TMA4267 Linear statistical models

Part 3: Hypothesis testing and ANOVA

March 14, 2017

Happiness

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.072081	0.852543	-0.085	0.9331
money	0.009578	0.005213	1.837	0.0749
sex	-0.149008	0.418525	-0.356	0.7240
love	1.919279	0.295451	6.496	1.97e-07
work	0.476079	0.199389	2.388	0.0227

For which covariates would we reject the null hypothesis $\beta = 0$ at significance level 1%?

A money B sex C love D work

Type I errors

What is a commonly used name for the type I errors?

- A true positives B false positives
- C false negatives D true negatives

Linear hypotheses

 H_0 : $C\beta = d$ in a regression model $Y = X\beta + \varepsilon$. *n*=number of observations,

p = number of estimated regression coefficients r = number of linear hypotheses (rank of **C**).

What is the distribution of F_{obs} = $\frac{1}{r}(C\hat{\beta} - d)^{T}(\hat{\sigma}^{2}C(X^{T}X)^{-1}C^{T})^{-1}(C\hat{\beta} - d)$?

- **A** $F_{r,n-p}$ **B** $F_{p,n-r}$
- **C** $N(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T \boldsymbol{X})^{-1})$ **D** $N(0, \sigma^2 \boldsymbol{I})$

ANOVA

Which type of covariate coding is used in the oneway ANOVA model with design matrix given as:

1	1	0	0	0
1	0	1	0	0
1	0	1	0	0
1	0	0	1	0
1	0	0	0	1
1	0	0	0	1
1	-1	-1	-1	-1
1	-1	-1	-1	-1

- A Continuous
- C Dummy variable coding

- B Effect coding
- **D** Categorical

ANOVA

Is the interaction term significant at significance level 0.01?

- > res <- lm(Words~Age*Process)</pre>
- > anova(res)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Age	1	240.25	240.25	29.9356	3.981e-07	***
Process	4	1514.94	378.74	47.1911	< 2.2e-16	***
Age:Process	4	190.30	47.58	5.9279	0.0002793	***
Residuals	90	722.30	8.03			

A Yes

No

B Not enough information to decide p-value from true null hypothesis

For a continuous test statistic that gives an exact p-value, what is the distribution the p-value when the null hypothesis is true?

- A Normal B Chisquared
- C Exponential D Uniform

FWER

- V=number of false positives and R=number of rejections.
- The familywise error rate FWER is
- **C** P(V/R > 0.05) **D** P(V > 0)

Bonferroni

 α =level for control of FWER. α_{loc} =cut-off on *p*-value *m* =number of tests. What is the Bonferroni rule?

A
$$\alpha_{\text{loc}} = m\alpha$$
B $\alpha_{\text{loc}} = \frac{\alpha}{m}$ C $\alpha_{\text{loc}} = \alpha^m$ D $\alpha_{\text{loc}} = (1 - \alpha)^{1/m}$

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are explained on the next two slides.

Answers

- C: only love is significant on level 1%, since this is the only *p*-value below 0.01 (last column).
- 2. B: type I errors are called false positive findings
- 3. A: linear hypotheses with
 - $F_{r,n-p}$ -distributed statistic.
- 4. B: Effect coding is used in ANOVA.

Answers

- 5. A: Interaction term has *p*-value below 0.01.
- 6. D: *p*-values from true nulls are uniform.
- 7. D: FWER is the probability of one or more false positives.
- 8. B: Bonferroni rule is α/m .