TMA4267-Linear Statistical Models Solutions to Recommended Exercise 2 - V2017

12 January 2017

Problem 1: Simple calculations with the multivariate normal distribution

Let $\boldsymbol{X}=\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right] \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$ and $\boldsymbol{\Sigma}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2\end{array}\right]$
a) \boldsymbol{X} is multivariate normal, and thus each element of \boldsymbol{X} is univariate normal.
$Y=3 X_{1}-2 X_{2}+X_{3} . \quad Y$ must be univariate normally distributed since it is a linear combination of univariate normal variables.

$$
\begin{aligned}
\mathrm{E}(Y) & =3 \mu_{1}-2 \mu_{2}+\mu_{3}=3 \cdot 2-2 \cdot(-3)+1=13 \\
\operatorname{Cov}(Y) & =\left[\begin{array}{lll}
3 & -2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]=9
\end{aligned}
$$

b) Let $\boldsymbol{a}=\left(a_{1}, a_{3}\right)^{T}$, and define $Z=X_{2}-a_{1} X_{1}-a_{3} X_{3}$. We want to find $\left(a_{1}, a_{3}\right)$ so that X_{2} and Z are independent. Since the vector $\left(X_{2}, Z\right)^{T}$ is constructed from linear combinations of multivariate normal variables, the vector is multivariate normal. For multivariate normal data independence is achieved when $\operatorname{Cov}\left(X_{2}, Z\right)=0$.

$$
\begin{aligned}
\operatorname{Cov}\left(X_{2}, Z\right) & =\operatorname{Cov}\left(X_{2}, X_{2}-a_{1} X_{1}-a_{3} X_{3}\right)=\operatorname{Cov}\left(X_{2}, X_{2}\right)-a_{1} \operatorname{Cov}\left(X_{2}, X_{1}\right)-a_{3} \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{2}, Z\right) & =3-a_{1} \cdot 1-a_{3} \cdot 2 \\
0 & =3-a_{1} \cdot 1-a_{3} \cdot 2 \\
a_{1} & =3-2 a_{3}
\end{aligned}
$$

Choosing $a_{3}=0$ we get independence for $a_{1}=3$, and with $a_{3}=1$ we get independence with $a_{1}=1$, and so on.
c) Find the conditional distribution of X_{1} given that $X_{2}=x_{2}$ and $X_{3}=x_{3}$.

We need to partition \boldsymbol{X}, the mean vector and covariance matrix of \boldsymbol{X} as follows.

$$
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{l}
\boldsymbol{X}_{A} \\
\boldsymbol{X}_{B}
\end{array}\right] \text { and } \boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{A} \\
\mu_{B}
\end{array}\right] \\
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{A A} & \boldsymbol{\Sigma}_{A B} \\
\boldsymbol{\Sigma}_{B A} & \boldsymbol{\Sigma}_{B B}
\end{array}\right]
\end{gathered}
$$

where the A-part contains X_{1} and the B-part contains X_{2} and X_{3}. The formula for the conditional mean $\boldsymbol{\mu}^{*}$ and covariance $\boldsymbol{\Sigma}^{*}$ of the A-part given the B-part at $\left(x_{2}, x_{3}\right)^{T}$ is

$$
\begin{aligned}
\boldsymbol{\mu}^{*} & =\boldsymbol{\mu}_{A}+\boldsymbol{\Sigma}_{A B} \boldsymbol{\Sigma}_{B B}^{-1}\left(\boldsymbol{x}_{B}-\boldsymbol{\mu}_{B}\right) \\
\boldsymbol{\Sigma}^{*} & =\boldsymbol{\Sigma}_{A A}-\boldsymbol{\Sigma}_{A B} \boldsymbol{\Sigma}_{B B}^{-1} \boldsymbol{\Sigma}_{B A}
\end{aligned}
$$

