TMA4267 - Linear Statistical Models Solutions to Exercise 1 - V2017

January 6, 2017

Problem 1: Simple matrix calculations

```
# Simple matrix calculations
#a construct A
A <- matrix(c(9,-2,-2,6),ncol=2)
A
#b symmetric?
t(A)
# yes t(A)=A
t(A)==A
# c positive definite
# t(x)%*%A%*%%x >0 for all x
# just showing how this is calculated
x <- matrix(rnorm(2,0,1),ncol=1)
t(x) %*%A%*%x
# d
# but we may also use the fact that
# a symmetric postitive definite matrix
# has only positive eigenvalues
ev <- eigen(A)
names(ev)
ev$values
# yes, positive eigenvalues
# normalized eigenvectors?
ev$vectors
# first eigenvector, length
sum(ev$vectors[,1]~2)
# or
t(ev$vectors[,1])%*%ev$vectors[,1]
# second
t(ev$vectors[,2])%*%ev$vectors[,2]
# e spectral theorem
P <- ev$vectors
```

```
lambda <- diag(ev$values)
P%*%lambda%**%t(P)
# f inverse
Ainv <- solve(A)
Ainv
# or using the spectral decom
lambdainv <- diag(1/ev$values)
P%*%lambdainv%*%t(P)
# g, ups, used the fact that the eigenvalues of Ainv are
# the inverse of the eigenvalues of A already ...
eigen(Ainv)$values
diag(lambdainv)
# h since A is SPD it may ba a covariance matrix
#i correlation matrix
varvec <- diag(A)
invsdmat <- diag(1/sqrt(varvec))
corrmat <- invsdmat%*%A%*%invsdmat
corrmat
# builtin
cov2cor(A)
# j
# X has mean mu and covariance matrix A
mu <- matrix(c(3,1),ncol=1)
B <- matrix(c(1,1,1,2),ncol=2)
d <- matrix(c(1,2),ncol=1)
# E and Cov for s=BX
# mean is s
B%*%mu
# cov(s) is B A B^T
B%*%A%*%%t(B)
# E and Cov for t=t(d)X
# mean is
t(d) %*%mu
# cov(t) is
t(d) %*% % % % *%d
# E and Cov for v rbind X and 3X
# mean of 3X is 3mu
# cov of 3X is 9 covX
# mean
rbind(mu,3*mu)
# cov v is a matrix with four blocks
# block1 is cov of X
block1 <- A
# block 2 is cov of X and 3X=3 covX
block2 <- 3*A
```

```
# block 3 is block 2 transposed
block3 <- t(block2)
# block4 is Cov(3X)=9A
block4 <- 9*A
covv <- cbind(rbind(block1,block2),rbind(block3,block4))
covv
```


Problem 2: Mean and covariance of linear combinations

Here $\boldsymbol{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)$ is a trivariate random vector with mean $\boldsymbol{\mu}=\mathrm{E}(\boldsymbol{X})=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and covariance $\operatorname{matrix} \boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{I}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and $\boldsymbol{A}=\left(\begin{array}{rrr}\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}\end{array}\right)$. Further, $\boldsymbol{Y}=$ $\left(\begin{array}{l}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right)=\boldsymbol{A} \boldsymbol{X}$, and we are asked to find $\mathrm{E}(\boldsymbol{A} \boldsymbol{X})$ and $\operatorname{Cov}(\boldsymbol{A X})$.

$$
\begin{aligned}
\mathrm{E}(\boldsymbol{Y}) & =\boldsymbol{A} \boldsymbol{\mu}=\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\operatorname{Cov}(\boldsymbol{Y}) & =\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{I} \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{A}^{T} \\
& =\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right)=\boldsymbol{A}
\end{aligned}
$$

Observe that \boldsymbol{A} is idempotent.

Problem 3: Covariance

Starting with the given definition, and expanding, gives

$$
\begin{aligned}
\operatorname{Cov}(V, W) & =\mathrm{E}\left((V-\mu)(W-\eta)^{T}\right) \\
& =\mathrm{E}\left(V W^{T}-\mu W^{T}-V \eta^{T}+\mu \eta^{T}\right) \\
& =\mathrm{E}\left(V W^{T}\right)-\mu \mathrm{E}(W)^{T}-\mathrm{E}(V) \eta^{T}+\mu \eta^{T} \\
& =\mathrm{E}\left(V W^{T}\right)-\mu \eta^{T}-\mu \eta^{T}+\mu \eta^{T} \\
& =\mathrm{E}\left(V W^{T}\right)-\mu \eta^{T}
\end{aligned}
$$

which is what we were asked to show.

