

(µ
1

, µ
2

)Cov(X
1

, X
2

)
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