We thus need

$$
\begin{aligned}
\boldsymbol{\Sigma}_{B B}^{-1} & =\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1.5
\end{array}\right] \\
\boldsymbol{\Sigma}_{A B} \boldsymbol{\Sigma}_{B B}^{-1} & =\left[\begin{array}{ll}
0 & 0.5
\end{array}\right] \\
\boldsymbol{\Sigma}^{*} & =\boldsymbol{\Sigma}_{A A}-\boldsymbol{\Sigma}_{A B} \boldsymbol{\Sigma}_{B B}^{-1} \boldsymbol{\Sigma}_{B A}=0.5
\end{aligned}
$$

Then,
$\boldsymbol{\mu}^{*}=2+(0,0.5)^{T}\left(\boldsymbol{x}_{B}-\boldsymbol{\mu}_{B}\right)=2+0 \cdot\left(x_{2}+3\right)+0.5\left(x_{3}-1\right)=2+0.5\left(x_{3}-1\right)=0.5 x_{3}+1.5$
$\boldsymbol{\Sigma}^{*}=0.5$

Problem 2: From correlated to independent variables

a) To find out which variable has the strongest correlation with X_{3}, we compute $\operatorname{Corr}\left(X_{1}, X_{3}\right)$ and $\operatorname{Corr}\left(X_{2}, X_{3}\right)$ from the elements in $\boldsymbol{\Sigma}$,

$$
\begin{aligned}
& \operatorname{Corr}\left(X_{1}, X_{3}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{3}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{3}\right)}}=\frac{1}{\sqrt{1 \cdot 3}}=\frac{\sqrt{3}}{3} \approx 0.5774 \\
& \operatorname{Corr}\left(X_{2}, X_{3}\right)=\frac{\operatorname{Cov}\left(X_{2}, X_{3}\right)}{\sqrt{\operatorname{Var}\left(X_{2}\right) \operatorname{Var}\left(X_{3}\right)}}=\frac{-1}{\sqrt{2 \cdot 3}}=-\frac{\sqrt{6}}{6} \approx-0.4082 .
\end{aligned}
$$

This shows that X_{1} has the strongest correlation with X_{3} in absolute value. To determine the distribution of $\mathbf{Z}=\left(X_{2}-X_{1}, X_{3}-X_{1}\right)^{T}$, observe that if we let

$$
\mathbf{A}=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

then $\mathbf{Z}=\mathbf{A X}$. In other words, \mathbf{Z} is a linear transformation of the trivariate normal vector \mathbf{X}, which means that \mathbf{Z} is bivariate normal, since \mathbf{A} is a 2×3 matrix. The expectation and covariance matrix of \mathbf{Z} are

$$
\mathrm{E}(\mathbf{Z})=\mathbf{A} \boldsymbol{\mu}=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right]=\left[\begin{array}{l}
\mu_{2}-\mu_{1} \\
\mu_{3}-\mu_{1}
\end{array}\right]=\left[\begin{array}{l}
6-2 \\
4-2
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

and

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{Z})=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T} & =\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
2 & -1 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{rr}
3 & -1 \\
-1 & 2
\end{array}\right] .
\end{aligned}
$$

b) Note that $\mathbf{Y}=\left(\mathbf{e}_{1}^{T} \mathbf{X}, \mathbf{e}_{2}^{T} \mathbf{X}\right)^{T}=\left(\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}\right)^{T} \mathbf{X}=\mathbf{B X}$ is a linear transformation of \mathbf{X} where

$$
\mathbf{B}=\left[\begin{array}{l}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T}
\end{array}\right]
$$

is a 2×3 matrix. By the same argument as for \mathbf{Z} in \mathbf{a}), it then follows that \mathbf{Y} is bivariate normal. To show independence between Y_{1} and Y_{2}, consider their covariance

