TMA4267 - Linear Statistical Models
Solutions to Exercise 1 - V2017

January 6, 2017

Problem 1: Simple matrix calculations
# Simple matrix calculations

#a construct A

A <- matrix(c(9,-2,-2,6),ncol=2)

A

#b symmetric?

t(A)
# yes t(A)=A
t(A)==A

# c positive definite

# t(x)%*%hA%*%x >0 for all x

# just showing how this is calculated
x <- matrix(rnorm(2,0,1),ncol=1)

t (%) o BAT*Tox

#d

# but we may also use the fact that

# a symmetric postitive definite matrix
# has only positive eigenvalues

ev <- eigen(A)

names (ev)

ev@values

# yes, positive eigenvalues
# normalized eigenvectors?
ev§vectors

# first eigenvector, length
sum(ev$vectors([,1]"2)

# or
t(ev$vectors[,1])*xhevévectors[,1]
# second
t(ev$vectors[,2])%*%ev$vectors[,2]

# e spectral theorem

P <- ev$vectors



lambda <- diag(ev$values)
P*%lambdal,*%t (P)

# f inverse

Ainv <- solve(A)

Ainv

# or using the spectral decom
lambdainv <- diag(1l/ev$values)
PY*%lambdainv’*Jt (P)

# g, ups, used the fact that the eigenvalues of Ainv are
# the inverse of the eigenvalues of A already ...
eigen(Ainv)$values

diag(lambdainv)

# h since A is SPD it may ba a covariance matrix

#i correlation matrix
varvec <- diag(A)
invsdmat <- diag(1/sqrt(varvec))

corrmat <- invsdmat}*%A%*/%invsdmat
corrmat

# builtin

cov2cor (A)

# ]

# X has mean mu and covariance matrix A
mu <- matrix(c(3,1),ncol=1)

B <- matrix(c(1,1,1,2),ncol=2)

d <- matrix(c(1,2),ncol=1)

# E and Cov for s=BX
# mean is s

BY%*%mu

# cov(s) is B A B°T
BYxhA%x%t (B)

# E and Cov for t=t(d)X
# mean is

t (d) %*%mu

# cov(t) is

t (d) %*%A%*%d

# E and Cov for v rbind X and 3X

# mean of 3X is 3mu

# cov of 3X is 9 covX

# mean

rbind (mu, 3*mu)

# cov v is a matrix with four blocks
# blockl is cov of X

blockl <- A

# block 2 is cov of X and 3X=3 covX
block2 <- 3*A



# block 3 is block 2 transposed
block3 <- t(block2)

# block4 is Cov(3X)=9A

block4 <- 9%A

covv <- cbind(rbind(blockl,block2),rbind(block3,block4))
covv

Problem 2: Mean and covariance of linear combinations

X4 1
Here X = | Xy | isa trivariate random vector with mean p = E(X) = | 1 | and covariance
X3 1
100 575 73
matrix ¥ = Cov(X) =TI = |01 0 |,and A= | -2 2 —1 | Further, Y =
0 01 ~1 1 2
3 73 3
Y;
Ys | = AX, and we are asked to find E(AX) and Cov(AX).
Y3
2 _1 _1
3 73 73 1 0
EY)=Ap=| -3 2 -1 1 ]={o0
1 _1 2 1 0
3 73 3
Cov(Y) = ACov(X)AT = ATAT = AAT
2 1 1 2 _1 1
3 73 73 3 73 73
— _1 2 _1 _1 2 _1
= 3 3 73 3 3 73
1 1 2 1 1 2
3 73 3 3 73 3
2 1 1
3 73 73
— 12 _1 | =
= -5 3 -5 [=A4
1 _1 2
3 73 3

Observe that A is idempotent.

Problem 3: Covariance

Starting with the given definition, and expanding, gives

Cov(V,W) =E((V — p)(W —n)")
=EWVWT" —uW" — vy + ")
=E(WVWT") — uEW)" —E(V)n" + un”
=EWVWT) — " — pun" + pn"
=E(VWT) — ",

which is what we were asked to show.



Problem 4: The square root matrix and the Mahalanobis transform

a) Assume X is symmetric and positive definite, and (\;, €;), ¢ = 1, ..., p are the eigenvalues and
eigenvectors of 3.

A symmetric matrix has real eigenvalues. A positive definite matrix fulfills

zTXx >0 for all  # 0

Let & = e; be the ith eigenvector of X.

el'Ye; = el PAPTe;
P
T T
=e;( E Aieie; )e;
i=1

=el'(\eiele;

=X>0

so all eigenvalue of a SPD must be positive.
What about the eigenvalues and eigenvectors of the inverse matrix of 37

First, 37! exists since X is SPD. Next, consider the eigenvalue-eigenvector pair (), e;) of

3
Zei = )\ei
Y13, = A\X e,
Iei = )\2_162‘
1 _
N e,

meaning (1/)\;, e;) is an eigenvalue-eigenvector pair of X1,

So, ¥ and X! have the same eigenvectors. And, if \; is an eigenvalue for 3 then 1/); is
an eigenvalue for 371, Hence, all eigenvalues are positive.

b) Show that >2 and 72 are symmetric:

(22)7 = (PA2PT)T = PA2PT =%

Since transposing a diagonal matrix leaves the matrix unchanges. To prove that ¥5 s
1 1
symmetric, just replace 332 by 3~ 2 in the above equations.



We show the three given identities as follows:
»:%2 = PAz PTPA: PT
= PAzAzPT
=PAPT =%
» 2% 2 = PA 2 PTPA 2 PT

A 2A 2P
AP =31
»:% "2 = PA:PTPA 2 PT
A2A"zPT

where I is the identity matrix.

