TMA4267 Linear Statistical Models V2017 [L6]
 Part 1: Multivariate RV s, and the multivariate normal distribution Estimators for mean and covariance Quadratic forms [H:3.3,4.5,5.1,F:AppB3]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 27, 2017

Plan for today

- estimators for mean and covariance
- quadratic forms and rules for quadratic forms
- idempotent matrices
- more rules for quadratic forms - with idempotent matrices

Maximum likelihood estimators

Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$ be a random sample of size n from the multivariate normal distribution $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. The maximum likelihood estimators for are found by maximizing the likelihood:

$$
\begin{aligned}
L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\prod_{j=1}^{n} f\left(\boldsymbol{x}_{j} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\
& =\prod_{j=1}^{n}\left(\frac{1}{2 \pi}\right)^{\frac{p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}\right)\right\}
\end{aligned}
$$

Could take \ln and then partial derivatives, but easier to add and subtract the mean $\overline{\boldsymbol{x}}$ and rewrite (using trace-formulas)
$L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\left(\frac{1}{2 \pi}\right)^{\frac{n p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{n}{2}}$
$\exp \left\{-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{j=1}^{n}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)^{T}\right)+n(\overline{\boldsymbol{x}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\overline{\boldsymbol{x}}-\boldsymbol{\mu})\right]\right\}$

Maximum likelihood estimators: first for $\boldsymbol{\mu}$

$$
\begin{aligned}
& L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\left(\frac{1}{2 \pi}\right)^{\frac{n p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{n}{2}} \\
& \exp \left\{-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{j=1}^{n}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)^{T}\right)+n(\overline{\boldsymbol{x}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\overline{\boldsymbol{x}}-\boldsymbol{\mu})\right]\right\}
\end{aligned}
$$

and see directly for SPD $\boldsymbol{\Sigma}$ that the maximum is achieved for $\boldsymbol{\mu}=\overline{\boldsymbol{x}}$, so that the MLE for $\boldsymbol{\mu}$ is

$$
\overline{\boldsymbol{x}}=\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}
$$

Maximum likelihood estimators: then for $\boldsymbol{\Sigma}$

$L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\left(\frac{1}{2 \pi}\right)^{\frac{n p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{n}{2}}$
$\exp \left\{-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{j=1}^{n}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)^{T}\right)+n(\overline{\boldsymbol{x}}-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\boldsymbol{x}}-\mu)\right]\right\}$
A maximization theorem for matrices it used to find that the MLE for $\boldsymbol{\Sigma}$ is

$$
\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}
$$

Properties of the ML estimators

- $\overline{\boldsymbol{X}}$ is distributed as $N_{p}\left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma}\right)$
- $n S$ is distributed as a Wishart random matrix with $n-1$ degrees of freedom.
- $\overline{\boldsymbol{X}}$ and $n \boldsymbol{S}$ are independent.

The Wishart distribution is not on the reading list for TMA4267. General properties of maximum likelihood estimation is covered in detail in TMA4295 Statistical Inference.

Quadratic forms - first results [F:B3.3, Theorem B.2]

We stay with our random vector \boldsymbol{X} with $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, and a symmetric constant matrix \boldsymbol{A}.

- What is a quadratic form? $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$
- The "trace-formula": $\mathrm{E}\left(\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X}\right)$.

Exam V2014: Problem 1a

Let $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)$ be a random vector with mean $\boldsymbol{\mu}=\mathrm{E}(\boldsymbol{X})=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
and covariance matrix $\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{I}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Further, let
$\boldsymbol{A}=\left(\begin{array}{rrr}\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}\end{array}\right)$ be a matrix of constants.
Define $\boldsymbol{Y}=\left(\begin{array}{l}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right)=\boldsymbol{A} \boldsymbol{X}$.
Find $\mathrm{E}(\boldsymbol{Y})$ and $\operatorname{Cov}(\boldsymbol{Y})$. Are X_{1} and X_{2} independent? Are Y_{1} and Y_{2} independent? Justify your answers.
Find the mean of $\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X}$.

Useful facts about the trace $[\mathrm{H}: 2.1]$ and $[\mathrm{F}:$ Theorem A.18]

Let A, B and C be conformable matrices

$$
\begin{aligned}
\operatorname{tr}(A+B) & =\operatorname{tr}(A)+\operatorname{tr}(B) \\
\operatorname{tr}(A B) & =\operatorname{tr}(B A) \\
\operatorname{tr}(A B C) & =\operatorname{tr}(C A B)=\operatorname{tr}(B C A)
\end{aligned}
$$

Quadratic forms - last results [F:B3.3, Theorem B.2]

Now: \boldsymbol{X} is multivariate normal with mean $\boldsymbol{\mu}$ and covariance matrix \boldsymbol{I}, and we also have a symmetric and idempotent matrix $\boldsymbol{R}_{(p \times p)}$ with rank r.

