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The classical linear model

Y
(n×1)

= X
(n×p)

β
(p×1)

+ ε
(n×1)

E (ε) = 0
(n×1)

and Cov(ε) = σ2I
(n×n)

where
I β and σ2 are unknown parameters and
I the design matrix X has full rank, with ith row [xi1xi2 · · · xip].

Today
1. find estimator for β,
2. find estimator for σ2, and
3. look at two idempotent matrices H and I − H to arrive at
4. geometric interpretation.
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Rules for derivatives with respect to a vector

I Let β be a p-dimensional column vector of interest,
I and let ∂

∂β denote the p-dimensional vector with partial
derivatives wrt the p elements of β.

I Let d be a p-dimensional column vector of constants and
I D be a p × p symmetric matrix of constants.

Rule 1:
∂

∂β
(dTβ) =

∂

∂β
(

p∑
j=1

djβj) = d

Rule 2:

∂

∂β
(βTDβ) =

∂

∂β
(

p∑
j=1

p∑
k=1

βjdjkβk) = 2Dβ

See Härdle and Simes (2015), page 65, Equation (2.23) and (2.24).
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Two questions

Have found least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

and we have assumed that the rank(X ) = p for n× p design matrix
(where n > p).

I Q1: What can we say about XTX?
I Q2: Why is the following wrong?

Using (AB)−1 = B−1A−1,

β̂ = (XTX )−1XTY = X−1(XT )−1XTY = X−1Y
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
4. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .
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Acid rain

occurs when emissions of sulfur dioxide (SO2) and oxides of
nitrogen (NOx) react in the atmosphere with water, oxygen, and
oxidants to form various acidic compounds. These compounds then
fall to the earth in either dry form (such as gas and particles) or
wet form (such as rain, snow, and fog).

Source: http://myecoproject.org/get-involved/pollution/acid-rain/
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http://www.eoearth.org/view/article/149814/
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Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

pH is a measure of the acidity of alkalinity of water, expressed in
terms of its concentration of hydrogen ions. The pH scale ranges
from 0 to 14. A pH of 7 is considered to be neutral. Substances
with pH of less that 7 are acidic; substances with pH greater than 7
are basic.
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http://www.eoearth.org/view/article/149814/
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Output from fitting the full model in R

> fit=lm(y~.,data=ds)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 ***
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 ***
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09

Question: explain how to interpret β̂0 and β̂3.
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120 3 The Classical Linear Model

yn D X nˇ C "n; E."n/ D 0; Cov."n/ D !2In:

Similarly, we index the least squares estimator Ǒ
n and the variance estimator O!2

n

with n. To obtain valid asymptotic results, we need to go beyond the assumptions
1–3 stated in Box 3.1 (p. 76). Further assumptions are needed regarding the limiting
behavior of the design matrix Xn and with it the sequence x1; : : : ; xn; : : : of the
design vectors. A standard assumption is that the matrix X 0

nXn averaged over n
converges to a limiting positive definite matrix V , i.e.,

lim
n!1

1

n
X 0

nXn D V ; V positive definite: (3.20)

In this case we have the following asymptotic results:

3.10 Asymptotic Properties of the Least Squares Estimator

1. The least squares estimator Ǒ
n for ˇ and the ML or REML estimator O!2

n

for the variance !2 are consistent.
2. The least squares estimator asymptotically follows a normal distribution,

specifically
p

n. Ǒ
n ! ˇ/

d! N.0; !2V !1/:

That is the difference Ǒ
n !ˇ normalized with

p
n converges in distribution

to the normal distribution on the right-hand side.

We use these asymptotic results for a sufficiently large sample size n as follows.
First, Ǒ

n has an approximately normal distribution

Ǒ
n

a" N.ˇ; !2V !1=n/:

If we replace !2 with the consistent estimator O!2
n and V with the approximation

V
a" 1=nX 0

nXn, we have

Ǒ
n

a" N.ˇ; O!2
n .X 0

nXn/!1/:

This implies that, with sufficiently large sample size and provided that Eq. (3.20)
holds, the least squares estimator has the same approximate normal distribution,
regardless of the normal assumption for ". Assumption (3.20) is particularly ensured
if the observed covariate vectors xi , i D 1; : : : ; n, are independent and identically
distributed realizations of stochastic covariates x D .1; x1; : : : ; xk/0, i.e., if the
observations .yi ; xi / form a random sample from .y; x/. This condition is met for
many empirical studies, e.g., in our applications on the Munich rent index and on
malnutrition in developing countries. In such cases, the law of large numbers implies

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.120)
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Projection matrix: definition and properties

I A matrix A is a projection matrix if it is idempotent, A2 = A.
I An idempotent matrix is an orthogonal projection matrix if, in

the decomposition of a vector, v = Av + (v − Av), Av and
v − Av = (I − A)v are always orthogonal, that is,
(Av)T (v − Av) = 0.