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =\operatorname{Cov}\left(\mathbf{e}_{1}^{T} \mathbf{X}, \mathbf{e}_{2}^{T} \mathbf{X}\right)=\mathrm{E}\left(\left(\mathbf{e}_{1}^{T} \mathbf{X}-\mathrm{E}\left(\mathbf{e}_{1}^{T} \mathbf{X}\right)\right)\left(\mathbf{e}_{2}^{T} \mathbf{X}-\mathrm{E}\left(\mathbf{e}_{2}^{T} \mathbf{X}\right)\right)^{T}\right) \\
& =\mathrm{E}\left(\mathbf{e}_{1}^{T}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T} \mathbf{e}_{2}\right)=\mathbf{e}_{1}^{T} \mathrm{E}\left((\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right) \mathbf{e}_{2} \\
& =\mathbf{e}_{1}^{T} \boldsymbol{\Sigma} \mathbf{e}_{2}=\mathbf{e}_{1}^{T} \lambda \mathbf{e}_{2}=\lambda \mathbf{e}_{1}^{T} \mathbf{e}_{2}=0 .
\end{aligned}
$$

In the last line we use the orthogonality of the eigenvectors \mathbf{e}_{1} and \mathbf{e}_{2}. Now, since Y_{1} and Y_{2} are univariate normal, zero covariance implies independence.
By the proportion of variation in \mathbf{X} which is explained by \mathbf{Y}, we mean the ratio of the total variance of \mathbf{Y} to the total variance of \mathbf{X}. The total variance of a vector is the sum of the variances of its elements, which is equal to the trace of the covariance matrix. Write the eigenvalue decomposition of $\boldsymbol{\Sigma}$ as

$$
\boldsymbol{\Sigma}=\mathbf{V D V}^{T}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T} \\
\mathbf{e}_{3}^{T}
\end{array}\right]
$$

The total variance of \mathbf{X} is then

$$
\operatorname{tr}(\boldsymbol{\Sigma})=\operatorname{tr}\left(\mathbf{V D V}^{T}\right)=\operatorname{tr}\left(\mathbf{V}^{T} \mathbf{V D}\right)=\operatorname{tr}(\mathbf{I D})=\operatorname{tr}(\mathbf{D})=\sum_{i=1}^{3} \lambda_{i}
$$

where we use the fact that matrices in the trace of a product can be switched. We see that the total variation is the sum of the eigenvalues of the covariance matrix. Next, we turn to the covariance matrix of $\mathbf{Y}=\mathbf{B X}$, which is

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{Y}) & =\mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{T}=\mathbf{B V D V}^{T} \mathbf{B}^{T} \\
& =\left[\begin{array}{l}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T} \\
\mathbf{e}_{3}^{T}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right],
\end{aligned}
$$

so the total variance of \mathbf{Y} is $\operatorname{tr}(\operatorname{Cov}(\mathbf{Y}))=\lambda_{1}+\lambda_{2}$. We are now ready to compute the proportion of variation in \mathbf{X} explained by \mathbf{Y},

$$
\frac{\operatorname{tr}(\operatorname{Cov}(\mathbf{Y}))}{\operatorname{tr}(\operatorname{Cov}(\mathbf{X}))}=\frac{\operatorname{tr}\left(\mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{T}\right)}{\operatorname{tr}(\boldsymbol{\Sigma})}=\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}=\frac{3.8794+1.6527}{3.8794+1.6527+0.4679}=0.922 .
$$

Approximately 92% of the variation in \mathbf{X} is explained by \mathbf{Y}.

Problem 3: The bivariate normal distribution

a)

$$
\begin{aligned}
\boldsymbol{\Sigma}^{-1} & =\frac{1}{\operatorname{det}(\boldsymbol{\Sigma})}\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right]=\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right] \\
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{ll}
x-\mu_{X} & y-\mu_{Y}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right]\left[\begin{array}{c}
x-\mu_{X} \\
y-\mu_{Y}
\end{array}\right] \\
& =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{ll}
x-\mu_{X} & y-\mu_{Y}
\end{array}\right]\left[\begin{array}{c}
\sigma_{Y}^{2}\left(x-\mu_{X}\right)-\rho \sigma_{X} \sigma_{Y}\left(y-\mu_{Y}\right) \\
-\rho \sigma_{X} \sigma_{Y}\left(x-\mu_{X}\right)+\sigma_{X}^{2}\left(y-\mu_{Y}\right)
\end{array}\right] \\
& =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left[\sigma_{Y}^{2}\left(x-\mu_{X}\right)^{2}-\rho \sigma_{X} \sigma_{Y}\left(y-\mu_{Y}\right)\left(x-\mu_{X}\right)\right. \\
& \left.-\rho \sigma_{X} \sigma_{Y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)+\sigma_{X}^{2}\left(y-\mu_{Y}\right)^{2}\right] \\
& =\frac{1}{\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)\right]=Q(x, y)
\end{aligned}
$$

