
TMA4267 Linear Statistical Models
Part 2: Linear regresssion

Solutions to recommended exercise 3 - V2017

February 7, 2017

Problem 1: Simple linear regression

See the file RecEx31.R, accessible from the course website, for more details.

a) The forbes data set consists of n = 17 observations, and we are fitting a simple linear
regression model which includes an intercept, so the design matrix X has 17 rows and 2
columns. Since the two columns are linearly independent, the rank of X is 2. We can
confirm this using R, by calling the rankMatrix() function from the Matrix package.

library(Matrix) # Package needs to be installed, if it isn’t already
rankMatrix(X)

b) The boiling point increases with increasing pressure. When the pressure is around 0.7 bar,
the boiling point is approximately 90◦ C, and when the pressure is around 1 bar, the boiling
point is approximately 100◦ C. The relationship between pressure and boiling point does
look linear.

c) The estimated regression parameters are

β̂ =

[
β̂0
β̂1

]
≈

[
68.5
31.2

]
,

and the fitted regression function has the expression

ŷ = β̂0 + β̂1x

where x is pressure, and ŷ is the expected boiling point in that pressure. From this
expression it is clear that β̂0 is the boiling point the model would predict for x = 0 bar,
i.e. in a vacuum, and β̂1 is the estimated rate of change of the boiling point with pressure;
If the pressure increases by 1 bar, we expect the boiling point to increase by β̂1 degrees
Celsius.

d) Two things are apparent when looking at the plot of the raw residuals ε̂ = Y − Ŷ versus the
pressure:

• The plot has an inverted U-shape. Going from left to right, the residuals start off
negative, then gradually become positive, before decreasing and becoming negative
again.
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• With the exception of one data point (observation number 12), the residuals all lie
inside the interval (−0.3, 0.3), and there is a roughly even split between positive and
negative residuals.

e) • Is the linear model appropriate?
Yes. Although there may be a systematic relationship between the residuals and
the covariate, it is clear that the relationship between the response and covariate is
predominantly linear, and that the fitted model does a satisfactory job of representing
that relationship.

• Are the error variances homoscedastic?
Maybe. It’s a little hard to tell, because of the remaining trend in the residuals. It
looks like the residual variance may vary somewhat with pressure, but even if this is
the case, there is only weak heteroscedasticity, and no serious violation of this model
assumption.

• Are the error terms uncorrelated?
No. The plot of residuals vs. pressure plainly shows that observations with similar
pressures, have similar residuals. This is systematic variation not accounted for by
the fitted model. If we want to improve the fit, we might try to use the logarithm of
the pressure as a covariate, instead of the pressure.

• Does an additive model seem appropriate?
Yes. The class of additive models subsumes linear models, and we have seen that a
linear model is able to achieve a reasonably good fit in this case. There is nothing
about this data set, or the analysis done so far, suggesting that a non-additive model
would be preferable.

Normality of residuals can be ascertained by making a normal quantile-quantile plot of ε̂,
and comparing it to a straight line.

qqnorm(eps)

f) The parameter estimates, fitted response values and raw residuals all match the results from
b) and c). The residual plots (residuals vs. pressure and normal quantile-quantile) look
the same as the ones in d) and e).

Problem 2: Happiness

a) The regression coefficient for work is 0.4761. Assume that we look at two individuals that
have scored the same values for sex, love and money. Further assume that one of the individuals
has reported work to have value 1 (seeking other employment) and the other has 2 (inbetween
seeking other employment and OK). Then, on average, we would expect that the happiness for
the last individual is 0.4761 higher than for the first individual. Keeping the other variables
fized, the effect of work on happiness is that happiness increases on average with 0.4761 units
for every one unit increase in the work variable.

We can perform a t-test to see if work is significant in the full model (given that the other
variables are present). Test statistic:

t =
β̂4

V̂ar(β̂4)
=

0.4761

0.1994
= 2.39
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which under the null hypothesis that β4 = 0 (vs. the two-sided alternative that β4 6= 0) is
referred to a t-distribution with n − k − 1 = 34 degrees of freedom (n = 39 is the number of
observations and k = 4 is the number of explanatory variables, and 1 for the intercept). We
use significance level 0.05 and the critical value at level 0.025 (since two-sided test) in the t34
distribution is approximately 2.03 (found for 35 in the table), which means that we reject the
null hypothesis.

