
TMA4267 - Linear Statistical Models
Solutions to Recommended Exercise 2 - V2017

12 January 2017

Problem 1: Simple calculations with the multivariate normal distribution

Let X =

 X1

X2

X3

 ∼ Np(µ,Σ) with µ =

 2
−3
1

 and Σ =

 1 1 1
1 3 2
1 2 2


a) X is multivariate normal, and thus each element of X is univariate normal.

Y = 3X1 − 2X2 + X3. Y must be univariate normally distributed since it is a linear
combination of univariate normal variables.

E(Y ) = 3µ1 − 2µ2 + µ3 = 3 · 2− 2 · (−3) + 1 = 13

Cov(Y ) =
[

3 −2 1
]  1 1 1

1 3 2
1 2 2

 3
−2
1

 = 9

b) Let a = (a1, a3)T , and define Z = X2−a1X1−a3X3. We want to find (a1, a3) so that X2 and
Z are independent. Since the vector (X2, Z)T is constructed from linear combinations of
multivariate normal variables, the vector is multivariate normal. For multivariate normal
data independence is achieved when Cov(X2, Z) = 0.

Cov(X2, Z) = Cov(X2, X2 − a1X1 − a3X3) = Cov(X2, X2)− a1 Cov(X2, X1)− a3 Cov(X2, X3)

Cov(X2, Z) = 3− a1 · 1− a3 · 2
0 = 3− a1 · 1− a3 · 2
a1 = 3− 2a3

Choosing a3 = 0 we get independence for a1 = 3, and with a3 = 1 we get independence
with a1 = 1, and so on.

c) Find the conditional distribution of X1 given that X2 = x2 and X3 = x3.

We need to partition X, the mean vector and covariance matrix of X as follows.

X =

[
XA

XB

]
and µ =

[
µA
µB

]
Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
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where the A-part contains X1 and the B-part contains X2 and X3. The formula for the
conditional mean µ∗ and covariance Σ∗ of the A-part given the B-part at (x2, x3)T is

µ∗ = µA + ΣABΣ−1
BB(xB − µB)

Σ∗ = ΣAA −ΣABΣ−1
BBΣBA

We thus need

Σ−1
BB =

[
3 2
2 2

]−1

=

[
1 −1
−1 1.5

]
ΣABΣ−1

BB =
[

0 0.5
]

Σ∗ = ΣAA −ΣABΣ−1
BBΣBA = 0.5

Then,

µ∗ = 2 + (0, 0.5)T (xB − µB) = 2 + 0 · (x2 + 3) + 0.5(x3 − 1) = 2 + 0.5(x3 − 1) = 0.5x3 + 1.5

Σ∗ = 0.5

Problem 2: From correlated to independent variables

a) To find out which variable has the strongest correlation with X3, we compute Corr(X1, X3)
and Corr(X2, X3) from the elements in Σ,

Corr(X1, X3) =
Cov(X1, X3)√

Var(X1) Var(X3)
=

1√
1 · 3

=

√
3

3
≈ 0.5774

Corr(X2, X3) =
Cov(X2, X3)√

Var(X2) Var(X3)
=
−1√
2 · 3

= −
√

6

6
≈ −0.4082.

This shows that X1 has the strongest correlation with X3 in absolute value. To determine
the distribution of Z = (X2 −X1, X3 −X1)T , observe that if we let

A =

[
−1 1 0
−1 0 1

]
then Z = AX. In other words, Z is a linear transformation of the trivariate normal vector
X, which means that Z is bivariate normal, since A is a 2 × 3 matrix. The expectation
and covariance matrix of Z are

E(Z) = Aµ =

[
−1 1 0
−1 0 1

] µ1

µ2

µ3

 =

[
µ2 − µ1

µ3 − µ1

]
=

[
6− 2
4− 2

]
=

[
4
2

]

and

Cov(Z) = AΣAT =

[
−1 1 0
−1 0 1

] 1 0 1
0 2 −1
1 −1 3

 −1 −1
1 0
0 1


=

[
−1 1 0
−1 0 1

] −1 0
2 −1
−2 2

 =

[
3 −1
−1 2

]
.
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b) Note that Y = (eT1 X, eT2 X)T = (eT1 , e
T
2 )TX = BX is a linear transformation of X where

B =

[
eT1
eT2

]
is a 2× 3 matrix. By the same argument as for Z in a), it then follows that Y is bivariate
normal. To show independence between Y1 and Y2, consider their covariance

Cov(Y1, Y2) = Cov(eT1 X, eT2 X) = E
(
(eT1 X− E(eT1 X))(eT2 X− E(eT2 X))T

)
= E(eT1 (X− µ)(X− µ)Te2) = eT1 E((X− µ)(X− µ)T )e2

= eT1 Σe2 = eT1 λe2 = λeT1 e2 = 0.