b) From a) we saw that $Q(x, y)=(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$. Further, using the formla for $\operatorname{det}(\boldsymbol{\Sigma})$ we find that

$$
c=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}=\frac{1}{2 \pi \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}}
$$

This gives, directly,

$$
\begin{aligned}
f(x, y) & =c \exp \left(-\frac{1}{2} Q(x, y)\right) \\
& =\frac{1}{2 \pi \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \\
& =f(\boldsymbol{x})
\end{aligned}
$$

c)

$$
\begin{aligned}
f(\boldsymbol{x}) & =k \\
\frac{1}{2 \pi \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) & =k \\
\exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) & =k \cdot 2 \pi \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2} \\
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =-2 \cdot \log \left(k \cdot 2 \pi \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}\right) \\
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =d^{2}
\end{aligned}
$$

So, we may find the contours by solving the first or the last equation. We will now work with the last equation.

We recognize that this is a quadratic form. Further, $\boldsymbol{\Sigma}$ is a real, symmetric matrix. We know from linear algebra that the eigenvectors of $\boldsymbol{\Sigma}$ and $\boldsymbol{\Sigma}^{-1}$ are the same, while the eigenvalues are reciprocal.

We put the eigenvalues of $\boldsymbol{\Sigma}$ on the diagonal of the matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ and the (normalized) (2×1) eigenvectors \boldsymbol{e}_{1} and \boldsymbol{e}_{2}, which we put into the (2×2) matrix $\boldsymbol{P}=\left[\boldsymbol{e}_{1} \boldsymbol{e}_{2}\right]$, such that $\boldsymbol{\Sigma}=\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T}$.

$$
\begin{aligned}
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =d^{2} \\
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{P} \boldsymbol{\Lambda}^{-1} \boldsymbol{P}^{T}(\boldsymbol{x}-\boldsymbol{\mu}) & =d^{2} \\
\frac{1}{\lambda_{1}}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}(\boldsymbol{x}-\boldsymbol{\mu})+\frac{1}{\lambda_{2}}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{e}_{2} \boldsymbol{e}_{2}^{T}(\boldsymbol{x}-\boldsymbol{\mu}) & =d^{2}
\end{aligned}
$$

Let $w_{1}=(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{e}_{1}$ and $w_{2}=(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{e}_{2}$.

$$
\begin{aligned}
\frac{1}{\lambda_{1}} w_{1}^{2}+\frac{1}{\lambda_{2}} w_{2}^{2} & =d^{2} \\
\frac{1}{\lambda_{1} d^{2}} w_{1}^{2}+\frac{1}{\lambda_{2} d^{2}} w_{2}^{2} & =1
\end{aligned}
$$

From the latter equation we see that this is an ellipse with axis in the direction of the eigenvectors of $\boldsymbol{\Sigma}$, with halflengths $\sqrt{\lambda_{1}} d$ and $\sqrt{\lambda_{2}} d$. The center of the ellipse is at $\boldsymbol{\mu}$.
d) Let $\sigma_{X}=\sigma_{Y}=\sigma$, and we have