Problem 4: The square root matrix and the Mahalanobis transform

a) Assume $\boldsymbol{\Sigma}$ is symmetric and positive definite, and $\left(\lambda_{i}, \boldsymbol{e}_{i}\right), i=1, \ldots, p$ are the eigenvalues and eigenvectors of $\boldsymbol{\Sigma}$.
A symmetric matrix has real eigenvalues. A positive definite matrix fulfills

$$
\boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \neq 0
$$

Let $\boldsymbol{x}=\boldsymbol{e}_{\boldsymbol{i}}$ be the i th eigenvector of $\boldsymbol{\Sigma}$.

$$
\begin{aligned}
\boldsymbol{e}_{i}^{T} \boldsymbol{\Sigma} \boldsymbol{e}_{i} & =\boldsymbol{e}_{i}^{T} \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T} \boldsymbol{e}_{i} \\
& =\boldsymbol{e}_{i}^{T}\left(\sum_{i=1}^{p} \lambda_{i} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{T}\right) \boldsymbol{e}_{i} \\
& =\boldsymbol{e}_{i}^{T}\left(\lambda_{i} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{T}\right) \boldsymbol{e}_{i} \\
& =\lambda_{i}>0
\end{aligned}
$$

so all eigenvalue of a SPD must be positive.
What about the eigenvalues and eigenvectors of the inverse matrix of $\boldsymbol{\Sigma}$?
First, $\boldsymbol{\Sigma}^{-1}$ exists since $\boldsymbol{\Sigma}$ is SPD. Next, consider the eigenvalue-eigenvector pair ($\lambda_{i}, \boldsymbol{e}_{i}$) of Σ

$$
\begin{aligned}
\boldsymbol{\Sigma} \boldsymbol{e}_{i} & =\lambda \boldsymbol{e}_{i} \\
\boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{e}_{i} & =\lambda \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{i} \\
\boldsymbol{I} \boldsymbol{e}_{i} & =\lambda \boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{i} \\
\frac{1}{\lambda_{i}} \boldsymbol{e}_{i} & =\boldsymbol{\Sigma}^{-1} \boldsymbol{e}_{i},
\end{aligned}
$$

meaning $\left(1 / \lambda_{i}, \boldsymbol{e}_{i}\right)$ is an eigenvalue-eigenvector pair of $\boldsymbol{\Sigma}^{-1}$.
So, $\boldsymbol{\Sigma}$ and $\boldsymbol{\Sigma}^{-1}$ have the same eigenvectors. And, if λ_{i} is an eigenvalue for $\boldsymbol{\Sigma}$ then $1 / \lambda_{i}$ is an eigenvalue for $\boldsymbol{\Sigma}^{-1}$. Hence, all eigenvalues are positive.
b) Show that $\boldsymbol{\Sigma}^{\frac{1}{2}}$ and $\boldsymbol{\Sigma}^{-\frac{1}{2}}$ are symmetric:

$$
\begin{aligned}
\boldsymbol{\Sigma}^{\frac{1}{2}} & =\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \\
\left(\boldsymbol{\Sigma}^{\frac{1}{2}}\right)^{T} & =\left(\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T}\right)^{T}=\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T}=\boldsymbol{\Sigma}^{\frac{1}{2}}
\end{aligned}
$$

Since transposing a diagonal matrix leaves the matrix unchanges. To prove that $\boldsymbol{\Sigma}^{-\frac{1}{2}}$ is symmetric, just replace $\boldsymbol{\Sigma}^{\frac{1}{2}}$ by $\boldsymbol{\Sigma}^{-\frac{1}{2}}$ in the above equations.

We show the three given identities as follows:

$$
\begin{aligned}
\boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} & =\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T}=\boldsymbol{\Sigma} \\
\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}} & =\boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P} \boldsymbol{\Lambda}^{-1} \boldsymbol{P}^{T}=\boldsymbol{\Sigma}^{-1} \\
\boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}} & =\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \\
& =\boldsymbol{P I} \boldsymbol{P}^{T}=\boldsymbol{I}
\end{aligned}
$$

where \boldsymbol{I} is the identity matrix.
c)

$$
\begin{aligned}
& \boldsymbol{Y}=\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{X}-\boldsymbol{\mu}) \\
& \mathrm{E}(Y)=\mathrm{E}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{X}-\boldsymbol{\mu})\right)=\boldsymbol{\Sigma}^{-\frac{1}{2}}(\mathrm{E}(\boldsymbol{X})-\boldsymbol{\mu})=\mathbf{0} \\
& \operatorname{Cov}(Y)=\operatorname{Cov}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{X}-\boldsymbol{\mu})\right)=\boldsymbol{\Sigma}^{-\frac{1}{2}} \operatorname{Cov}(\boldsymbol{X})\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\right)^{T} \\
&= \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-\frac{1}{2}}=\boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda}^{\frac{1}{2}} \boldsymbol{P}^{T} \\
&=\boldsymbol{P} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P}^{T} \\
&=\boldsymbol{P I} \boldsymbol{P}^{T}=\boldsymbol{I}
\end{aligned}
$$

Problem 5: The normal and chi-square distribution
a) $U \sim N(0,1)$. Find pdf and MGF of $X=U^{2}$.