Y =%"3(X - p)

ST3(B(X) — p) =0
Cov(Y) = Cov(272(X — p)) = 272 Cov(X)(272)T
_1 _1 i S T pa—
2.2 = PA 2 PTPAPTPA: P
1

>
— PA iAA 2 PT
P

je2
5
I
je2
"
[N
P
|
E
I

Problem 5: The normal and chi-square distribution

a) U~ N(0,1). Find pdf and MGF of X = U2
Denote by ¢ the pdf of the standard Normal distribution.
Let X =U2?2 and U = VX.

Fx(z) = P(U* <z) = P(—Vz <U < V) = Fy(Vz) — Fy(—V/x)

fx = L F@) = o) Vi~ fo(—E) ()
— fo (g + o (Vg
ol ap L1l

Vor o 2V Vor 2V

_ Le—m/Qx—l/Z

V2

_ L a2120

V2I'(1/2)



MGF:

M@)ﬁwam [ e
2 (t) = e u)du = —— ee u
—0 2 J -
1 & 2
_ —Uu (1—2t)/2d : _ _ _ _
= e w using u = v(1 — 2t),du = (1 — 2t)dv
V2T /_Oo

= L /Oo eiv2/2#dv
V21 J o v1—2t
1 1
= ——fort < —
V1—2t 2

b) V ~ XI%.
First we use the result from a) to find the MGF for the XZ. Since V' can be formed by a
sum of p independent x? variables, then the MGF of V is the product of the MGF of p x?
variables.

1

My (t) = [ME()]F = (=2t

Then we find the MGF of V' directly from fy (v).

oo 1

_ to_ ~  (p/2)—1_,—v/2

My (t) = /_Ooe F(p/2)2p/2v e “dv
1

- F(/2)2p/2/ e PO P2y et u = (1 = 20), du = (1 - 2t)dv
p e

1 / —u/2 uP/?>=1 du
= — e
['(p/2)2v/2 | (1 —2t)p/2=1 (1 — 2t)

1 1 o0
_ —u/2, p/2—1
‘u—%WHWMWW/;€ e
B 1
S (1—2t)p?

(The last integral equals 1 since the integrand is the y2-distribution.) We see that the
two calculations of My (t) are equal, and thus conclude that the given fy(v) is for the
X%—distribution.

Problem 6: N and Chi-square by simulation - in R

B <- 10000
n <- 10
# a

rnorm(B,0,1) # draw B standard normal variates

dchisq(1,1) # density at x=1 for chi-square df=1

pt(0O,n-1) # cdf at x=0 for t-distr with df=n-1

qf(0.05,1,2) #critical value with area 0.05 to the left
qf(0.05,1,2,1lower.tail=FALSE) # critical value with area 0.05 to the right
qf(0.95,1,2) # same as above



#Db

?curve

# how far out? 4 sds ok?

curve(dnorm, -4,4,type="1")

abline (v=qnorm(0.05),col=2)

abline(v=gnorm(0.95),col=2)

# for the fun of it, adding shades to tails

tt <- seq(from = -4, to=qnorm(0.05), length = 50)

dtt <- dnorm(tt)

polygon(x = c(-4, tt, gnorm(0.05)), y = c(0, dtt, 0), col = "gray")
tt <- seq(from = gnorm(0.95), to=4, length = 50)

dtt <- dnorm(tt)

polygon(x = c(qnorm(0.95),tt,4), y = c(0, dtt, 0), col = "gray")

# c

x <- rnorm(B,0,1)
y <- x72

range (y)

hist(y,nclass=100,prob=TRUE)

dchisql <- function(x) return(dchisq(x,df=1))
curve(dchisql,min(y) ,max(y) ,add=TRUE, col=2)

# curve only takes a function with ONE argument, needed to make a df=1 version of dchisq
abline(v=qchisq(0.1,1),c0l=3)

abline(v=qchisq(0.9,1),co0l=3)

Problem 7: Symmetric idempotent matrices

Let the dimension of A be n X n.

a) Prove that the eigenvalues of a projection matrix are 0 and 1.

Ax = \x
A’z = Adx = \(Azx) = Nz

A2 is an eigenvalue of A%, but A% = A so

Az = A’z
Az = Nz
Since « # 0
A= \2
AA=1)=0
A=0orA=1



b) This should be relatively clear directly. We know that A is symmetric and idempotent, and
we know that the rank of a symmetric matrix equals the number of non-zero eigenvalues.
Then, since A has only A = 0 and A = 1 as eigenvalues and rank(A) = r, then r eigenvalues

must be 1 and the remaining (n — ) must be 0.
c) What is the relationship between the trace and rank of a symmetric projection matrix?

rank(A) =r
tr(A) = tr(PAPT) = tr(PT PA)

=tr(A)=> N=> 1+ > 0=r
i=1 i=1 i=r+1
So rank(A) = tr(A).

d)
J = 11T = . . . .
11 - 1
Show that each of the following matrices are symmetric and idempotent, and also find the
rank (or trace) of the matrices.

1

—Jr==J

n n

1 1 , 11 1 11 1

— 2:— = — N

(nJ) n2JJ — :

11 1 11 1
1 n n n ) 1 1 1
n n n
n n n 1 1 1
1 1
tr(ﬁJ):ftr(J):—nzl
1 1

I—-=- ' =1—-=J"=(1I1-=J
( - ) - ( - )

1 1 1 1 1
IT—=J)P=T-2-J+SJ*=T-2-J+-J=(1--J)

n n n

1
tr(I—EJ):tr(I)—tr(—J):n—l