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]
$$

We find the eigenvalues of $\boldsymbol{\Sigma}$ by solving $\operatorname{det}(\boldsymbol{\Sigma}-\lambda \boldsymbol{I})=0$ to be

$$
\begin{aligned}
& \lambda_{1}=\sigma^{2}(1+\rho) \\
& \lambda_{2}=\sigma^{2}(1-\rho)
\end{aligned}
$$

and the corresponding normalized eigenvalues by solving $\boldsymbol{\Sigma} \boldsymbol{e}=\lambda \boldsymbol{e}$, to be

$$
\begin{aligned}
& e_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& e_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Observe that these two directions do not depend on ρ, and will always give axes which form 45° angles with the horizontal axis.
If $\rho>0$ the major axis (the axis with the longest halflength) is in the direction \boldsymbol{e}_{1}, and if $\rho<0$ the major axis is in the direction \boldsymbol{e}_{2}. If $\rho=0$ the ellipse becomes a circle (both axes equal in length).
e) If $\sigma_{X}=\sigma_{Y}$ the axes of the ellipse are always as explained in d), and the effect of an increasing $|\rho|$ is that the ellipse becomes narrower.
If $\sigma_{X} \neq \sigma_{Y}$ then the direction of the ellipse axes will depend on all of $\left(\sigma_{X}, \sigma_{Y}, \rho\right)$. But keeping σ_{X} and σ_{Y} fixed will also result in narrower ellipses for increasing $|\rho|$. Run the R-commands below (also available in an . R file on the course website).

```
par(mfrow=c(2,2),pty="m") # fit 4 plots in a 2 by 2 manner
# first
plot(ellipse(0.5, scale=c(1,1),centre=c(0,0)),type="l")
abline(0,1); abline(0,-1) #adding the ellipse axes
title("SigmaX=SigmaY=1, rho=0.5")
# second
plot(ellipse(-0.3, scale=c(1,1),centre=c(0,0)),type="l")
abline(0,1); abline(0,-1)
title("SigmaX=SigmaY=1, rho=-0.5")
# third
sigma <- matrix(c(1,0.5*1*2,0.5*1*2,2^2),ncol=2)
res <- eigen(sigma)
plot(ellipse(sigma, centre=c(0,0)),type="l")
title("SigmaX=1,SigmaY=2, rho=0.5")
#forth
sigma <- matrix(c(1,-0.9*1*2,-0.9*1*2,2^2),ncol=2)
plot(ellipse(sigma, centre=c(0,0)),type="l")
title("SigmaX=1,SigmaY=2, rho=-0.9")
# optional -- add axes
# want the axes to be perpendicular - then need to make plotting region square
# AND also use equal range for x and y - which must be set separately
par(mfrow=c(1,1),pty="s") # one graph and square region
muvec <- c(0,0)
eig <- eigen(sigma) # eigenvalues and vectors
const <- sqrt(qchisq(0.95,2)) # choose a constant so that 95% probability of being inside
# (more the distribution of this quadratic from later)
eobj <- ellipse(sigma,centre=muvec) # generate points on the ellipse
apply(eobj,2,range) # check which of x or y have the largest range,
#choose the one with the largest for the plot below,
#here this was y, and thus range(eboj[,2])
plot(eobj,xlim=range(eobj[,2]),ylim=range(eobj[,2]),type="l")
#plot(eobj,type="l") would give different scales for x and y and
#not make this pretty! try to see
lambda1 <- eig$values[1] # first eigenvalue
e1 <- eig$vectors[,1] # first eigenvector
pkt1R <- muvec+const*sqrt(lambda1)*e1 # point on ellipse major axis
points(pkt1R[1],pkt1R[2],col=3,pch=20) # add the point to plot, green
pkt1L <- muvec-const*sqrt(lambda1)*e1 # point on ellipse
points(pkt1L[1],pkt1L[2],col=3,pch=20) # add point to plot, green
lines(c(pkt1R[1],pkt1L[1]),c(pkt1R[2],pkt1L[2]),lwd=2,col=3) # add line between points in green
# do the same with the minor axes, now in blue
lambda2 <- eig$values[2]
e2 <- eig$vectors[,2]
pkt2R <- muvec+const*sqrt(lambda2)*e2
points(pkt2R[1],pkt2R[2], col=4,pch=20)
pkt2L <- muvec-const*sqrt(lambda2)*e2
```

```
points(pkt2L[1],pkt2L[2],col=4,pch=20)
lines(c(pkt2R[1],pkt2L[1]),c(pkt2R[2],pkt2L[2]),lwd=2,col=4)
```


Problem 4: Normal marginals, but not multivariate normal?