In the last line we use the orthogonality of the eigenvectors e1 and e2. Now, since Y1 and
Y2 are univariate normal, zero covariance implies independence.

By the proportion of variation in X which is explained by Y, we mean the ratio of the
total variance of Y to the total variance of X. The total variance of a vector is the sum of
the variances of its elements, which is equal to the trace of the covariance matrix. Write
the eigenvalue decomposition of Σ as

Σ = VDVT =
[

e1 e2 e3

]  λ1 0 0
0 λ2 0
0 0 λ3

 eT1
eT2
eT3

 .
The total variance of X is then

tr(Σ) = tr(VDVT ) = tr(VTVD) = tr(ID) = tr(D) =
3∑
i=1

λi,

where we use the fact that matrices in the trace of a product can be switched. We see
that the total variation is the sum of the eigenvalues of the covariance matrix. Next, we
turn to the covariance matrix of Y = BX, which is

Cov(Y) = BΣBT = BVDVTBT

=

[
eT1
eT2

] [
e1 e2 e3

]  λ1 0 0
0 λ2 0
0 0 λ3

 eT1
eT2
eT3

 [ e1 e2

]

=

[
1 0 0
0 1 0

] λ1 0 0
0 λ2 0
0 0 λ3

 1 0
0 1
0 0


=

[
1 0 0
0 1 0

] λ1 0
0 λ2

0 0

 =

[
λ1 0
0 λ2

]
,

so the total variance of Y is tr(Cov(Y)) = λ1 + λ2. We are now ready to compute the
proportion of variation in X explained by Y,

tr(Cov(Y))

tr(Cov(X))
=

tr(BΣBT )

tr(Σ)
=

λ1 + λ2

λ1 + λ2 + λ3
=

3.8794 + 1.6527

3.8794 + 1.6527 + 0.4679
= 0.922.

Approximately 92% of the variation in X is explained by Y.
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Problem 3: The bivariate normal distribution

a)

Σ−1 =
1

det(Σ)

[
σ2
Y −ρσXσY

−ρσXσY σ2
X

]
=

1

σ2
Xσ

2
Y (1− ρ2)

[
σ2
Y −ρσXσY

−ρσXσY σ2
X

]
(x− µ)TΣ−1(x− µ) =

1

σ2
Xσ

2
Y (1− ρ2)

[
x− µX y − µY

] [ σ2
Y −ρσXσY

−ρσXσY σ2
X

] [
x− µX
y − µY

]
=

1

σ2
Xσ

2
Y (1− ρ2)

[
x− µX y − µY

] [ σ2
Y (x− µX)− ρσXσY (y − µY )
−ρσXσY (x− µX) + σ2

X(y − µY )

]
=

1

σ2
Xσ

2
Y (1− ρ2)

[
σ2
Y (x− µX)2 − ρσXσY (y − µY )(x− µX)

−ρσXσY (x− µX)(y − µY ) + σ2
X(y − µY )2

]
=

1

(1− ρ2)
[(
x− µX
σX

)2 + (
y − µY
σY

)2 − 2ρ(
x− µX
σX

)(
y − µY
σY

)] = Q(x, y)

b) From a) we saw that Q(x, y) = (x− µ)TΣ−1(x− µ). Further, using the formla for det(Σ)
we find that

c =
1

2πσXσY
√

1− ρ2
=

1

2π det(Σ)1/2

This gives, directly,

f(x, y) = c exp(−1

2
Q(x, y))

=
1

2π det(Σ)1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

= f(x)

c)

f(x) = k

1

2π det(Σ)1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)) = k

exp(−1

2
(x− µ)TΣ−1(x− µ)) = k · 2π det(Σ)1/2

(x− µ)TΣ−1(x− µ) = −2 · log(k · 2π det(Σ)1/2)

(x− µ)TΣ−1(x− µ) = d2

So, we may find the contours by solving the first or the last equation. We will now work
with the last equation.

We recognize that this is a quadratic form. Further, Σ is a real, symmetric matrix. We
know from linear algebra that the eigenvectors of Σ and Σ−1 are the same, while the
eigenvalues are reciprocal.
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We put the eigenvalues of Σ on the diagonal of the matrix Λ = diag(λ1, λ2) and the
(normalized) (2×1) eigenvectors e1 and e2, which we put into the (2×2) matrix P = [e1e2],
such that Σ = PΛP T .