I A symmetric projection matrix is orthogonal.
I The eigenvalues of a projection matrix are 0 and 1.
I If a (n × n) symmetric projection matrix A has rank r then r

eigenvalues are 1 and n − r are 0.
I The trace and rank of a symmetric projection matrix are equal:

tr(A) = rank(A).
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Results so far
I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

I Projection matrices: idempotent, symmetric/orthogonal:

H = X (XTX )−1XT

I − H = I − X (XTX )−1XT

with important connection:

Ŷ = HY
ε̂ = I − HY
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Results from Mathematics 3
Best approximation theorem
The vector Ŷ in the column space of X that makes || Y − Ŷ || as
small as possible, is the orthogonal projection of Y on the column
space of X .
Orthogonal decomposition
We want β̂ to minimize || Y − Ŷ ||= (Y −X β̂)T (Y −X β̂) (least
squares principle).
The column space of X consists of vectors of the form X β̂, so X β̂
is the orthogonal projection of Y onto the column space of
X .Ŷ = HY , and H = X (XTX )−1XT projects onto the column
space of X . Observe: HX = X .
This is equivalent to observing that Y − X β̂ is in the orthogonal
complement of the column space of X .
ε̂ = Y −HY = (I −H)Y , and I −H projects onto the space
orthogonal to the column space of X . Observe: (I -H)X=0
That is, Y − X β̂ is orthogonal to all columns of X , so
XT (Y − X β̂) = 0 and XTX β̂ = XTY .
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8.13 Geometrical Illustrations 183

8.13 Geometrical Illustrations

This section comprises figures that illustrate the geometrical meanings of
various concepts presented in this chapter. For geometric considerations in
regression, see also Bring (1996), Bryant (1984), and Margolis (1979). For
the history of the use of geometry in the linear model, see Herr (1980).

C (1)

x
—̂1x

y

ŷ = Hy
= —̂01 + —̂1x

¯̄y = Jy = ȳ1 = JHy
—̂01

e = (I ≠ H)y = y ≠ ŷ

–

C (1 : x)

Figure 8.3 Projecting y onto C (1 : x).

C (X)‹

C (1)

x

y

¯̄y = Jy = ȳ1 = JHy

ỹ

ŷ = Hy

e = (I ≠ H)y

SS
T

=
SS

E 0

SSR

SS
E–

–

C (1)‹

C (1 : x)

SST = SSR + SSE

Figure 8.4 Illustration of SST = SSR + SSE.

Putanen, Styan and Isotalo: Matrix Tricks for Linear Statistical
Models: Our Personal Top Twenty, Figure 8.3.

18 / 21



112 3 The Classical Linear Model

3.7 Geometric Properties of the Least Squares Estimator

The method of least squares has the following geometric properties:
1. The predicted values Oy are orthogonal to the residuals O", i.e., Oy 0 O" D 0.
2. The columns xj of X are orthogonal to the residuals O", i.e., .xj /0 O" D 0 or

X 0 O" D 0.
3. The average of the residuals is zero, i.e.,

nX

iD1

O"i D 0 or
1

n

nX

iD1

O"i D 0:

4. The average of the predicted values Oyi is equal to the average of the
observed response yi , i.e.,

1

n

nX

iD1

Oyi D Ny:

5. The regression hyperplane runs through the average of the data, i.e.,

Ny D Ǒ
0 C Ǒ

1 Nx1 C ! ! ! C Ǒ
k Nxk:

of the residuals, Qxj is orthogonal to the columns of QX j . This implies that Qxj is orthogonal
to all j !1 previously constructed variables Qx1; : : : ; Qxj!1 . Notice that the first transformed
variable Qx1 results from a simple centering around the column mean value of x1. In linear
algebra, this method is also known as Gram–Schmidt orthogonalization. 4

Analysis of Variance and Coefficient of Determination
Using the geometric properties of the least squares estimator, we can derive a
fundamental analysis of variance formula for the empirical variance of observed
responses yi . This allows us to define the coefficient of determination or the propor-
tion of total variance that is explained by the regression model. The coefficient of
determination is closely related to the empirical correlation coefficient and can be
used as a goodness-of-fit measure (among many others).

In Sect. 3.5.2 (p. 169), we prove the following decomposition formula:

nX

iD1

.yi " Ny/2 D
nX

iD1

. Oyi " Ny/2 C
nX

iD1

O"2
i : (3.19)

Division by n (or n " 1) on both sides leads to the analysis of variance formula:

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.112) 19 / 21



Alternative summery of Geometry of Least Squares

I Mean response vector: E (Y ) = Xβ
I As β varies, Xβ spans the model plane of all linear

combinations. I.e. the space spanned by the columns of X :
the column-space of X .

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X .

I LS-estimation chooses β̂ such that X β̂ is the point in the
column-space of X that is closes to Y .

I The residual vector ε̂ = Y − Ŷ = (I − H)Y is perpendicular
to the column-space of X .

I Multiplication by H = X (XTX )−1XT projects a vector onto
the column-space of X .

I Multiplication by I − H = I − X (XTX )−1XT projects a
vector onto the space perpendicular to the column-space of X .
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Today

I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

has mean E(β̂) = β and Cov(β̂) = σ2(XTX )−1.
I For the normal model: β̂ ∼ Np(β, σ

2(XTX )−1).
I Asymptotic properties of the least squares estimator:

normality.
I Orthogonal projection matrices H and I −H with geometric

interpretation.

Next time: properties of residuals and σ̂2, confidence intervals and
hypothesis testing for regression coefficients.
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