
TMA4267 Linear Statistical Models
Part 2: Linear regression

Recommended exercise 3 - V2017

February 7, 2017

Keywords: simple linear regression, multiple linear regression, residual plots, normal plots,
requirements for linear regression, hat matrix, interpretation, weighted least squares.

• Problem 1 is an introduction to linear models - with the simple linear regression - in R
using matrix algebra and also the built in R-function lm. We discuss the requirements of
a linear model and study residual plots.

• Problem 2 takes this a bit further, moving on to multiple regressors, but also with focus
on interpretation of plots and regression output.

• Problem 3 looks at important results for performing inference on regression parameters.
Important ingredients are two symmetric and idempotent matrices; H hat matrix (pro-
jecting onto the column space of the design matrixX) and the I−H matrix used to define
residuals (projecting onto the space orthogonal to the column space of the design matrix
X). And, then uses these matrices to show that estimators for regression parameters are
independent from estimator for variance of error terms - identical to what was done for
the mean and standard deviation in Compulsory Exercise 1, Problem 2.

• Problem 4 shows how the classical regression problem with uncorrelated errors with equal
variances can be relaxed with the aid of weighted least squares. Only the square root
matrix and results from Part 1 on multivariate normal distribution is needed.

Problem 1: Simple linear regression

James Forbes measured the atmospheric pressure and boiling point of water at 17 locations in
the Alps. The dataset forbes is available in the library MASS and installed (only needed once)
and loaded by

install.packages("MASS") # then select the nearest CRAN mirror
library(MASS)

a) Getting to know the data set. Check out the forbes data set (which is a data frame).

help(forbes)
mode(forbes)
names(forbes)
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We will fit a simple linear model with boiling point as response and atmospheric pressure
as the covariate. Let the boiling point (in degrees Celsius, converted from Fahrenheit) be
the response variable and the pressure (in bar, converted from inches of mercury) be the
explanatory variable, and construct the vector of reponses Y and the design matrix X.

n = length(forbes$bp)
Y = matrix((forbes$bp-32)*5/9,ncol=1)
X = cbind(rep(1,n),forbes$pres*0.033863882)

What is the rank of X?

b) Plot pressure vs boiling point.

plot(X[,2],Y,pch=20)

Does it look like there is a linear relationship between boiling point and pressure?

c) Calculate β̂ = (XTX)−1XTY .

How would you explain to a layperson what these two numbers mean?

d) Plot the pressure, X[, 2], against the raw residuals ε̂ = Y − Ŷ , where Ŷ = Xβ̂. (We will
look more into the topic of various types of residuals later in the course.) Comment on
what you see.

e) Now we have looked at plots of covariate vs response and covariate vs residual. We may use
these two plots to assess if the 4 assumptions (discussed in the lectures) for the classical
linear model are fulfilled:

• Is the linear model appropriate?
• Are the error variances homoscedastic?
• Are the error terms uncorrelated?
• Does an additive model seem appropriate?

In addition we may also want to investigate if the errors are normally distributed. How
can we do that? Comment on your findings.

In R we can use lm to fit linear models.

lm(formula,data)

formula a symbolic description of the model to be fit. Note that the intercept term is included
by default in the regression model, if you want to exclude it use the command lm(y~x-1)
where x is the covariate you want to include

data name of the data frame (optional)

f) Fit a linear model with lm.

newds=data.frame(bp=(forbes$bp-32)*5/9,pres=forbes$pres*0.033863882)
lm1 = lm(bp~pres,data=newds)
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The results:

summary(lm1)
confint(lm1)

Plot residuals

par(mfrow=c(1,2)) # change number of subplots in a window
plot(lm1,which=c(1,2))

Check that you get the same results as in b)-e). Observe that summary gives many
numbers – which we will look at the reasoning behind in the course.

Problem 2: Happiness

(Modified version of Exam TMA4255 V2011, Problem 4: TMA4255 Applied statistics is roughly
speaking a non-mathematical version of TMA4267 for students at other programs than Indus-
trial mathematics, and uses MINITAB instead of R and notation with sums for the regression
instead of matrix notation. This version of the exam is shortened and adapted to R, and is
suitable as an exam question in TMA4267.)

We will look at data collected from 39 individuals in a Master of Business Administration class
for employed students at the University of Chicago Graduate School of Business. The reason
for collecting the data was to test the hypothesis that love and work are the important factors
in determining an individual’s happiness. As alternatives, the variables money and sex (sexual
activity) were included in the study. The five variables were codes as follows.

• y, happiness. Happiness was measured on a 10-point scale, with 1 representing a suicidal
state, 5 representing a feeling of «just muddling along», and 10 representing a euphoric
state.

• x1, money. Money was measured by annual family income in thousands of dollars.

• x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a satisfactory level of
sexual activity.

• x3, love. Love was measured on a 3-point scale, with 1 representing loneliness and iso-
lation, 2 representing a set of secure relationships, and 3 representing a deep feeling of
belonging and caring in the context of some family or community.

• x4, work. Work was measured on a 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5 indicating that the job is
enjoyable.

Boxplots and scatter plots are found on the next pages, and the data set is available from library
"faraway" as data set "happy" (see the associated R-code at the course www-page).

A multiple linear regression was fitted to the data with y as response and x1, x2, x3 and x4 as
explanatory variables. Let (yi, xi1, xi2, xi3, xi4) denote the observations from individual i, where
i = 1, . . . , 39. Define the full model (model A):

Model A: yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi
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where the εi’s are i.i.d. N(0, σ2) for i = 1, . . . , 39.