In b) the data looks normal marginally, in c) the data does not look multivariate normal since we don't see elliptic shapes.

```
print("a) Load data")
ccdata <- dget("https://www.math.ntnu.no/emner/TMA4267/2017v/ccdata.dd")
dim(ccdata)
print("b) Marginal plots")
par(mfcol=c (2,3))
apply(ccdata,2,hist)
apply(ccdata,2,boxplot)
apply(ccdata,2,qqnorm)
# qqplot with lines more in detail...
par(mfrow=c(1,2))
qqnorm(ccdata[,1],main=""); qqline(ccdata[,1],col=2); title(main="Normal QQ
plot var1", cex.main=.8)
qqnorm(ccdata[,2],main=""); qqline(ccdata[,2],col=2); title(main="Normal QQ
plot var2", cex.main=.8)
print("c) Simultane plots")
library(ellipse)
par(mfrow=c(1,1))
plot(ccdata,main="Scatter plot",cex.main=.8,xlab="x",ylab="y")
lines(ellipse(matrix(c(1,0.8,0.8,1),2,2)),lwd=2,col=2)
sink()
```


Problem 5: The chi-square, t and F-distribution

a) Let $V \sim \chi_{p}^{2}$ and $W \sim \chi_{q}^{2}$, where V and W are independent. The joint distribution is then the product of the two marginal distributions.

$$
f_{V, W}(u, v)=\frac{1}{\Gamma(p / 2) 2^{p / 2}} v^{(p / 2)-1} e^{-v / 2} \cdot \frac{1}{\Gamma(q / 2) 2^{q / 2}} w^{(q / 2)-1} e^{-w / 2}
$$

Let then $F=\frac{V / p}{W / q}$, and $G=W$, and use the multivariate transformation formula to find
the joint pdf of F and G. We start with the inverse functions and the Jacobian.

$$
\begin{aligned}
V & =\frac{p}{q} F G \\
W & =G \\
J & =\operatorname{det}\left[\begin{array}{cc}
\frac{p}{q} g & \frac{p}{g} f \\
0 & 1
\end{array}\right]=\frac{p}{q} g \\
f_{F, G}(f, g) & =f_{V, W}\left(\frac{p}{q} f g, g\right) \cdot \frac{p}{q} g \\
& =\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}}\left(\frac{p}{q} f g\right)^{(p / 2)-1} g^{q / 2-1} e^{-\left(\frac{p}{q} f+1\right) g / 2} \frac{p}{q} g \\
& =\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}}\left(\frac{p}{q}\right)^{p / 2} f^{p / 2-1} g^{(p+q) / 2-1} e^{-\left(\frac{p}{q} f+1\right) g / 2}
\end{aligned}
$$

Then, find the marginal distribution of F from this joint distibution.

$$
\begin{aligned}
f_{F}(f) & =\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}}\left(\frac{p}{q}\right)^{p / 2} f^{p / 2-1} \int_{0}^{\infty} g^{(p+q) / 2-1} e^{-\left(\frac{p}{q} f+1\right) g / 2} d g \\
u & =\left(\frac{p}{q} f+1\right) g \text { and } d u=\left(\frac{p}{q} f+1\right) d g \\
f_{F}(f) & =\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}}\left(\frac{p}{q}\right)^{p / 2} f^{p / 2-1} \int_{0}^{\infty} \frac{u^{(p+q) / 2-1}}{\left(\frac{p}{q} f+1\right)^{(p+q) / 2-1}} e^{-u / 2} \frac{d u}{\frac{p}{q} f+1} \\
& =\frac{\left(\frac{p}{q}\right)^{p / 2} f^{p / 2-1}}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}\left(\frac{p}{q} f+1\right)^{(p+q) / 2}} \int_{0}^{\infty} u^{(p+q) / 2-1} e^{-u / 2} d u \\
& =\frac{2^{(p+q) / 2} \Gamma\left(\frac{p+q}{2}\right)\left(\frac{p}{q}\right)^{p / 2} f^{p / 2-1}}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)}\left(\frac{p}{q} f+1\right)^{(p+q) / 2} \int_{0}^{\infty} \frac{1}{2^{(p+q) / 2} \Gamma\left(\frac{p+q}{2}\right)} u^{(p+q) / 2-1} e^{-u / 2} d u \\
& =\frac{\Gamma\left(\frac{p+q}{2}\right)\left(\frac{p}{q}\right)^{p / 2}}{\Gamma(p / 2) \Gamma(q / 2)} \frac{f^{p / 2-1}}{\left(\frac{p}{q} f+1\right)^{(p+q) / 2}}
\end{aligned}
$$

