TMA4267 Linear Statistical Models V2017 [L4]

Part 1: Multivariate RVs, and the multivariate normal distribution The multivariate normal distribution (pdf and mgf) [H:4.2-4.4]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 20, 2017

What we know, and the plan for this lecture

- A random vector \boldsymbol{X} can be described by the joint pdf $f(\boldsymbol{x})$.
- Mean: $\boldsymbol{\mu}=E(\boldsymbol{X})=\left\{\mathrm{E}\left(X_{j}\right)\right\}$
- Covariance matrix: $\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left((\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right)$, symmetric and we often require the matrix to be positive definite.
- Linear combinations $\boldsymbol{C X}: \mathrm{E}(\boldsymbol{C X})=\boldsymbol{C} \boldsymbol{\mu}_{X}$ and $\operatorname{Cov}(\boldsymbol{C X})=\boldsymbol{C} \boldsymbol{\Sigma} \boldsymbol{C}^{T}$.
- Now: derive the joint pdf and the moment generating function for the multivariate normal distribution.

Why is the mulitivariate normal distribution so important in

 statistics?- Many natural phenomena may be modelled using this distribution (just as in the univariate case).
- Multivariate version of the central limit theorem- the sample mean will be approximately multivariate normal for large samples.
- Good interpretability of the covariance.
- Mathematically tractable.
- Building block in many models and methods.

Cramer-Wold and moment generating functions

$\boldsymbol{X}_{(p \times 1)}$ is a random vector. The distribution of \boldsymbol{X} is completely determined by the set of all one-dimensional distributions of the linear combinations $Y=\boldsymbol{t}^{T} \boldsymbol{X}=\sum_{i=1}^{p} t_{i} X_{i}$ where \boldsymbol{t} ranges over all fixed p -vectors.

- $Y=\boldsymbol{t}^{T} \boldsymbol{X}$ has MGF $M_{Y}(s)=\mathrm{E}(\exp (s Y))=\mathrm{E}\left(\exp \left(s \boldsymbol{t}^{T} \boldsymbol{X}\right)\right)$.
- If we choose $s=1 M_{Y}(1)=\mathrm{E}\left(\exp \left(\boldsymbol{t}^{T} \boldsymbol{X}\right)\right)=M_{\boldsymbol{X}}(\boldsymbol{t})$, which is the MGF of \boldsymbol{X} and thus determines the distribution of \boldsymbol{X}.
Härdle and Simes (2015) use characteristic functions, $\mathrm{E}\left(e^{i \boldsymbol{t}^{T} \boldsymbol{X}}\right)$ but we stick with moment generating functions $\mathrm{E}\left(e^{\boldsymbol{t}^{\top} \boldsymbol{X}}\right)$. Why: we will only work with nice distributions and do not have problems with integrals not existing, and we know MGFs from previous course.

Multivariate transformation formula [H:4.3]

$$
\begin{equation*}
X=u(Y) \tag{4.43}
\end{equation*}
$$

for a one-to-one transformation $u: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$. Define the Jacobian of u as

$$
\mathcal{J}=\left(\frac{\partial x_{i}}{\partial y_{j}}\right)=\left(\frac{\partial u_{i}(y)}{\partial y_{j}}\right)
$$

and let $\operatorname{abs}(|\mathcal{J}|)$ be the absolute value of the determinant of this Jacobian. The pdf of Y is given by

$$
\begin{equation*}
f_{Y}(y)=\operatorname{abs}(|\mathcal{J}|) \cdot f_{X}\{u(y)\} . \tag{4.44}
\end{equation*}
$$

The Chi-square distribution

pdf χ_{p}^{2} :

$$
f(y)=\frac{1}{2^{p / 2} \Gamma(p / 2)} y^{p / 2-1} e^{(-y / 2)} \text { for } y>0
$$

MGF χ_{p}^{2} :

$$
M_{Y}(t)=\frac{1}{(1-2 t)^{p / 2}}
$$

Addition property: Let $X_{1} \sim \chi_{p}^{2}$ and $X_{2} \sim \chi_{q}^{2}$, and let X_{1} and X_{2} be independent. Then $X_{1}+X_{2} \sim \chi_{p+q}^{2}$.
Subtraction property:
Let $X=X_{1}+X_{2}$ with $X_{1} \sim \chi_{p}^{2}$ and $X \sim \chi_{p+q}^{2}$. Assume that X_{1} and X_{2} are independent. Then $X_{2} \sim \chi_{q}^{2}$.

Kjikvadrat 1,5,10,20

This lecture: derived the MGF and pdf of the multivariate normal distribution

1. $Z \sim N_{1}(0,1)$

- MGF: $M_{Z}(t)=\mathrm{E}\left(e^{t z}\right)=e^{\frac{1}{2} t^{2}}$

2. $Z_{1}, Z_{2}, \ldots, Z_{p}$ iid $N_{1}(0,1) \rightarrow \boldsymbol{Z}_{p \times 1} \sim N_{p}(\mathbf{0}, \boldsymbol{I})$

- MGF: $M_{z}(\boldsymbol{t})=\mathrm{E}\left(e^{\boldsymbol{t}^{\top} z}\right)=e^{\frac{1}{2} \boldsymbol{t}^{\top} \boldsymbol{t}}$

3. $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}, \boldsymbol{A A}^{T}=\boldsymbol{\Sigma}$ gives $\boldsymbol{X}_{p \times 1} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- MGF: $M_{\boldsymbol{X}}(\boldsymbol{t})=\mathrm{E}\left(e^{\boldsymbol{t}^{\top} \boldsymbol{x}}\right)=e^{\boldsymbol{t}^{\top} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{\top} \boldsymbol{t}}$
- pdf (invertible):

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

Properties of the mvN - plan for L5

Let $\boldsymbol{X}_{(p \times 1)}$ be a random vector from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

1. Probability density function $f(\boldsymbol{x})$ (both when $\boldsymbol{\Sigma}$ is invertible and not).
2. Moment generating function: $M_{X}(\boldsymbol{t})=\exp \left(\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{\Sigma} \boldsymbol{t}\right)$
3. Graphical display, contours (ellipsoids), and chisq-distributed $(\boldsymbol{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{X}-\boldsymbol{\mu})$.
4. Linear combinations of components of \boldsymbol{X} are (multivariate) normal.
5. All subsets of the components of \boldsymbol{X} are (multivariate) normal.
6. Zero covariance implies that the corresponding components are independently distributed.
7. $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}^{T}=\mathbf{0} \Leftrightarrow \boldsymbol{A} \boldsymbol{X}$ and $\boldsymbol{B} \boldsymbol{X}$ are independent.
8. The conditional distributions of the components are (multivariate) normal. $\boldsymbol{X}_{2} \mid\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}\right) \sim$ $N_{p 2}\left(\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)$
And then remains estimators for parameters and properties of quadratic forms in L6.
