TMA4267 Linear Statistical Models V2017 [L7]

Part 2: Linear regression [F p73-86]
Model definition [F3.1], Parameters and residuals [F3.1.1], Model
check [F3.1.2]
Mette Langaas
Department of Mathematical Sciences, NTNU
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Part 2: Linear regression

Part 2: Linear regression

» Fahrmeir et al (2013): Regression. Chapter 3.1, 3.2, 3.4 and
required parts of 3.5 and Appendix B.

Part 3: Hypothesis testing and analysis of variance

» Fahrmeir et al (2013): Regression. Chapter 3.3 and required
parts of 3.5 and Appendix B.

» Hardle et al (2015): Applied Multivariate Statistical Analysis.
Chapter 8.1.1. (ANOVA).

» A short note on multiple testing (to be written).
File TMA4267Part2and3.pdf available from course www-page.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

B. M. Nes, |. Janszky, U. Wislgff, A. Stgylen, T. Karlsen (2012) in
Scandinavian Journal of Medicine and Science in Sports.

» HRmax describes the highest heart rate achieved by a subject
exercising to exhaustion and is verified by a plateau of heart
rate despite increasing workload. In the literature, HRmax
commonly refers to the peak heart rate at termination of a
graded maximal exercise test.

» However, in clinical settings, a maximal exercise test is not
always feasible and there is a need to predict HRmax from age
prior to testing to be able to adequately assess heart rate
response and relative intensity of effort at submaximal levels.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

» HRmax at a given age is frequently estimated by the "220 -
age" formula.

» The aim of the present study was to develop a new prediction
formula for HRmax through analysis of HRmax measured at
VO2peak in a diverse population of 4635 healthy subjects and
compare this formula with three commonly used prediction
formulas. Furthermore, we wanted to investigate the
relationship between HRmax and gender, physical activity
status, BMI, and objectively measured aerobic fitness.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study - Statistical procedures

» Only subjects that fulfilled the criteria of a maximal test, with
registered maximal heart rate (HRmax), were included in the
analysis (n = 3320).

» General linear modeling was used to determine the effect of
age on HRmax. HRmax was entered as the dependent variable
and age as the independent variable. Nonlinearity of the
relationship between age and HRmax was investigated by
including polynomial terms to the regression model.

» In a subsequent analysis, the effects of gender, BMI, physical
activity status, and maximal oxygen uptake were examined by
entering these factors as independent variables in addition to
age. In further subsequent models, interaction terms were
included as well to assess effect modification.

» The continuous variables were checked for normality,
homogeneity of variances, and heteroscedasticity of the
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Nes et al (2012): Age-predicted maximal heart rate in healthy
subjects: The HUNT Fitness Study. n = 3320 individuals.
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Munich Rent Index data set

described in Fahrmeir et al (2013) on pages 19-20

> library("gamlss.data")

> ds=rent99
> dim(ds)
[1] 3082

9

> colnames(ds)

[1] "rent"

[7] "kitchen"

> summary (ds)
rent
Min. : 40.51
1st Qu.: 322.03
Median : 426.97

Mean 1 459.44
3rd Qu.: 559.36
Max. :1843.38

location bath
1:1794 0:2891
2:1210 1: 191
3: 78

"rentsqm"

rentsqm
Min. : 0.4158
1st Qu.: 5.2610

Median : 6.9802
Mean : 7.1113
3rd Qu.: 8.8408
Max. :17.7216

kitchen cheating
0:2951 0: 321
1: 131 1:2761

"area"

area

Min. : 20.
1st Qu.: 51.
Median : 65.
Mean 1 B7.
3rd Qu.: 81.
Max. :160.

district

Min. ¢ 113

1st Qu.: 561
Median :1025
Mean :1170
3rd Qu.:1714
Max. 12529

00
00

00
00

"yeaI‘C"
"cheating" "district"

yearc

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

11918

1939

11959
11956

1972

:1997

"location"
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The classical linear model

The model
Y=XB+¢
is called a classical linear model if the following is true:
1. E(e) =0.
2. Cov(e) = E(ee) = o2I.
3. The design matrix has full rank, rank(X) =k + 1 = p.

