Multivariate normal pdf

The probability density function is
$\left(\frac{1}{2 \pi}\right)^{\frac{p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} Q\right\}$ where Q is

A $(\boldsymbol{x}-\mu)^{T} \Sigma^{-1}(x-\mu)$
B $\quad(x-\mu) \Sigma(x-\mu)^{T}$
C $\Sigma-\mu$

Trivariate normal pdf

What graphical form has the solution to $f(\boldsymbol{x})=$ constant?
A Circle
C Ellipsoid
B Parabola
D Bell shape

Multivariate normal distribution

$\boldsymbol{X}_{p} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and \boldsymbol{C} is a $k \times p$ constant matrix.
$\boldsymbol{Y}=\boldsymbol{C} \boldsymbol{X}$ is

A Chi-squared with k degrees of freedom
B Multivariate normal with mean $k \mu$
C Chi-squared with p degrees of freedom
D Multivariate normal with mean $C \mu$

Independence

Let $\boldsymbol{X} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma}=\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 3 & 1 \\ 0 & 2 & 5\end{array}\right]$. Which two variables are independent?

A X_{1} and X_{2}
B X_{1} and X_{3}
C X_{2} and X_{3}
D None - but two are uncorrelated.

Constructing independent variables?

Let $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. How can I construct a vector of independent standard normal variables from \boldsymbol{X} ?

A $\boldsymbol{\Sigma}(\boldsymbol{X}-\boldsymbol{\mu})$
B $\quad \boldsymbol{\Sigma}^{-1}(\boldsymbol{X}+\boldsymbol{\mu})$
C $\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{X}-\boldsymbol{\mu})$
D $\quad \Sigma^{\frac{1}{2}}(\boldsymbol{X}+\mu)$

Conditional distribution: mean

$\boldsymbol{X}=\binom{X_{1}}{X_{2}}$ is a bivariate normal random vector.
What is true for the conditional mean of
X_{2} given $X_{1}=x_{1}$?

A Not a function of x_{1}
B A linear function of x_{1}
C A quadratic function of x_{1}

Conditional distribution: variance

$\boldsymbol{X}=\binom{X_{1}}{X_{2}}$ is a bivariate normal random vector. What is true for the conditional variance of X_{2} given $X_{1}=x_{1}$?

A Not a function of x_{1}
B A linear function of x_{1}
C A quadratic function of x_{1}

Estimator for mean

$\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$ is a random sample from $\boldsymbol{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. What is the distribution of the estimator $\overline{\boldsymbol{X}}$ for the mean?
A $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
B $N_{p}\left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma}\right)$
C χ_{p}^{2}
D χ_{n}^{2}

Unbiased estimators

$\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$ is a random sample of size n of a p-dimensional random vector. An unbiased estimator for the covariance matrix $\boldsymbol{\Sigma}$ is.

A $\frac{1}{n} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}$
B $\frac{1}{n-1} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}$
C $\frac{1}{n} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)$
D $\frac{1}{n-1} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)$

Distribution of quadratic form

$\boldsymbol{X} \sim N_{p}(\mathbf{0}, \boldsymbol{I})$, and \boldsymbol{R} is a symmetric and idempotent matrix with rank r. What is the distribution of $\boldsymbol{X}^{T} \boldsymbol{R} \boldsymbol{X}$?
A $N_{p}(\boldsymbol{\mu}, r \boldsymbol{I})$
B $N_{r}(0, I)$
C χ_{r}^{2}
D χ_{p}^{2}

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are explained on the next two slides.

Answers

1. A: exponent quadratic form is $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$.
2. C : contours are ellipsoids in general. In two dimensions we have ellipses. For two dimensions and equal variance and correlation 0 we have circles.
3. D: linear combinations of mvN are also mvN .
4. B: $\operatorname{Cov}\left(X_{1}, X_{3}\right)=0$ and X_{1} and X_{3} are thus independent.
5. $\mathrm{C}:$ The Mahlanobis transform is $\Sigma^{-\frac{1}{2}}(\boldsymbol{X}-\boldsymbol{\mu})$.

Answers

6. B: Conditional mean is linear in x_{1}, which will be very useful when we start with multiple linear regression.
7. A: Conditional variance (covariance) is not a function of x_{1}.
8. B: The mean is also $m v N$ with mean $\boldsymbol{\mu}$ and covariance $\frac{1}{n} \Sigma$.
9. B: $\frac{1}{n-1} \sum_{j=1}^{n}\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{j}-\overline{\boldsymbol{X}}\right)^{T}$ is the unbiased estimator for $\boldsymbol{\Sigma}$. Observe the $(n-1)$ and that the dimension is $p \times p$ (to place the transpose). Not a quadratic form.
10. C: Quadratic form is related to χ^{2}.