b) Let $U \sim N(0,1)$ and $V \sim \chi_{p}^{2}$, and U and V are independent. Find the pdf of the random variable $T=\frac{U}{\sqrt{V / p}}$.

First, the joint pdf of U and V, by multiplying the marginal pdfs.

$$
f_{U, V}(u, v)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \cdot \frac{1}{\Gamma(p / 2) 2^{p / 2}} v^{(p / 2)-1} e^{-v / 2}
$$

Now, the inverse of the transformation $t=\frac{u}{\sqrt{v / p}}$ and $w=v$ is $u=t \sqrt{w / p}$ and $v=w$, with Jacobian $\sqrt{w / p}$. This gives joint distribution $f_{T, W}(t, w)$:

$$
f_{T, W}(t, w)=f_{U, V}(t(\sqrt{w / p}), w) \cdot \sqrt{w / p}
$$

The marginal pdf of T is

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{U, V}(t \sqrt{w / p}, w) \cdot \sqrt{w / p} d w \\
& =\frac{1}{(2 \pi)^{1 / 2} \Gamma\left(\frac{p}{2}\right) 2^{p / 2}} \int_{0}^{\infty} e^{-(1 / 2) t^{2} w / p} w^{p / 2-1} e^{-w / 2}\left(\frac{w}{p}\right)^{1 / 2} d w \\
& =\frac{1}{(2 \pi)^{1 / 2} \Gamma\left(\frac{p}{2}\right) 2^{p / 2} p^{1 / 2}} \int_{0}^{\infty} e^{-(1 / 2)\left(1+t^{2} / p\right) w} w^{(p+1) / 2-1} d w
\end{aligned}
$$

The trick now it to recognice that the integrand is the pdf of the gamma distribution $\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}$, with parameters $\alpha=(p+1) / 2$ and $\beta=2 /\left(1+t^{2} / p\right)$, so the integral is 1.

$$
\begin{aligned}
f_{T}(t) & =\frac{\Gamma\left(\frac{p+1}{2}\right)\left(\frac{2}{1+t^{2} / p}\right)^{(p+1) / 2}}{(2 \pi)^{1 / 2} \Gamma\left(\frac{p}{2}\right) 2^{p / 2} p^{1 / 2}} \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{p+1}{2}\right)\left(\frac{2}{1+t^{2} / p}\right)^{(p+1) / 2}} e^{-1 /\left(1+t^{2} / p\right)} w^{(p+1) / 2-1} d w \\
& =\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+t^{2} / p\right)^{(p+1) / 2}}
\end{aligned}
$$

which is the T pdf.
c) Let $T \sim t_{q}$ (t -distribution with q degrees of freedom). Then show that $T^{2} \sim F_{1, q}$.

$$
\begin{aligned}
T^{2} & =\left(\frac{U}{\sqrt{V / p}}\right)^{2} \\
& =\frac{U^{2} / 1}{V / p}
\end{aligned}
$$

We see that the numerator is χ_{1}^{2} and the denominator is χ_{p}^{2}, and from 1 d we see that T^{2} is Fisher with 1 and p degrees of freedom.
d)