To test if the regression is significant, that is, not all coefficients are zero, we look at the
F = 20.83 value. Using a significance level of 0.05 this is referred to a critical value for the
Fisher distribution with 4 and 34 degrees of freedom: approximately 2.64 (with 35 from the
table). This means that the regression is highly significant.

Residual plots: We see no clear trend in the plot of residuals vs. fitted values, which is good.
The quantile-quantile plot shows no clear deviation from normality, but at least one outlier is
identified.

b) In a multiple regression the least squares estimates for the regression coefficients are found
by solving a set of equations. When the explanatory variables are not orthogonally selected the
value for one explanatory variable will influence the estimate of the regression coefficient for
the other. In a design of experiments where explanatory variables are chosen so that they are
independent of each other (orthogonal columns) the normal equations will become uncoupled
and the regression coefficient estimate for the explanatory variables will not influence each other.

Problem 3: Results on β̂ and SSE in multiple linear regression

(Exam K2014, Problem 4) Define the matrix H =X(XTX)−1XT .

a) H is a orthogonal projection matrix, since it is symmetric and idempotent, HT = H and
HH = H. For a symmetric and idempotent matrix the rank is equal to the trace. The
rank of H is p. See proof below.

H =X(XTX)−1XT

HT = (X(XTX)−1XT )T =X(XTX)−1XT =H

H2 = (X(XTX)−1XT )X(XTX)−1XT =X(XTX)−1XT =H

tr(H) = tr(X(XTX)−1XT ) = tr(XTX(XTX)−1) = tr(Ip×p) = p

Graphically: The vector HY is a projection of the vector Y onto the space spanned by
the columns of X.

The matrix I −H is also symmetric and idempotent, and thus a symmetric projection
matrix. The rank of I −H is n− p. See proof below.

(I −H)T = I −HT = I −H
(I −H)2 = (I −H)(I −H) = I − 2H +H2 = I −H
tr(I −H) = tr(In×n)− tr(H) = n− p
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Graphically: The vector (I −H)Y is a projection of the vector Y onto the space orthogonal to
the space spanned by the columns of X.

b) Let SSE = Y T (I −H)Y . Derive the distribution of SSE.

One of the key theorems of this course (point 2 of Theorem B.8 on p. 651 of Fahrmeir et
al.) states that ifD is a symmetric and idempotent matrix with rank r and Z ∼ Nn(0, I),
then

ZTDZ ∼ χ2
r ,

which means that if Z ∼ Nn(0, σ
2I), then

ZTDZ

σ2
∼ χ2

r .

In this case we have D = (I − H) symmetric and idempotent with rank n − p, and
Y ∼ Nn(Xβ, σ

2I). To use the theorem we need to look at Y ∗ = Y −Xβ ∼ Nn(0, σ
2I).

(I −H)Y ∗ = (I −H)(Y −Xβ)
= (I −H)Y − (I −H)Xβ = (I −H)Y − (Xβ −HXβ) =
= (I −H)Y − (Xβ −Xβ) = (I −H)Y

since HX = X(XTX)−1XTX = X. Projecting X onto the space spanned by the
columns of X gives X.

Thus, we have shown that Y T (I −H)Y = Y ∗T (I −H)Y ∗, and we may use the theorem
to conclude that SSE/σ2 ∼ χ2

n−p.

The mean of a χ2-distributed variable equals the number of degrees of freedom, so

E

(
SSE
σ2

)
= n− p

E (SSE) = (n− p)σ2

E

(
SSE
n− p

)
= σ2

Thus, σ̂2 = SSE
n−p will be an unbiased estimator for σ2. The variance of a χ2-distributed

random variable is twice the number of degrees of freedom, so the variance of σ̂2 is

Var(σ̂2) = Var

(
SSE
n− p

)
=

1

(n− p)2
Var(SSE)

=
1

(n− p)2
Var

(
σ2

SSE
σ2

)
=

σ4

(n− p)2
Var

(
SSE
σ2

)
=

1

(n− p)2
2(n− p)σ4 = 2σ4

n− p
.

c) We consider the two matrices

A = (XTX)−1XT and B = I −H = I −X(XTX)−1XT
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and the corresponding transformed random variables Z1 = AY and Z2 = BY . Here A
is a p × n matrix (since X is n × p), and B is the same dimension as H, that is, n × n,
and is symmetric and idempotent (found previously).