(x− µ)TΣ−1(x− µ) = d2

(x− µ)TPΛ−1P T (x− µ) = d2

1

λ1
(x− µ)Te1e

T
1 (x− µ) +

1

λ2
(x− µ)Te2e

T
2 (x− µ) = d2

Let w1 = (x− µ)Te1 and w2 = (x− µ)Te2.

1

λ1
w2

1 +
1

λ2
w2

2 = d2

1

λ1d2
w2

1 +
1

λ2d2
w2

2 = 1

From the latter equation we see that this is an ellipse with axis in the direction of the
eigenvectors of Σ, with halflengths

√
λ1d and

√
λ2d. The center of the ellipse is at µ.

d) Let σX = σY = σ, and we have

Σ =

[
σ2 ρσ2

ρσ2 σ2

]

We find the eigenvalues of Σ by solving det(Σ− λI) = 0 to be

λ1 = σ2(1 + ρ)

λ2 = σ2(1− ρ)

and the corresponding normalized eigenvalues by solving Σe = λe, to be

e1 =
1√
2

[
1
1

]
e2 =

1√
2

[
1
−1

]

Observe that these two directions do not depend on ρ, and will always give axes which
form 45◦ angles with the horizontal axis.

If ρ > 0 the major axis (the axis with the longest halflength) is in the direction e1, and if
ρ < 0 the major axis is in the direction e2. If ρ = 0 the ellipse becomes a circle (both axes
equal in length).
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e) If σX = σY the axes of the ellipse are always as explained in d), and the effect of an increasing
|ρ| is that the ellipse becomes narrower.

If σX 6= σY then the direction of the ellipse axes will depend on all of (σX , σY , ρ). But
keeping σX and σY fixed will also result in narrower ellipses for increasing |ρ|.
Run the R-commands below (also available in an .R file on the course website).

par(mfrow=c(2,2),pty="m") # fit 4 plots in a 2 by 2 manner
# first
plot(ellipse(0.5, scale=c(1,1),centre=c(0,0)),type="l")
abline(0,1); abline(0,-1) #adding the ellipse axes
title("SigmaX=SigmaY=1, rho=0.5")
# second
plot(ellipse(-0.3, scale=c(1,1),centre=c(0,0)),type="l")
abline(0,1); abline(0,-1)
title("SigmaX=SigmaY=1, rho=-0.5")

# third
sigma <- matrix(c(1,0.5*1*2,0.5*1*2,2^2),ncol=2)
res <- eigen(sigma)
plot(ellipse(sigma,centre=c(0,0)),type="l")
title("SigmaX=1,SigmaY=2, rho=0.5")

#forth
sigma <- matrix(c(1,-0.9*1*2,-0.9*1*2,2^2),ncol=2)
plot(ellipse(sigma,centre=c(0,0)),type="l")
title("SigmaX=1,SigmaY=2, rho=-0.9")

# optional -- add axes
# want the axes to be perpendicular - then need to make plotting region square
# AND also use equal range for x and y - which must be set separately
par(mfrow=c(1,1),pty="s") # one graph and square region
muvec <- c(0,0)
eig <- eigen(sigma) # eigenvalues and vectors
const <- sqrt(qchisq(0.95,2)) # choose a constant so that 95% probability of being inside
# (more the distribution of this quadratic from later)
eobj <- ellipse(sigma,centre=muvec) # generate points on the ellipse
apply(eobj,2,range) # check which of x or y have the largest range,
#choose the one with the largest for the plot below,
#here this was y, and thus range(eboj[,2])
plot(eobj,xlim=range(eobj[,2]),ylim=range(eobj[,2]),type="l")
#plot(eobj,type="l") would give different scales for x and y and
#not make this pretty! try to see
lambda1 <- eig$values[1] # first eigenvalue
e1 <- eig$vectors[,1] # first eigenvector
pkt1R <- muvec+const*sqrt(lambda1)*e1 # point on ellipse major axis
points(pkt1R[1],pkt1R[2],col=3,pch=20) # add the point to plot, green
pkt1L <- muvec-const*sqrt(lambda1)*e1 # point on ellipse
points(pkt1L[1],pkt1L[2],col=3,pch=20) # add point to plot, green
lines(c(pkt1R[1],pkt1L[1]),c(pkt1R[2],pkt1L[2]),lwd=2,col=3) # add line between points in green
# do the same with the minor axes, now in blue
lambda2 <- eig$values[2]
e2 <- eig$vectors[,2]
pkt2R <- muvec+const*sqrt(lambda2)*e2
points(pkt2R[1],pkt2R[2],col=4,pch=20)
pkt2L <- muvec-const*sqrt(lambda2)*e2
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points(pkt2L[1],pkt2L[2],col=4,pch=20)
lines(c(pkt2R[1],pkt2L[1]),c(pkt2R[2],pkt2L[2]),lwd=2,col=4)

Problem 4: Normal marginals, but not multivariate normal?

