f(x)

Let X_1 and X_2 be two (continuous) RVs, and $f(x_1, x_2)$ be the joint pdf and $f_1(x_1)$ and $f_2(x_2)$ be the marginal pdfs, and C is a copula. What is true?

A
$$f(x_1, x_2) = f_1(x_1) \cdot f_2(x_2)$$

B $f(x_1, x_2)$ is found from $f_1(x_1)$ and $f_2(x_2)$ alone

C
$$f_1(x_1)$$
 is found from $f(x_1, x_2)$

D
$$f(x_1, x_2) = C(f_1(x_1), f_2(x_2))$$

Mean of sum

 \boldsymbol{X} and \boldsymbol{Y} are two bivariate random vectors with $E(\boldsymbol{X}) = (1,2)^{T}$ and $E(\boldsymbol{Y}) = (2,0)^{T}$. What is $E(\boldsymbol{X} + \boldsymbol{Y})$?

- **A** (1.5, 1)^{*T*}
- **B** (3, 2)^{*T*}
- **C** $(-1, 2)^{T}$
- **D** $(1, -2)^{T}$

Mean of linear combination

X is a 2-dimensional random vector with $E(\mathbf{X}) = (2, 5)^T$, and $\mathbf{b} = (0.5, 0.5)^T$ is a constant vector. What is $E(\mathbf{b}^T \mathbf{X})$?

Covariance

X is a *p*-dimensional random vector with mean μ . Which of the following defines the covariance matrix?

A
$$E[(\boldsymbol{X} - \boldsymbol{\mu})^T (\boldsymbol{X} - \boldsymbol{\mu})]$$

B $E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]$

C
$$E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})]$$

D $E[(\boldsymbol{X} - \boldsymbol{\mu})^T (\boldsymbol{X} - \boldsymbol{\mu})^T]$

Mean of linear combinations

X is a *p*-dimensional random vector with mean μ and covariance matrix Σ . **C** is a constant matrix. What is then the mean of the *k*-dimensional random vector $\mathbf{Y} = C\mathbf{X}$?

- **Α** *C*μ
- **Β** CΣ
- **C** $C \mu C^{T}$
- **D** $C\Sigma C^{T}$

Covariance of linear combinations

X is a *p*-dimensional random vector with mean μ and covariance matrix Σ . **C** is a constant matrix. What is then the covariance of the *k*-dimensional random vector $\mathbf{Y} = \mathbf{CX}$?

- **Α** *C*μ
- **Β** *C*Σ
- **C** $C \mu C^{T}$
- **D** $C\Sigma C^T$

Correlation

 \boldsymbol{X} is a 2-dimensional random vector with covariance matrix

$$\mathbf{\Sigma} = \left[egin{array}{cc} 4 & 0.8 \ 0.8 & 1 \end{array}
ight]$$

Then the correlation between the two elements of \boldsymbol{X} are:

- **A** 0.10
- **B** 0.25
- **C** 0.40
- **D** 0.80

Symmetric positive definite matrix

Which of the following is not correct for a symmetric positive definite matrix?

- A The trace equals the rank of the matrix.
- **B** The determinant is positive.
- C The trace is the sum of the eigenvalues.
- **D** All the eigenvalues are positive.

PCA interpretation

Data set: student's score on a Math test, a Physics test, a Reading comprehension test, and a Vocabulary test.

First PC represents overall academic ability, second PC represents a contrast between quantitative ability and verbal ability.

What loadings would be consistent with that interpretation?

- A (0.5,0.5,0.5,0.5) and (0.71,0.71,0,0)
- B (0.5,0.5,0.5,0.5) and (0.5,0.5,-0.5,-0.5)
- C (0.71, 0.71, 0, 0) and (0, 0, 0.71, -0.71)
- D (0.71,0,-0.71,0) and (0,0.71,0,-0.71)

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are explained on the next two slides.

Answers

- 1. C: We go from joint to marginal distribution by integration. The product of marginals equal the joint only for independent variables. We need information on the dependency structure to construct a joint from marginals, and that is what is done with the copula but the formula is based on the cumulative distribution functions.
- 2. B: Mean of sum $(1, 2)^T + (2, 0)^T = (3, 2)^T$.
- 3. A: Mean of linear combination $(0.5, 0.5)^T(2, 5) = 3.5$.
- B: Covariance matrix defined as E{(X μ)(X μ)^T}. This was the only formula that gave a p × p matrix. A gave a scalar and C and D did not match in dimensions.

Answers

- 5. A: $C\mu$ is the mean of Y = CX.
- 6. D: $C\Sigma C^{T}$ is the covariance matrix of Y = CX.
- 7. C: Correlation is 0.40 since covariance was 0.8 and variances 4 and 1.
- 8. A: NOT true for a symmetric positive definite matrix: the trace is in general not equal to the rank but it is for idempotent symmetric matrices.
- 9. B: average means equal weight for all values, difference between quantitative and verbal means opposite signs for quantitative (maths and physics) and verbal (reading and vocabular).