Since Y ∼ Nn(Xβ, σ
2I) thenAY andBY are independent random variables if σ2ABT =

0.

ABT = (XTX)−1XT (I −X(XTX)−1XT )

= (XTX)−1XT − (XTX)−1XTX(XTX)−1XT

= (XTX)−1XT − (XTX)−1XT = 0

We have proven that Z1 = AY and Z2 = BY are independent random variables. Then
it follows that Z1 and ZT

2Z2 are also independent random variables. Since Z1 = β̂
and ZT

2Z2 = Y TBY = SSE, we have proven that β̂ and SSE are independent random
variables.

Application to multiple linear regression: The independence of β̂ and SSE is used in the
construction of a t-test for hypotheses about β.

Problem 4: Weighted linear regression

(Exam V2014 Problem 4)

a) Let (λi, ei), i = 1, ..., p be the eigenvalues and eigenvectors of V . Let P be the (p × p)
matrix of eigenvectors,

P = [e1e2 · · · ep]

and Λ be a diagonal matrix with the eigenvalues λ1, λ1, ..., λp on the diagonal. Then V − 1
2 is

defined as

V − 1
2 = PΛ− 1

2P T

Observe that V − 1
2 is symmetric, and that V − 1

2V − 1
2 = V −1.

Y =Xβ + ε

V − 1
2Y = V − 1

2Xβ + V − 1
2ε

Y ∗ =X∗β + ε∗

where ε∗ ∼ N(0, σ2I). To see this calculate Cov(ε∗) = V − 1
2 Cov(ε)V − 1

2 = V − 1
2σ2V V − 1

2 =
σ2I.

We have now the ordinary least squares problem in the new quantities Y ∗, X∗ and ε∗, and
know that the least squares solution is

β̃ = (X∗TX∗)−1X∗TY ∗

= (XTV − 1
2V − 1

2X)−1XTV − 1
2V − 1

2Y

= (XTV −1X)−1XTV −1Y
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Mean:

E(β̃) = E((X∗TX∗)−1X∗TY ∗) = (X∗TX∗)−1X∗T E(Y ∗)

= (X∗TX∗)−1X∗TX∗β = β

since E(Y ∗) =X∗β.

The ordinary least square estimator β̂ = (XTX)−1XTY is unbiased in this model since the
mean of Y doesn’t depend on V .

E(β̂) = E((XTX)−1XTY ) = (XTX)−1XT E(Y )

= (XTX)−1XTXβ = β

If we just look at unbiasedness it may appear that the two estimators are equally good. However,
since β̃ is the least squares estimator (from looking at transformed quantities) we may conclude
using the Gauss-Markov Theorem (p 181 in Fahrmeir et al (2013)) that β̃ has the minimum
variance in each component among all the unbiased estimators, BLUE. If we had calculated the
covariance matrices of β̃ and β̂, we should see this. Thus, β̃ should be preferred. Another issue
is the fact that V seldom is known, and need to be estimated. The concept of BLUE is handled
in detail in our Statistical Inference course.

b) Find the expected value and covariance matrix of α̂1 under the true model

E(α̂1) = E((XT
1X1)

−1XT
1 Y )

= (XT
1X1)

−1XT
1 E(Y ) == (XT

1X1)
−1XT

1 (X1β1 +X2β2)

= β1 + (XT
1X1)

−1XT
1X2β2

Thus, α̂1 is a biased estimator for β1.

Cov(α̂1) = Cov((XT
1X1)

−1XT
1 Y )

= (XT
1X1)

−1XT
1 Cov(Y )X1(X

T
1X1)

−1

= (XT
1X1)

−1XT
1 σ

2IX1(X
T
1X1)

−1

= σ2(XT
1X1)

−1

Observe, Cov(α̂1) is not dependent on β2.

We see that the bias term for α̂1 is (XT
1X1)

−1XT
1X2β2. When is the bias term equal to zero?

When β2 = 0 there is no bias (but that is not so exciting). The bias is also zero whenXT
1X2 = 0.

This will happen if the two matrices are orthogonal. In Part 4: DOE this will be useful to know.
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