The classical normal linear regression model is obtained if
additionally

4. € ~ Nn(0,02%I)

holds. For random covariates these assumptions are to be
understood conditionally on X.
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Conditional mean and covariance

If we believe that the vector with elements Y and X are
multivariate normal Ny 1(p, X) we may look at the partition

(Y>NNk1<<MY><ZYY ZYX))

X + px )0\ Zxy Zxx

The conditional distributions of the components are (multivariate)
normal, with conditional mean and variance of Y | X = x are

E(Y [ X = x) =py + ZyxZxx(x — pix)
Var(Y | X = x) =Xy — ZyxZ;x Exy

Observe: mean is linear in x and variance independent of x.
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Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.

1. Linearity of covariates: Y = X3+ ¢

2. Homoscedastic error variance: Cov(e) = o21.
3. Uncorrelated errors: Cov(ej,ej) = 0.

4. Additivity of errors: Y = X3+¢

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

» Covariate vs response (for each covariate)

» Covariate vs error (when we have simulated data and know the
truth)

» Covariate vs residual (estimated error),

» Predicted response vs residual (to be popular later).
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Linearity of covariates: Covariate vs. response

Munich Rent Index: area vs rentsqgm

ds$rentsgm

ds$area 10/ 20



Linearity of covariates: Covariate vs. residual (residual plot)

Munich Rent Index: area vs residual
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Munich Rent Index: 1/area vs rentsqm

wbsjualigsp

Linearity of covariates: Transformed covariate vs. response
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Linearity of covariates: Transformed covariate vs. residual
(residual plot)
Munich Rent Index: 1/area vs residual
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3.2 Modeling Nonlinear Covariate Effects Through Variable
Transformation

If the continuous covariate z has an approximately nonlinear effect 8 f(z)
with known transformation f', then the model

yi=Bo+pifz)+...+e&

can be transformed into the linear regression model
vi=Bo+Bixi+...+e,

where x; = f(z;) — f. By subtracting
- 1
f= ; Z f(zi),

the estimated effect ﬁl x is automatically centered around zero. The estimated
curve is best interpreted by plotting 8;x against z (instead of x).

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.94)
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3.3 Modeling Nonlinear Covariate Effects Through Polynomials

If the continuous covariate z has an approximately polynomial effect 81z +
Baz? + ...+ Bi7! of degree I, then the model

vi=PBo+Bizi+ P+ ...+ B ..t
can be transformed into the linear regression model

i =Bo+ Bixit +Bixia+ ...+ Bixi +... + &,
where x;| = z;, xi» = z,z, e X = zf.
The centering (and possibly orthogonalization) of the vectors x/ =
(s X))y j = 1.l tox! —%q,...,x" — % with the mean vector
X; = (Xj,...,X;) facilitates interpretation of the estimated effects. A
graphical illustration of the estimated polynomial is a useful way to interpret
the estimated effect of z.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.95)

15/20



Homoscedastic errors

n=1000
x=seq(-3,3,length=n)
betal=-1

betal=2
xbeta=betal+betal*x
sigma=1
el=rnorm(n,mean=0,sd=sigma)
yl=xbetatel
ehatl=residuals(lm(y1~x))
plot(x,yl,pch=20)
abline(betal,betal,col=1)
plot(x,el,pch=20)

abline (h=0,co0l=2)
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Heteroscedastic errors

sigma=(0.1+0.3%(x+3)) "2
e2=rnorm(n,0,sd=sigma)
y2=xbeta+e2
ehat2=residuals(lm(y2~x))
plot(x,y2,pch=20)
abline(betal,betal,col=2)
plot(x,e2,pch=20)

abline (h=0,co0l=2)
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Homo- and heteroscedastic errors

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Top: homoscedastic errors. Bottom: heteroscedastic errors. Right:
x vs y. Left: x vs error. Example from Fahrmeir et al (2013):
Regression. Springer. (p.79). R code from TMA4267 lectures tab.
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Homoscedastic errors?
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Left: area vs rent, right: area vs residuals. Fahrmeir et al (2013):
Regression. Springer. (p.80). R code from TMA4267 lectures tab.

19/20



Today

v

Normal linear model: implication for Y.

v

Model parameters 3, 02, parameter estimators 3, 52, residuals
E=Y — X0.

Model assumptions.

v

» Next: covariates- how to include in linear regression, and then
parameter estimation.
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