
TMA4267 - Linear Statistical Models
Solutions to Exercise 1 - V2017

January 6, 2017

Problem 1: Simple matrix calculations

# Simple matrix calculations

#a construct A
A <- matrix(c(9,-2,-2,6),ncol=2)
A

#b symmetric?
t(A)
# yes t(A)=A
t(A)==A

# c positive definite
# t(x)%*%A%*%x >0 for all x
# just showing how this is calculated
x <- matrix(rnorm(2,0,1),ncol=1)
t(x)%*%A%*%x

# d
# but we may also use the fact that
# a symmetric postitive definite matrix
# has only positive eigenvalues

ev <- eigen(A)
names(ev)
ev$values
# yes, positive eigenvalues
# normalized eigenvectors?
ev$vectors

# first eigenvector, length
sum(ev$vectors[,1]^2)
# or
t(ev$vectors[,1])%*%ev$vectors[,1]
# second
t(ev$vectors[,2])%*%ev$vectors[,2]

# e spectral theorem

P <- ev$vectors
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lambda <- diag(ev$values)

P%*%lambda%*%t(P)

# f inverse
Ainv <- solve(A)
Ainv
# or using the spectral decom
lambdainv <- diag(1/ev$values)
P%*%lambdainv%*%t(P)

# g, ups, used the fact that the eigenvalues of Ainv are
# the inverse of the eigenvalues of A already ...
eigen(Ainv)$values
diag(lambdainv)

# h since A is SPD it may ba a covariance matrix

#i correlation matrix
varvec <- diag(A)
invsdmat <- diag(1/sqrt(varvec))

corrmat <- invsdmat%*%A%*%invsdmat
corrmat
# builtin
cov2cor(A)

# j
# X has mean mu and covariance matrix A
mu <- matrix(c(3,1),ncol=1)
B <- matrix(c(1,1,1,2),ncol=2)
d <- matrix(c(1,2),ncol=1)

# E and Cov for s=BX
# mean is s
B%*%mu
# cov(s) is B A B^T
B%*%A%*%t(B)

# E and Cov for t=t(d)X
# mean is
t(d)%*%mu
# cov(t) is
t(d)%*%A%*%d

# E and Cov for v rbind X and 3X
# mean of 3X is 3mu
# cov of 3X is 9 covX
# mean
rbind(mu,3*mu)
# cov v is a matrix with four blocks
# block1 is cov of X
block1 <- A
# block 2 is cov of X and 3X=3 covX
block2 <- 3*A
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# block 3 is block 2 transposed
block3 <- t(block2)
# block4 is Cov(3X)=9A
block4 <- 9*A

covv <- cbind(rbind(block1,block2),rbind(block3,block4))
covv

Problem 2: Mean and covariance of linear combinations

HereX =

 X1

X2

X3

 is a trivariate random vector with mean µ = E(X) =

 1
1
1

 and covariance

matrix Σ = Cov(X) = I =

 1 0 0
0 1 0
0 0 1

, and A =


2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

. Further, Y =

 Y1
Y2
Y3

 = AX, and we are asked to find E(AX) and Cov(AX).

E(Y ) = Aµ =


2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3


 1

1
1

 =

 0
0
0


Cov(Y ) = ACov(X)AT = AIAT = AAT

=


2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3




2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3


=


2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

 = A

Observe that A is idempotent.

Problem 3: Covariance

Starting with the given definition, and expanding, gives

Cov(V,W ) = E((V − µ)(W − η)T )

= E(VW T − µW T − V ηT + µηT )

= E(VW T )− µE(W )T − E(V )ηT + µηT

= E(VW T )− µηT − µηT + µηT

= E(VW T )− µηT ,

which is what we were asked to show.
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Problem 4: The square root matrix and the Mahalanobis transform

a) Assume Σ is symmetric and positive definite, and (λi, ei), i = 1, ..., p are the eigenvalues and
eigenvectors of Σ.

A symmetric matrix has real eigenvalues. A positive definite matrix fulfills

xTΣx >0 for all x 6= 0

Let x = ei be the ith eigenvector of Σ.

eTi Σei = eTi PΛP Tei

= eTi (

p∑
i=1

λieie
T
i )ei

= eTi (λieie
T
i )ei

= λi > 0

so all eigenvalue of a SPD must be positive.