Problem 6: N, Chi-square, t and F by simulation - in R

```
B <- 10000
n <- 10
# a
x <- rnorm(B,0,1)
y <- x^2
range(y)
hist(y,nclass=100,prob=TRUE)
dchisq1 <- function(x) return(dchisq(x,df=1))
curve(dchisq1,min(y),max(y),add=TRUE,col=2)
# curve only takes a function with ONE argument, needed to make a df=1 version of dchisq
abline(v=qchisq(0.1,1),col=3)
abline(v=qchisq(0.9,1),col=3)
# b
x <- rnorm(B)
y <- rchisq(B,df=n-1)
t <- x/sqrt(y/(n-1))
hist(t,nclass=50,prob=TRUE)
dt9 <- function(x) return(dt(x,df=9))
curve(dt9,min(t),max(t),add=TRUE,col=2)
# alternative to curve - plot two vectors
xvec <- seq(min(t),max(t),length=100)
yvec <- dt(xvec,df=n-1)
lines(xvec,yvec,col=4)
abline(v=qt(0.15,n-1),col=5)
abline(v=qt(0.85,n-1),col=5)
```

```
# c
f <- t^2
hist(f,nclass=50,prob=TRUE)
xvec <- seq(min(f),max(f),length=100)
yvec <- df(xvec,1,n-1)
lines(xvec,yvec,col=2)
abline(v=qf(0.05,1,n-1),col=5)
abline(v=qf(0.95,1,n-1),col=5)
# d more F
n1 <- 5
n2 <- 40
u <- rchisq(B,df=n1)
v <- rchisq(B,df=n2)
f <- u*n2/(v*n1)
hist(f,nclass=50,prob=TRUE)
xvec <- seq(min(f),max(f),length=100)
yvec <- df(xvec,n1,n2)
lines(xvec,yvec,col=2)
abline(v=qf(0.05,n1,n2),col=3)
abline(v=qf(0.95,n1,n2),col=3)
```


Problem 7: Linear combinations and quadratic forms

a) Find the expected value of $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$.

We may use the trace-formula:

$$
\mathrm{E}\left(\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu}=\operatorname{tr} \boldsymbol{A}+\boldsymbol{\mu}^{T} \mathbf{0}=3 \cdot \frac{2}{3}=2
$$

b) \boldsymbol{A} is clearly symmetric, which we can see by $\boldsymbol{A}^{T}=\boldsymbol{A}$. A projection matrix is an idempotent matrix, that is, $\boldsymbol{A} \boldsymbol{A}=\boldsymbol{A}$. We have already seen this in a).
The rank of a symmetric idempotent matrix equals its trace, which we found in a) to be $\operatorname{tr}(\boldsymbol{A})=2$.
Derive the distribution of $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$.
From the lecture it is known that if $\boldsymbol{X} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$ and \boldsymbol{A} is a symmetric, idempotent matrix with rank r then $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X} \sim \sigma^{2} \chi_{r}^{2}$.
We have that $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{I})$, and \boldsymbol{A} is symmetric and idempotent with rank 2 . We need to rewrite our expression so that we have a normally distributed random vector with mean zero and identity covariance matrix.
We subtract the mean and write

$$
(\boldsymbol{X}-\boldsymbol{\mu})^{T} \boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\mu})=\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}-\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{X}-\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu}=\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}
$$

since $\boldsymbol{A} \boldsymbol{\mu}=\mathbf{0}$. Define $\boldsymbol{Z}=\boldsymbol{X}-\boldsymbol{\mu}$, where $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$. We may thus use the above theorem, to find that $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{Z}^{T} \boldsymbol{A} \boldsymbol{Z} \sim \chi_{2}^{2}$, that is χ^{2} with 2 degrees of freedom.
Tabeller og formler i statistikk, page 5 , we see that 6 is the critical value in the χ^{2} distribution with 2 degrees of freedom and probability 0.05 (value in table is 5.991). The probability that the quadratic form is smaller than 6 is thus 95%.

