TMA4267 Linear Statistical Models V2017 (L8)

Part 2: Linear regression:

Modelling the effects of covariates [F:3.1.3]
Parameter estimation: Estimator for 3 [F:3.2.1]
Mette Langaas
Department of Mathematical Sciences, NTNU

To be lectured: February 10, 2017
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The classical linear model

The model
Y=XB+¢
is called a classical linear model if the following is true:
1. E(e) =0.
2. Cov(e) = E(ee) = o2I.
3. The design matrix has full rank rank(X) = k+ 1 = p.

The classical normal linear regression model is obtained if
additionally

4. € ~ Nn(0,02I)

holds. For random covariates these assumptions are to be
understood conditionally on X.
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Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.
1. Linearity of covariates: Y = X3+ ¢
2. Homoscedastic error variance: Var(e;) = 0.
3. Uncorrelated errors: Cov(ej,ej) = 0.
4. Additivity of errors: Y = X3+¢

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

» Covariate vs response (for each covariate)

» Covariate vs error (when we have simulated data and know the
truth)

» Covariate vs residual (estimated error),

» Predicted response vs residual.
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Uncorrelated errors?
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Top: positively autocorrelated errors. Bottom: negatively correlated
errors. Right: x vsy. Left: x vs error. Example from Fahrmeir et al

(2013): Regression. Springer. (p.81). R code from TMA4267
lectures tab.
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observations and true function b

observations and regression line

residuals
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Fig. 3.4 Tllustration for correlated residuals when the model is misspecified: Panel (a) displays
(simulated) data based on the function E(y; |x;) =

sin(x;) + x; and & ~ N(0,0.3).
Panel (b) shows the estimated regression line, i.e., the nonlinear relationship is ignored. The
corresponding residuals can be found in panel (¢)

Fahrmeir et al (2013): Regression. Springer. (p.82)
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Multiplicative errors

x1=runif(n,0,3)
x2=runif(n,0,3)
e=rnorm(n,0,0.4)
y=exp(1l+x1-x2+e)
plot(x1,y,pch=20)
plot(x2,y,pch=20)
plot(x1,log(y) ,pch=20)
plot(x2,log(y) ,pch=20)
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Multiplicative errors
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log(y)
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Top: x1 and x2 vs y. Bottom: x1 and x2 vs log(y). Example from
Fahrmeir et al (2013): Regression. Springer. (p.85). R code from
TMA4267 lectures tab.
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Covariates - how to include in the linear regression?

1. Continuous covariates: as is, transformed or using polynomials.
2. Categorical covariates: dummy variable or effect coding.

3. Interactions between covariates.
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Munich rent index data

> colnames(ds)

[1] "rent" "rentsqm" "area" "yearc" "location" "bath"

[7] "kitchen" '"cheating" "district"
> apply(ds[,1:4],2, summary)
area yearc

rent rentsgm

Min. 40.51 0.4158 20
1st Qu. 322.00 5.2610 51
Median 427.00 6.9800 65
Mean 459.40 7.1110 67.
3rd Qu. 559.40 8.8410 81
Max. 1843.00 17.7200 160

.00
.00
.00

37

.00
.00

1918
1939
1959
1956
1972
1997

> unlist(apply(ds[,5:8],2,table))

location.1 location.2 location.3 bath.0 bath.1 kitchen.O

1794 1210

kitchen.1l cheating.0 cheating.1
2761

131 321
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How to code categorical covariates: rentsqm vs location
with linear coding

» Location average=1, good=2 and top=3, and regression
model
rentsqm; = Sy + Pilocation; + ¢;

» Parameter estimate: 3; = 0.39. What does that mean?
» Flat of average location @m = Bo + 61
» Flat of good location: rentsqm = Bo + By -2
» Flat of top location: réntsqm = 3o + 1 - 3
» What is the difference in predicted rentsqgm between top and
good location, and between good and average location?

