$f(x)$

Let X_{1} and X_{2} be two (continuous) RVs, and $f\left(x_{1}, x_{2}\right)$ be the joint pdf and $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ be the marginal pdfs, and C is a copula. What is true?

A $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right)$
B $f\left(x_{1}, x_{2}\right)$ is found from $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ alone
C $f_{1}\left(x_{1}\right)$ is found from $f\left(x_{1}, x_{2}\right)$
D $f\left(x_{1}, x_{2}\right)=C\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$

Mean of sum

\boldsymbol{X} and \boldsymbol{Y} are two bivariate random vectors with $\mathrm{E}(\boldsymbol{X})=$ $(1,2)^{T}$ and $\mathrm{E}(\boldsymbol{Y})=(2,0)^{T}$. What is $\mathrm{E}(\boldsymbol{X}+\boldsymbol{Y})$?

A $(1.5,1)^{T}$
B $(3,2)^{T}$
C $(-1,2)^{T}$
D $(1,-2)^{T}$

Mean of linear combination

\boldsymbol{X} is a 2-dimensional random vector with $\mathrm{E}(\boldsymbol{X})=(2,5)^{T}$, and $\boldsymbol{b}=(0.5,0.5)^{T}$ is a constant vector. What is $\mathrm{E}\left(\boldsymbol{b}^{T} \boldsymbol{X}\right)$?
A 3.5
C 2
B 7
D 5

Covariance

\boldsymbol{X} is a p-dimensional random vector with mean $\boldsymbol{\mu}$. Which of the following defines the covariance matrix?

A $E\left[(\boldsymbol{X}-\boldsymbol{\mu})^{T}(\boldsymbol{X}-\boldsymbol{\mu})\right]$
B $E\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]$
C $E[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})]$
D $E\left[(\boldsymbol{X}-\boldsymbol{\mu})^{T}(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]$

Mean of linear combinations

\boldsymbol{X} is a p-dimensional random vector with mean μ and covariance matrix $\boldsymbol{\Sigma} . \boldsymbol{C}$ is a constant matrix. What is then the mean of the k-dimensional random vector $\boldsymbol{Y}=\boldsymbol{C X}$?

A $C \mu$
B $C \Sigma$
C $\boldsymbol{C \mu} \boldsymbol{C}^{T}$
D CECT

Covariance of linear combinations

\boldsymbol{X} is a p-dimensional random vector with mean μ and covariance matrix $\boldsymbol{\Sigma} . \boldsymbol{C}$ is a constant matrix. What is then the covariance of the k-dimensional random vector $\boldsymbol{Y}=\boldsymbol{C X}$?

A $C \mu$
B $C \Sigma$
C $C \mu C^{T}$
D CECT

Correlation

\boldsymbol{X} is a 2-dimensional random vector with covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
4 & 0.8 \\
0.8 & 1
\end{array}\right]
$$

Then the correlation between the two elements of \boldsymbol{X} are:
A 0.10
B 0.25
C 0.40
D 0.80

Symmetric positive definite matrix

Which of the following is not correct for a symmetric positive definite matrix?

A The trace equals the rank of the matrix.
B The determinant is positive.
C The trace is the sum of the eigenvalues.
D All the eigenvalues are positive.

PCA interpretation

Data set: student's score on a Math test, a Physics test, a Reading comprehension test, and a Vocabulary test.

First PC represents overall academic ability, second PC represents a contrast between quantitative ability and verbal ability.

What loadings would be consistent with that interpretation?

$$
\begin{aligned}
& \text { A }(0.5,0.5,0.5,0.5) \text { and }(0.71,0.71,0,0) \\
& \text { B }(0.5,0.5,0.5,0.5) \text { and }(0.5,0.5,-0.5,-0.5) \\
& C(0.71,0.71,0,0) \text { and }(0,0,0.71,-0.71) \\
& D(0.71,0,-0.71,0) \text { and }(0,0.71,0,-0.71)
\end{aligned}
$$

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are explained on the next two slides.

Answers

1. C: We go from joint to marginal distribution by integration. The product of marginals equal the joint only for independent variables. We need information on the dependency structure to construct a joint from marginals, and that is what is done with the copula - but the formula is based on the cumulative distribution functions.
2. B: Mean of sum $(1,2)^{T}+(2,0)^{T}=(3,2)^{T}$.
3. A: Mean of linear combination $(0.5,0.5)^{T}(2,5)=3.5$.
4. B: Covariance matrix defined as $E\left\{(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right\}$. This was the only formula that gave a $p \times p$ matrix. A gave a scalar and C and D did not match in dimensions.

Answers

5. A: $\boldsymbol{C} \boldsymbol{\mu}$ is the mean of $\boldsymbol{Y}=\boldsymbol{C X}$.
6. D: $\boldsymbol{C} \boldsymbol{\Sigma} \boldsymbol{C}^{\boldsymbol{T}}$ is the covariance matrix of $\boldsymbol{Y}=\boldsymbol{C} \boldsymbol{X}$.
7. C : Correlation is 0.40 since covariance was 0.8 and variances 4 and 1.
8. A: NOT true for a symmetric positive definite matrix: the trace is in general not equal to the rank - but it is for idempotent symmetric matrices.
9. B: average means equal weight for all values, difference between quantitative and verbal means opposite signs for quantitative (maths and physics) and verbal (reading and vocabular).