What about the eigenvalues and eigenvectors of the inverse matrix of Σ?

First, Σ−1 exists since Σ is SPD. Next, consider the eigenvalue-eigenvector pair (λi, ei) of
Σ

Σei = λei

Σ−1Σei = λΣ−1ei

Iei = λΣ−1ei
1

λi
ei = Σ−1ei,

meaning (1/λi, ei) is an eigenvalue-eigenvector pair of Σ−1.

So, Σ and Σ−1 have the same eigenvectors. And, if λi is an eigenvalue for Σ then 1/λi is
an eigenvalue for Σ−1. Hence, all eigenvalues are positive.

b) Show that Σ
1
2 and Σ−

1
2 are symmetric:

Σ
1
2 = PΛ

1
2P T

(Σ
1
2 )T = (PΛ

1
2P T )T = PΛ

1
2P T = Σ

1
2

Since transposing a diagonal matrix leaves the matrix unchanges. To prove that Σ−
1
2 is

symmetric, just replace Σ
1
2 by Σ−

1
2 in the above equations.
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We show the three given identities as follows:

Σ
1
2 Σ

1
2 = PΛ

1
2P TPΛ

1
2P T

= PΛ
1
2 Λ

1
2P T

= PΛP T = Σ

Σ−
1
2 Σ−

1
2 = PΛ−

1
2P TPΛ−

1
2P T

= PΛ−
1
2 Λ−

1
2P T

= PΛ−1P T = Σ−1

Σ
1
2 Σ−

1
2 = PΛ

1
2P TPΛ−

1
2P T

= PΛ
1
2 Λ−

1
2P T

= PIP T = I

where I is the identity matrix.

c)
Y = Σ−

1
2 (X − µ)

E(Y ) = E(Σ−
1
2 (X − µ)) = Σ−

1
2 (E(X)− µ) = 0

Cov(Y ) = Cov(Σ−
1
2 (X − µ)) = Σ−

1
2 Cov(X)(Σ−

1
2 )T

= Σ−
1
2 ΣΣ−

1
2 = PΛ−

1
2P TPΛP TPΛ

1
2P T

= PΛ−
1
2 ΛΛ−

1
2P T

= PIP T = I

Problem 5: The normal and chi-square distribution

a) U ∼ N(0, 1). Find pdf and MGF of X = U2.
Denote by φ the pdf of the standard Normal distribution.
Let X = U2 and U =

√
X.

FX(x) = P (U2 ≤ x) = P (−
√
x ≤ U ≤

√
x) = FU (

√
x)− FU (−

√
x)

fX =
d

dx
FX(x) = fU (

√
x)

d

dx

√
x− fU (−

√
x)

d

dx
(−
√
x)

= fU (
√
x)

1

2
√
x

+ fU (−
√
x)

1

2
√
x

=
1√
2π
e−x/2

1

2
√
x

+
1√
2π
e−x/2

1

2
√
x

=
1√
2π
e−x/2x−1/2

=
1√

2Γ(1/2)
e−x/2x1/2−1
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MGF:

MU2(t) =

∫ ∞
−∞

etu
2
φ(u)du =

1√
2π

∫ ∞
−∞

etu
2
e−u

2/2du

=
1√
2π

∫ ∞
−∞

e−u
2(1−2t)/2du using u = v(1− 2t), du = (1− 2t)dv

=
1√
2π

∫ ∞
−∞

e−v
2/2 1√

1− 2t
dv

=
1√

1− 2t
for t <

1

2

b) V ∼ χ2
p.

First we use the result from a) to find the MGF for the χ2
p. Since V can be formed by a

sum of p independent χ2
1 variables, then the MGF of V is the product of the MGF of p χ2

1

variables.

MV (t) = [M2
U (t)]p =

1

(1− 2t)p/2

Then we find the MGF of V directly from fV (v).