Denote by ϕ the pdf of the standard Normal distribution.
Let $X=U^{2}$ and $U=\sqrt{X}$.

$$
\begin{aligned}
F_{X}(x) & =P\left(U^{2} \leq x\right)=P(-\sqrt{x} \leq U \leq \sqrt{x})=F_{U}(\sqrt{x})-F_{U}(-\sqrt{x}) \\
f_{X} & =\frac{d}{d x} F_{X}(x)=f_{U}(\sqrt{x}) \frac{d}{d x} \sqrt{x}-f_{U}(-\sqrt{x}) \frac{d}{d x}(-\sqrt{x}) \\
& =f_{U}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{U}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \frac{1}{2 \sqrt{x}}+\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-x / 2} x^{-1 / 2} \\
& =\frac{1}{\sqrt{2} \Gamma(1 / 2)} e^{-x / 2} x^{1 / 2-1}
\end{aligned}
$$

MGF:

$$
\begin{aligned}
M_{U^{2}}(t) & =\int_{-\infty}^{\infty} e^{t u^{2}} \phi(u) d u=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t u^{2}} e^{-u^{2} / 2} d u \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-u^{2}(1-2 t) / 2} d u \text { using } u=v(1-2 t), d u=(1-2 t) d v \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-v^{2} / 2} \frac{1}{\sqrt{1-2 t}} d v \\
& =\frac{1}{\sqrt{1-2 t}} \text { for } t<\frac{1}{2}
\end{aligned}
$$

b) $V \sim \chi_{p}^{2}$.

First we use the result from a) to find the MGF for the χ_{p}^{2}. Since V can be formed by a sum of p independent χ_{1}^{2} variables, then the MGF of V is the product of the MGF of $p \chi_{1}^{2}$ variables.

$$
M_{V}(t)=\left[M_{U}^{2}(t)\right]^{p}=\frac{1}{(1-2 t)^{p / 2}}
$$

Then we find the MGF of V directly from $f_{V}(v)$.

$$
\begin{aligned}
M_{V}(t) & =\int_{-\infty}^{\infty} e^{t v} \frac{1}{\Gamma(p / 2) 2^{p / 2}} v^{(p / 2)-1} e^{-v / 2} d v \\
& =\frac{1}{\Gamma(p / 2) 2^{p / 2}} \int_{-\infty}^{\infty} e^{-v / 2(1-2 t)} v^{p / 2-1} d v, \text { let } u=v(1-2 t), d u=(1-2 t) d v \\
& =\frac{1}{\Gamma(p / 2) 2^{p / 2}} \int_{-\infty}^{\infty} e^{-u / 2} \frac{u^{p / 2-1}}{(1-2 t)^{p / 2-1}} \frac{d u}{(1-2 t)} \\
& =\frac{1}{(1-2 t)^{p / 2}} \frac{1}{\Gamma(p / 2) 2^{p / 2}} \int_{-\infty}^{\infty} e^{-u / 2} u^{p / 2-1} d u \\
& =\frac{1}{(1-2 t)^{p / 2}}
\end{aligned}
$$

(The last integral equals 1 since the integrand is the χ^{2}-distribution.) We see that the two calculations of $M_{V}(t)$ are equal, and thus conclude that the given $f_{V}(v)$ is for the χ_{p}^{2}-distribution.

Problem 6: N and Chi-square by simulation - in R

B <- 10000
n <- 10
\# a
rnorm(B, 0,1) \# draw B standard normal variates
dchisq(1,1) \# density at $\mathrm{x}=1$ for chi-square $\mathrm{df}=1$
$\mathrm{pt}(0, \mathrm{n}-1)$ \# cdf at $\mathrm{x}=0$ for t -distr with $\mathrm{df}=\mathrm{n}-1$
$\mathrm{qf}(0.05,1,2)$ \#critical value with area 0.05 to the left
qf ($0.05,1,2$, lower.tail=FALSE) \# critical value with area 0.05 to the right
$\mathrm{qf}(0.95,1,2)$ \# same as above

```
# b
?curve
# how far out? 4 sds ok?
curve(dnorm,-4,4,type="l")
abline(v=qnorm(0.05),col=2)
abline(v=qnorm(0.95),col=2)
# for the fun of it, adding shades to tails
tt <- seq(from = -4, to=qnorm(0.05), length = 50)
dtt <- dnorm(tt)
polygon(x = c(-4, tt, qnorm(0.05)), y = c(0, dtt, 0), col = "gray")
tt <- seq(from = qnorm(0.95), to=4, length = 50)
dtt <- dnorm(tt)
polygon(x = c(qnorm(0.95),tt,4), y = c(0, dtt, 0), col = "gray")
# c
x <- rnorm(B,0,1)
y <- x^2
range(y)
hist(y,nclass=100,prob=TRUE)
dchisq1 <- function(x) return(dchisq(x,df=1))
curve(dchisq1,min(y),max(y), add=TRUE, col=2)
# curve only takes a function with ONE argument, needed to make a df=1 version of dchisq
abline(v=qchisq(0.1,1),col=3)
abline(v=qchisq(0.9,1),col=3)
```