» So, the difference between a top and a good location is the
same as the difference between good and average. Is this what
we want?
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Linear coding

> fitl=1lm(rentsqm~as.numeric(location),data=ds)
> summary (fit1l)
Call:
Im(formula = rentsqm ~ as.numeric(location), data = ds)
Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) 6.54390 0.12368 52.911 < 2e-16 **x*
as.numeric(location) 0.39312 0.08016  4.904 9.88e-07 *xx

Signif. codes: 0 ’*%*’ 0.001 ’%%’ 0.01 ’%’> 0.05 *.” 0.1 > * 1
Residual standard error: 2.427 on 3080 degrees of freedom

Multiple R-squared: 0.007748,Adjusted R-squared: 0.007425
F-statistic: 24.05 on 1 and 3080 DF, p-value: 9.878e-07
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rentsqm vs location with dummy variable coding

aloc; = {

gloc; = {
location; is not top
tloc; = .
1 location; is top

location; is not average
location; is average

location; is not good
location; is good

o P, O = O

rentsqm; = [y + Pialoc; + Bagloc; + SBstloc; + ¢

» Write down the design matrix for this regression model, when
we have 1794 flats with average location, 1210 with good and
78 with top location.

» What is the rank of this design matrix?

» |s there a problem, and a solution?
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3.4 Dummy Coding for Categorical Covariates

For modeling the effect of a covariate x € {1, ..., c} with ¢ categories using
dummy coding, we define the ¢ — 1 dummy variables

1 x;, =1, I x; =c—1,
Xi1 = . Xie—1 = .
0 otherwise, 0 otherwise,
fori = 1,...,n, and include them as explanatory variables in the regression

model
yi=PBo+Bixi+ ...+ Bic—1Xie—1 + ...+ &

For reasons of identifiability, we omit one of the dummy variables, in this
case the dummy variable for category c¢. This category is called reference
category. The estimated effects can be interpreted by direct comparison with
the (omitted) reference category.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.97)
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Dummy coding via contr.treatment

> contrasts(ds$location)=contr.treatment (3)
> fit2=1m(rentsqm~location,data=ds)
> summary (£fit2)
Call:
Im(formula = rentsqm ~ location, data = ds)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.95654 0.05728 121.456 < 2e-16 **x*
location2 0.31570 0.09025  3.498 0.000475 ***
location3 1.21579 0.28060 4,333 1.52e-05 **x

Signif. codes: O ’*x*x’ 0.001 ’**> 0.01 ’%’ 0.05 *.” 0.1 > > 1
Residual standard error: 2.426 on 3079 degrees of freedom

Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06
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Effect coding via contr.sum

> contrasts(ds$location)=contr.sum(3)
> fit3=1lm(rentsqm~location,data=ds)
> summary (£it3)
Call:
Im(formula = rentsqm ~ location, data = ds)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.46704 0.09638 77.477 < 2e-16 *xx
locationl -0.51050 0.10189 -5.010 5.75e-07 **x*
location2 -0.19479 0.10445 -1.865 0.0623 .

Signif. codes: O ’*x*x’ 0.001 ’**> 0.01 ’%’ 0.05 *.” 0.1 > > 1
Residual standard error: 2.426 on 3079 degrees of freedom

Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06
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Response: birth weight

Covariates: glucose level of mother and BMI of mother.

Figure from Kathrine Frey Frgslie.
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Response: birth weight

Covariates: glucose level of mother and BMI of mother - with
interaction.

Figure from Kathrine Frey Frgslie.
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The classical linear model

Y = X B + €

(nx1) (nxp)(px1) (nx1)
E(e)= 0 and Cov(e)= &%l
( ) (nx1) ( ) (nxn)

where
» 3 and o2 are unknown parameters and
> the design matrix X has ith row [xj1xj2 - - - Xjp).

Next: find the estimator 3.

17/18



Today

» Model assessment: residual plots.
» Covariates: how to include in linear regression?

» Least squares and maximum likelihood estimator for 3.

B=X"X)"'x"y
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