Multivariate normal pdf

The probability density function is
$$(\frac{1}{2\pi})^{\frac{p}{2}} \det(\mathbf{\Sigma})^{-\frac{1}{2}} \exp\{-\frac{1}{2}Q\}$$
 where Q is

A
$$(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$

B $(\boldsymbol{x} - \boldsymbol{\mu}) \boldsymbol{\Sigma} (\boldsymbol{x} - \boldsymbol{\mu})^T$

 $\begin{array}{cc} \textbf{C} \quad \boldsymbol{\Sigma}-\boldsymbol{\mu} \end{array}$

Trivariate normal pdf

What graphical form has the solution to $f(\mathbf{x}) = \text{constant}$?

A CircleB ParabolaC EllipsoidD Bell shape

Multivariate normal distribution

 $m{X}_p \sim N_p(\mu, m{\Sigma})$, and $m{C}$ is a $k \times p$ constant matrix. $m{Y} = m{C} m{X}$ is

- A Chi-squared with k degrees of freedom
- **B** Multivariate normal with mean $k\mu$
- C Chi-squared with *p* degrees of freedom
- **D** Multivariate normal with mean $C\mu$

Independence

Let
$$\boldsymbol{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, with $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$. Which two variables are independent?

valiables are independent:

- **A** X_1 and X_2
- **B** X_1 and X_3
- **C** X_2 and X_3
- **D** None but two are uncorrelated.

Constructing independent variables?

Let $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. How can I construct a vector of independent standard normal variables from \boldsymbol{X} ?

A Σ(X – μ)
B Σ⁻¹(X + μ)
C Σ<sup>-
$$\frac{1}{2}$$</sup>(X – μ)
D Σ ^{$\frac{1}{2}$} (X + μ)

Conditional distribution: mean

 $\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ is a bivariate normal random vector. What is true for the conditional mean of X_2 given $X_1 = x_1$?

- **A** Not a function of x_1
- **B** A linear function of x_1
- **C** A quadratic function of x_1

Conditional distribution: variance

 $\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ is a bivariate normal random vector. What is true for the conditional variance of X_2 given $X_1 = x_1$?

- **A** Not a function of x_1
- **B** A linear function of x_1
- **C** A quadratic function of x_1

Estimator for mean

 X_1, X_2, \ldots, X_n is a random sample from $N_p(\mu, \Sigma)$. What is the distribution of the estimator \overline{X} for the mean?

A
$$N_n(\mu, \Sigma)$$

B $N_p(\mu, \frac{1}{n}\Sigma)$
C χ_p^2
D χ_n^2

Unbiased estimators

 X_1, X_2, \ldots, X_n is a random sample of size *n* of a *p*-dimensional random vector. An unbiased estimator for the covariance matrix Σ is.

Distribution of quadratic form

 $\boldsymbol{X} \sim N_p(\boldsymbol{0}, \boldsymbol{I})$, and \boldsymbol{R} is a symmetric and idempotent matrix with rank r. What is the distribution of $\boldsymbol{X}^T \boldsymbol{R} \boldsymbol{X}$?

A
$$N_{p}(\mu, rI)$$
 B $N_{r}(\mathbf{0}, I)$
C χ_{r}^{2} **D** χ_{p}^{2}

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are explained on the next two slides.

Answers

- 1. A: exponent quadratic form is $(\mathbf{x} \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \mathbf{\mu})$.
- 2. C: contours are ellipsoids in general. In two dimensions we have ellipses. For two dimensions and equal variance and correlation 0 we have circles.
- 3. D: linear combinations of mvN are also mvN.
- 4. B: $Cov(X_1, X_3) = 0$ and X_1 and X_3 are thus independent.
- 5. C: The Mahlanobis transform is $\Sigma^{-\frac{1}{2}}(\boldsymbol{X} \boldsymbol{\mu})$.

Answers

- 6. B: Conditional mean is linear in x_1 , which will be very useful when we start with multiple linear regression.
- 7. A: Conditional variance (covariance) is not a function of x_1 .
- 8. B: The mean is also mvN with mean μ and covariance $\frac{1}{n}\Sigma$.
- 9. B: $\frac{1}{n-1}\sum_{j=1}^{n} (\mathbf{X}_{j} \bar{\mathbf{X}}) (\mathbf{X}_{j} \bar{\mathbf{X}})^{T}$ is the unbiased estimator for $\boldsymbol{\Sigma}$. Observe the (n-1) and that the dimension is $p \times p$ (to place the transpose). Not a quadratic form.
- 10. C: Quadratic form is related to χ^2 .