Problem 7: Symmetric idempotent matrices

Let the dimension of \boldsymbol{A} be $n \times n$.
a) Prove that the eigenvalues of a projection matrix are 0 and 1.

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{x} \\
\boldsymbol{A}^{2} \boldsymbol{x} & =\boldsymbol{A} \lambda \boldsymbol{x}=\lambda(\boldsymbol{A} \boldsymbol{x})=\lambda^{2} \boldsymbol{x}
\end{aligned}
$$

λ^{2} is an eigenvalue of \boldsymbol{A}^{2}, but $\boldsymbol{A}^{2}=\boldsymbol{A}$ so

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\boldsymbol{A}^{2} \boldsymbol{x} \\
\lambda \boldsymbol{x} & =\lambda^{2} \boldsymbol{x}
\end{aligned}
$$

Since $\boldsymbol{x} \neq \mathbf{0}$

$$
\begin{aligned}
\lambda & =\lambda^{2} \\
\lambda(\lambda-1) & =0 \\
\lambda & =0 \text { or } \lambda=1
\end{aligned}
$$

b) This should be relatively clear directly. We know that \boldsymbol{A} is symmetric and idempotent, and we know that the rank of a symmetric matrix equals the number of non-zero eigenvalues. Then, since \boldsymbol{A} has only $\lambda=0$ and $\lambda=1$ as eigenvalues and $\operatorname{rank}(\boldsymbol{A})=r$, then r eigenvalues must be 1 and the remaining $(n-r)$ must be 0 .
c) What is the relationship between the trace and rank of a symmetric projection matrix?

$$
\begin{aligned}
\operatorname{rank}(\boldsymbol{A}) & =r \\
\operatorname{tr}(\boldsymbol{A}) & =\operatorname{tr}\left(\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T}\right)=\operatorname{tr}\left(\boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{\Lambda}\right) \\
& =\operatorname{tr}(\boldsymbol{\Lambda})=\sum_{i=1}^{r} \lambda_{i}=\sum_{i=1}^{r} 1+\sum_{i=r+1}^{n} 0=r
\end{aligned}
$$

So $\operatorname{rank}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A})$.
d)

$$
\boldsymbol{J}=\mathbf{1 1}^{T}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

Show that each of the following matrices are symmetric and idempotent, and also find the rank (or trace) of the matrices.

$$
\begin{aligned}
\frac{1}{n} \boldsymbol{J}^{T} & =\frac{1}{n} \boldsymbol{J} \\
\left(\frac{1}{n} \boldsymbol{J}\right)^{2} & =\frac{1}{n^{2}} \boldsymbol{J} \boldsymbol{J}=\frac{1}{n^{2}}\left[\begin{array}{ccc}
1 & 1 & \cdots \\
\vdots & \vdots & \vdots \\
1 & 1 & \cdots \\
\vdots
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & \cdots \\
\vdots & \vdots & \vdots \\
1 & 1 & \cdots \\
\vdots
\end{array}\right] \\
& =\frac{1}{n^{2}}\left[\begin{array}{cccc}
n & n & \cdots & n \\
\vdots & \vdots & \vdots & \vdots \\
n & n & \cdots & n
\end{array}\right]=\frac{1}{n}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]=\frac{1}{n} \boldsymbol{J} \\
\operatorname{tr}\left(\frac{1}{n} \boldsymbol{J}\right) & =\frac{1}{n} \operatorname{tr}(\boldsymbol{J})=\frac{1}{n} n=1 \\
\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right)^{T} & =\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}^{T}=\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right) \\
\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right)^{2} & =\boldsymbol{I}-2 \frac{1}{n} \boldsymbol{J}+\frac{1}{n^{2}} \boldsymbol{J}^{2}=\boldsymbol{I}-2 \frac{1}{n} \boldsymbol{J}+\frac{1}{n} \boldsymbol{J}=\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right) \\
\operatorname{tr}\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{J}\right) & =\operatorname{tr}(\boldsymbol{I})-\operatorname{tr}\left(\frac{1}{n} \boldsymbol{J}\right)=n-1
\end{aligned}
$$