In b) the data looks normal marginally, in c) the data does not look multivariate normal since
we don’t see elliptic shapes.

print("a) Load data")
ccdata <- dget("https://www.math.ntnu.no/emner/TMA4267/2017v/ccdata.dd")
dim(ccdata)

print("b) Marginal plots")

par(mfcol=c(2,3))
apply(ccdata,2,hist)
apply(ccdata,2,boxplot)
apply(ccdata,2,qqnorm)

# qqplot with lines more in detail...

par(mfrow=c(1,2))
qqnorm(ccdata[,1],main=""); qqline(ccdata[,1],col=2); title(main="Normal QQ
plot var1", cex.main=.8)
qqnorm(ccdata[,2],main=""); qqline(ccdata[,2],col=2); title(main="Normal QQ
plot var2", cex.main=.8)

print("c) Simultane plots")

library(ellipse)
par(mfrow=c(1,1))
plot(ccdata,main="Scatter plot",cex.main=.8,xlab="x",ylab="y")
lines(ellipse(matrix(c(1,0.8,0.8,1),2,2)),lwd=2,col=2)
sink()

Problem 5: The chi-square, t and F-distribution

a) Let V ∼ χ2
p and W ∼ χ2

q , where V and W are independent. The joint distribution is then
the product of the two marginal distributions.

fV,W (u, v) =
1

Γ(p/2)2p/2
v(p/2)−1e−v/2 · 1

Γ(q/2)2q/2
w(q/2)−1e−w/2

Let then F = V/p
W/q , and G = W , and use the multivariate transformation formula to find
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the joint pdf of F and G. We start with the inverse functions and the Jacobian.

V =
p

q
FG

W = G

J = det

[ p
q g

p
gf

0 1

]
=
p

q
g

fF,G(f, g) = fV,W (
p

q
fg, g) · p

q
g

=
1

Γ(p/2)Γ(q/2)2(p+q)/2
(
p

q
fg)(p/2)−1gq/2−1e

−( p
q
f+1)g/2 p

q
g

=
1

Γ(p/2)Γ(q/2)2(p+q)/2
(
p

q
)p/2fp/2−1g(p+q)/2−1e

−( p
q
f+1)g/2

Then, find the marginal distribution of F from this joint distibution.

fF (f) =
1

Γ(p/2)Γ(q/2)2(p+q)/2
(
p

q
)p/2fp/2−1

∫ ∞
0

g(p+q)/2−1e
−( p

q
f+1)g/2

dg

u = (
p

q
f + 1)g and du = (

p

q
f + 1)dg

fF (f) =
1

Γ(p/2)Γ(q/2)2(p+q)/2
(
p

q
)p/2fp/2−1

∫ ∞
0

u(p+q)/2−1

(pqf + 1)(p+q)/2−1
e−u/2

du
p
qf + 1

=
(pq )p/2fp/2−1

Γ(p/2)Γ(q/2)2(p+q)/2(pqf + 1)(p+q)/2

∫ ∞
0

u(p+q)/2−1e−u/2du

=
2(p+q)/2Γ(p+q2 )(pq )p/2fp/2−1

2(p+q)/2Γ(p/2)Γ(q/2)
(
p

q
f + 1)(p+q)/2

∫ ∞
0

1

2(p+q)/2Γ(p+q2 )
u(p+q)/2−1e−u/2du

=
Γ(p+q2 )(pq )p/2

Γ(p/2)Γ(q/2)

fp/2−1

(pqf + 1)(p+q)/2

b) Let U ∼ N(0, 1) and V ∼ χ2
p, and U and V are independent. Find the pdf of the random

variable T = U√
V/p

.

First, the joint pdf of U and V , by multiplying the marginal pdfs.

fU,V (u, v) =
1√
2π
e−u

2/2 · 1

Γ(p/2)2p/2
v(p/2)−1e−v/2

Now , the inverse of the transformation t = u√
v/p

and w = v is u = t
√
w/p and v = w,

with Jacobian
√
w/p. This gives joint distribution fT,W (t, w):

fT,W (t, w) = fU,V (t(
√
w/p), w) ·

√
w/p
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The marginal pdf of T is

fT (t) =

∫ ∞
0

fU,V (t
√
w/p,w) ·

√
w/p dw

=
1

(2π)1/2Γ(p2)2p/2

∫ ∞
0

e−(1/2)t2w/pwp/2−1e−w/2
(
w

p

)1/2

dw

=
1

(2π)1/2Γ(p2)2p/2p1/2

∫ ∞
0

e−(1/2)(1+t2/p)ww(p+1)/2−1dw

The trick now it to recognice that the integrand is the pdf of the gamma distribution
1