Printout from R and plots of (studentized) residuals are found on the next pages. Three of the
numerical values in the R printout have been replaced by question marks.
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> fitA <- lm(happy~.,data=happy)
> summary(fitA)

Call:
lm(formula = happy ~ ., data = happy)
Residuals:

Min 1Q Median 3Q Max
-2.7186 -0.5779 -0.1172 0.6340 2.0651
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072081 0.852543 -0.085 0.9331
money 0.009578 0.005213 1.837 0.0749 .
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279 0.295451 6.496 1.97e-07 ***
work 0.476079 0.199389 ? ?
---
Residual standard error: 1.058 on 34 degrees of freedom
Multiple R-squared: 0.7102,Adjusted R-squared: 0.6761
F-statistic: 20.83 on 4 and 34 DF, p-value: ?

a) What is the estimated regression coefficient for x4, work? How would you explain this
number to the common man (that does not know linear regression)? Is the effect of x4, work,
significant in this model? You decide yourself which significance level you choose.

Is the regression found to be significant? You decide yourself which significance level you choose.
Comment briefly on the residual plots.

We now want to compare the full regression model (model A), with a reduced model (called
model B) where x1 (money) and x2 (sex) are excluded from the model:

Model B: yi = β0 + β3xi3 + β4xi4 + εi

The results from fitting model B are as follows.

> fitB<- lm(happy~work+love,data=happy)
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> summary(fitB)
Call:
lm(formula = happy ~ work + love, data = happy)
Residuals:

Min 1Q Median 3Q Max
-3.1454 -0.6365 -0.1259 0.8333 1.8741
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2057 0.7757 0.265 0.79241
work 0.5106 0.1874 2.725 0.00987 **
love 1.9592 0.2954 6.633 9.99e-08 ***
---
Residual standard error: 1.08 on 36 degrees of freedom
Multiple R-squared: 0.6808,Adjusted R-squared: 0.6631
F-statistic: 38.39 on 2 and 36 DF, p-value: 1.182e-09

b) The estimate β̂3 (love) is 1.919 for model A and 1.959 for model B. Explain why these two
estimates differ.

Problem 3: Results on β̂ and SSE in multiple linear regression

(Exam K2014, Problem 4)

The classical multiple linear regression model can be written in matrix notation as

Y =Xβ + ε,

where Y is a n-dimensional random column vector,X is a fixed design matrix with n rows and p
columns, β is an unknown p-dimensional vector of regression coefficients and ε is a n-dimensional
vector of random errors.

Assume that n > p and that X has rank p.

Define the matrix H =X(XTX)−1XT .

a) What type of matrix is H? Justify your answer.
Find the rank of H.
How would you graphically interpret the vector HY ?

Answer the same three questions for the matrix I −H, using the findings you already
have for H. Here I is the n× n identity matrix.

Further, assume that the vector of random errors ε is multivariate normal with mean E(ε) = 0
and covariance matrix Cov(ε) = σ2I, where I is the n× n identity matrix.

b) Let SSE = Y T (I −H)Y . Derive the distribution of SSE.
Use this to suggest an unbiased estimator for σ2, and call the estimator σ̂2.
Find the variance of σ̂2.

Define two constant matrices A = (XTX)−1XT and B = (I −H).
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c) What are the dimensions of the matrices A and B?
Show that AY and BY are independent random vectors.
Use this to prove that the least squares estimator β̂ and SSE are independent random
variables. What is the use of this result in multiple linear regression?

Problem 4: Weighted least squares

The classical multiple linear regression (MLR) model can be written in matrix notation as

Y =Xβ + ε,

where Y is an n-dimensional random column vector, X is a fixed design matrix with n rows
and p columns, β is an unknown p-dimensional vector of regression coefficients and ε is an
n-dimensional column vector of random errors.

Further, in the classical multiple linear model we generally assume that the vector of random
errors ε is multivariate normal with mean E(ε) = 0 and covariance matrix Cov(ε) = σ2I, where
I is the n× n identity matrix.

We will now study slightly different situation. Assume that ε is multivariate normal with mean
E(ε) = 0 and covariance matrix Cov(ε) = σ2V , where V is a known positive definite n × n
matrix. The unknown parameters in this model are the regression coefficients β and the variance
parameter σ2.

a) Write down and explain the definition of the inverse square root matrix V − 1
2 .

Use the inverse square root matrix to define three new quantities

Y ∗ = V − 1
2Y ,

X∗ = V − 1
2X,

ε∗ = V − 1
2ε.

Use these new quantities together with the method of least squares to derive an unbiased esti-
mator for β, in terms of X, V and Y .

Show that the estimator is unbiased.

Is the ordinary least square estimator β̂ = (XTX)−1XTY unbiased in this model? Justify your
answer. Comment on your findings.

We go back to the classical MLR with identically normally distributed random errors, Cov(ε) =
σ2I, but now look at misspecification of E(Y ). Suppose that the true model is

Y =X1β1 +X2β2 + ε,

ε ∼ Nn(0, σ
2I),

(1)

where we have partitioned the design matrix into two parts X1 (n × p1) and X2 (n × p2) and
β1 and β2 are unknown p1- and p2-dimensional vectors of regression coefficients (p = p1 + p2).

Assume that we ignore the covariates in X2 and fit the model

Y =X1α1 + δ,

δ ∼ Nn(0, τ
2I).

(2)
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Here α1 is used in place of β1 to emphasize that α1 (and estimates thereof) will in general be
different from β1 in the true model.

The least squares estimator for model (2) is α̂1 = (XT
1X1)

−1XT
1 Y .

b) Find the mean and covariance matrix of α̂1 under the true model (1).

Under which conditions is α̂1 an unbiased estimator of β1? Justify your answer.
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