MV (t) =

∫ ∞
−∞

etv
1

Γ(p/2)2p/2
v(p/2)−1e−v/2dv

=
1

Γ(p/2)2p/2

∫ ∞
−∞

e−v/2(1−2t)vp/2−1dv, let u = v(1− 2t), du = (1− 2t)dv

=
1

Γ(p/2)2p/2

∫ ∞
−∞

e−u/2
up/2−1

(1− 2t)p/2−1
du

(1− 2t)

=
1

(1− 2t)p/2
1

Γ(p/2)2p/2

∫ ∞
−∞

e−u/2up/2−1du

=
1

(1− 2t)p/2

(The last integral equals 1 since the integrand is the χ2-distribution.) We see that the
two calculations of MV (t) are equal, and thus conclude that the given fV (v) is for the
χ2
p-distribution.

Problem 6: N and Chi-square by simulation - in R

B <- 10000
n <- 10

# a
rnorm(B,0,1) # draw B standard normal variates
dchisq(1,1) # density at x=1 for chi-square df=1
pt(0,n-1) # cdf at x=0 for t-distr with df=n-1
qf(0.05,1,2) #critical value with area 0.05 to the left
qf(0.05,1,2,lower.tail=FALSE) # critical value with area 0.05 to the right
qf(0.95,1,2) # same as above
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# b
?curve
# how far out? 4 sds ok?
curve(dnorm,-4,4,type="l")
abline(v=qnorm(0.05),col=2)
abline(v=qnorm(0.95),col=2)
# for the fun of it, adding shades to tails
tt <- seq(from = -4, to=qnorm(0.05), length = 50)
dtt <- dnorm(tt)
polygon(x = c(-4, tt, qnorm(0.05)), y = c(0, dtt, 0), col = "gray")
tt <- seq(from = qnorm(0.95), to=4, length = 50)
dtt <- dnorm(tt)
polygon(x = c(qnorm(0.95),tt,4), y = c(0, dtt, 0), col = "gray")

# c
x <- rnorm(B,0,1)
y <- x^2
range(y)
hist(y,nclass=100,prob=TRUE)
dchisq1 <- function(x) return(dchisq(x,df=1))
curve(dchisq1,min(y),max(y),add=TRUE,col=2)
# curve only takes a function with ONE argument, needed to make a df=1 version of dchisq
abline(v=qchisq(0.1,1),col=3)
abline(v=qchisq(0.9,1),col=3)

Problem 7: Symmetric idempotent matrices

Let the dimension of A be n× n.

a) Prove that the eigenvalues of a projection matrix are 0 and 1.

Ax = λx

A2x = Aλx = λ(Ax) = λ2x

λ2 is an eigenvalue of A2, but A2 = A so

Ax = A2x

λx = λ2x

Since x 6= 0

λ = λ2

λ(λ− 1) = 0

λ = 0 or λ = 1
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b) This should be relatively clear directly. We know that A is symmetric and idempotent, and
we know that the rank of a symmetric matrix equals the number of non-zero eigenvalues.
Then, sinceA has only λ = 0 and λ = 1 as eigenvalues and rank(A) = r, then r eigenvalues
must be 1 and the remaining (n− r) must be 0.

c) What is the relationship between the trace and rank of a symmetric projection matrix?

rank(A) = r

tr(A) = tr(PΛP T ) = tr(P TPΛ)

= tr(Λ) =
r∑

i=1

λi =
r∑

i=1

1 +
n∑

i=r+1

0 = r

So rank(A) = tr(A).

d)

J = 11T =

 1 1 · · · 1
...

...
...

...
1 1 · · · 1


Show that each of the following matrices are symmetric and idempotent, and also find the
rank (or trace) of the matrices.

1

n
JT =

1

n
J

(
1

n
J)2 =

1

n2
JJ =

1

n2

 1 1 · · · 1
...

...
...

...
1 1 · · · 1


 1 1 · · · 1

...
...

...
...

1 1 · · · 1


=

1

n2

 n n · · · n
...

...
...

...
n n · · · n

 =
1

n

 1 1 · · · 1
...

...
...

...
1 1 · · · 1

 =
1

n
J

tr(
1

n
J) =

1

n
tr(J) =

1

n
n = 1

(I − 1

n
J)T = I − 1

n
JT = (I − 1

n
J)

(I − 1

n
J)2 = I − 2

1

n
J +

1

n2
J2 = I − 2

1

n
J +

1

n
J = (I − 1

n
J)

tr(I − 1

n
J) = tr(I)− tr(

1

n
J) = n− 1
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