Γ(α)βαx
α−1e−x/β , with parameters α = (p+ 1)/2 and β = 2/(1 + t2/p), so the integral is

1.

fT (t) =
Γ(p+1

2 )( 2
1+t2/p

)(p+1)/2

(2π)1/2Γ(p2)2p/2p1/2

∫ ∞
0

1

Γ(p+1
2 )( 2

1+t2/p
)(p+1)/2

e−1/(1+t2/p)w(p+1)/2−1dw

=
Γ(p+1

2 )

Γ(p2)

1

(pπ)1/2

1

(1 + t2/p)(p+1)/2

which is the T pdf.

c) Let T ∼ tq (t-distribution with q degrees of freedom). Then show that T 2 ∼ F1,q.

T 2 =

(
U√
V/p

)2

=
U2/1

V/p

We see that the numerator is χ2
1 and the denominator is χ2

p, and from 1d we see that T 2

is Fisher with 1 and p degrees of freedom.

d)
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Problem 6: N, Chi-square, t and F by simulation - in R

B <- 10000
n <- 10

# a
x <- rnorm(B,0,1)
y <- x^2
range(y)
hist(y,nclass=100,prob=TRUE)
dchisq1 <- function(x) return(dchisq(x,df=1))
curve(dchisq1,min(y),max(y),add=TRUE,col=2)
# curve only takes a function with ONE argument, needed to make a df=1 version of dchisq
abline(v=qchisq(0.1,1),col=3)
abline(v=qchisq(0.9,1),col=3)

# b
x <- rnorm(B)
y <- rchisq(B,df=n-1)
t <- x/sqrt(y/(n-1))
hist(t,nclass=50,prob=TRUE)
dt9 <- function(x) return(dt(x,df=9))
curve(dt9,min(t),max(t),add=TRUE,col=2)
# alternative to curve - plot two vectors
xvec <- seq(min(t),max(t),length=100)
yvec <- dt(xvec,df=n-1)
lines(xvec,yvec,col=4)
abline(v=qt(0.15,n-1),col=5)
abline(v=qt(0.85,n-1),col=5)
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# c
f <- t^2
hist(f,nclass=50,prob=TRUE)
xvec <- seq(min(f),max(f),length=100)
yvec <- df(xvec,1,n-1)
lines(xvec,yvec,col=2)
abline(v=qf(0.05,1,n-1),col=5)
abline(v=qf(0.95,1,n-1),col=5)

# d more F
n1 <- 5
n2 <- 40
u <- rchisq(B,df=n1)
v <- rchisq(B,df=n2)
f <- u*n2/(v*n1)
hist(f,nclass=50,prob=TRUE)
xvec <- seq(min(f),max(f),length=100)
yvec <- df(xvec,n1,n2)
lines(xvec,yvec,col=2)
abline(v=qf(0.05,n1,n2),col=3)
abline(v=qf(0.95,n1,n2),col=3)

Problem 7: Linear combinations and quadratic forms

a) Find the expected value of XTAX.
We may use the trace-formula:

E(XTAX) = tr(AΣ) + µTAµ = trA+ µT0 = 3 · 2

3
= 2

b) A is clearly symmetric, which we can see by AT = A. A projection matrix is an idempotent
matrix, that is, AA = A. We have already seen this in a).

The rank of a symmetric idempotent matrix equals its trace, which we found in a) to be
tr(A) = 2.

Derive the distribution of XTAX.
From the lecture it is known that if X ∼ N(0, σ2I) and A is a symmetric, idempotent
matrix with rank r then XTAX ∼ σ2χ2

r .

We have that X ∼ N(µ, I), and A is symmetric and idempotent with rank 2. We need to
rewrite our expression so that we have a normally distributed random vector with mean
zero and identity covariance matrix.

We subtract the mean and write

(X − µ)TA(X − µ) = XTAX − µTAX −XTAµ+ µTAµ = XTAX

since Aµ = 0. Define Z = X − µ, where Z ∼ N(0, I). We may thus use the above
theorem, to find that XTAX = ZTAZ ∼ χ2

2, that is χ2 with 2 degrees of freedom.

Tabeller og formler i statistikk, page 5, we see that 6 is the critical value in the χ2-
distribution with 2 degrees of freedom and probability 0.05 (value in table is 5.991). The
probability that the quadratic form is smaller than 6 is thus 95%.
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