- Properties of an idempotent matrix.
- Distribution of $\boldsymbol{X}^{T} \boldsymbol{R} \boldsymbol{X} \sim \chi_{r}^{2}$.
- Distribution of a ratio of two quadratic forms and the Fisher distribution.

Properties of symmetric idempotent matrices

A symmetric matrix \boldsymbol{A} is idempotent, $\boldsymbol{A}^{2}=\boldsymbol{A}$, and has the following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable quadratic matrix) equals the number of nonero eigenvaluse of the matrix. Should be known from previous courses.
3. (Combining $1+2$). If a $(n \times n)$ symmetric idempotent matrix \boldsymbol{A} has rank r then r eigenvalues are 1 and $n-r$ are 0 .
4. The trace and rank of a symmetric projection matrix are equal: $\operatorname{tr}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A})$.
5. The matrix $\boldsymbol{I}-\boldsymbol{A}$ is also idempotent, and $\boldsymbol{A}(\boldsymbol{I}-\boldsymbol{A})=0$.

The Chi-square distribution

pdf χ_{p}^{2} :

$$
f(y)=\frac{1}{2^{p / 2} \Gamma(p / 2)} y^{p / 2-1} e^{(-y / 2)} \text { for } y>0
$$

MGF χ_{p}^{2} :

$$
M_{Y}(t)=\frac{1}{(1-2 t)^{p / 2}}
$$

Addition property: Let $X_{1} \sim \chi_{p}^{2}$ and $X_{2} \sim \chi_{q}^{2}$, and let X_{1} and X_{2} be independent. Then $X_{1}+X_{2} \sim \chi_{p+q}^{2}$.
Subtraction property:
Let $X=X_{1}+X_{2}$ with $X_{1} \sim \chi_{p}^{2}$ and $X \sim \chi_{p+q}^{2}$. Assume that X_{1} and X_{2} are independent. Then $X_{2} \sim \chi_{q}^{2}$.

Kjikvadrat 1,5,10,20

The Fisher distribution [F: B. 1 Def 8.14], RecEx2.P5+6

"Tabeller og formeler i statistikk":
If Z_{1} and Z_{2} are independent and χ^{2}-distributed with ν_{1} and ν_{2} degrees of freedom, then

$$
F=\frac{Z_{1} / \nu_{1}}{Z_{2} / \nu_{2}}
$$

is F (isher)-distributed with ν_{1} and ν_{2} degrees of freedom.

- The expected value of F is $\mathrm{E}(F)=\frac{\nu_{2}}{\nu_{2}-2}$.
- The mode is at $\frac{\nu_{1}-2}{\nu_{1}} \frac{\nu_{2}}{\nu_{2}+2}$.
- Identity:

$$
f_{1-\alpha, \nu_{1}, \nu_{2}}=\frac{1}{f_{\alpha, \nu_{2}, \nu_{1}}}
$$

The Fisher distribution with different degrees of freedom ν_{1} and ν_{2} (given in the legend).

Quadratic forms [F:B3.3, Theorem B.2]

Random vector \boldsymbol{X} with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, symmetric constant matrix \boldsymbol{A}.

- Quadratic form: $\boldsymbol{X}^{T} \boldsymbol{A X}$.
- The "trace-formula": $\mathrm{E}\left(\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})-\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu}$.

Then, let $\boldsymbol{X} \sim N_{p}(\mathbf{0}, \boldsymbol{I})$, and \boldsymbol{R} is a symmetric and idempotent matrix with rank r.

$$
\boldsymbol{X}^{T} \boldsymbol{R} \boldsymbol{X} \sim \chi_{r}^{2}
$$

Now, also S is a symmetric and idempotent matrix with rank s, and $\boldsymbol{R S}=\mathbf{0}$.

$$
\frac{s \boldsymbol{X}^{\top} \boldsymbol{R} \boldsymbol{X}}{r \boldsymbol{X}^{\top} \boldsymbol{S} \boldsymbol{X}} \sim F_{r, s}
$$

Plan for the last week of Part 1

Supervision in lecture times.
See Blackboard: Part 1: dates and places for supervision.

Kahoot!

Summing up the last three lectures with a few multiple choice questions.

