
TMA4267 Linear Statistical Models
Part 2: Linear regresssion

Solutions to recommended exercise 4 - V2017

February 7, 2017

May 16, 2017: corrected transposes in Problem 3.

Problem 1: Pendulum

(Exam TMA4267 V2015, Problem 1)

a) The fitted regression model is T̂ = 0.44 + 0.0197L + 0.045 θ + 0.023m, where T is period
(in s), L length (cm), θ amplitude (radians) and m mass (kg).

The model explains 98% of the variation of the data. The hypothesis that all regression coeffi-
cients are zero is rejected. The intercept and the coefficients of length and mass are significantly
different from zero at the 1% level.

The residual plot shows low residuals for small and large values of fitted periods and high
residuals for medium values of fitted residuals, suggesting that the model is wrong. Many
wrote in their papers that the appearance of the residual plot were due to residuals not being
independent, but in fact they may be independent but the linear model wrong.

The Box–Cox plot suggests a square transform of the response variable T .

b) I would prefer the new model, since the residual plot shows no clear structure.

The best subset selection suggests that L should always be present as a covariate. With two
covariates, also θ should be present. Based on Mallows’ CP , the overall “best” model is the one
including L and θ only.

c) The estimate of the coefficient of lnL agrees well with the theory, which states that it should
be 1

2 . The estimate of the coefficient of the term involving θ agrees less well – it should be 1;
however, the standard error of the estimate is large.

The intercept β0 of the regression model corresponds to ln(2π/
√
g) of the physical model, β0 =

ln(2π/
√
g). Thus, β̂0 = ln(2π/

√
ĝ) defines an estimate of g. Solving, we get ĝ = 4π2e−2β̂0 =

4π2e−2(−1.62) = 1.0 · 103, that is, 1.0 · 103 cm/s2 = 10 m/s2 (the units of the data were s and
cm).
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(β0− β̂0)/ se β̂0 has the t distribution with 100− 3 = 97 degrees of freedom, where se β̂0 denotes
the standard error of β̂0 (the denominator in Corollary 3.33 of Bingham and Fry). Let t denote
the upper 0.025 critical value of this distribution. Then

0.95 = P

(
−t < β0 − β̂0

se β̂0
< t

)
= P

(
−t <

ln(2π/
√
g)− β̂0

se β̂0
< t

)
= P

(
β̂0 − t se β̂0 < ln(2π/

√
g) < β̂0 + t se β̂0

)
= P

(
eβ̂0−t se β̂0 < 2π/

√
g < eβ̂0+t se β̂0

)
= P

(
4π2e−2(β̂0+t se β̂0) < g < 4π2e−2(β̂0−t se β̂0)).

The statistical tables give t = 1.98, and from the R output we have β̂0 = −1.62 and se β̂0 =
0.0160 for our data. Inserting these values in the inequalities above, we get 4π2e−2(−1.618+1.98·0.0160) =
0.94 · 103 and 4π2e−2(−1.618−1.98·0.0160) = 1.07 · 103 as bounds of the confidence interval, that is,
the interval is (9.4, 10.7) with unit m/s2.

Problem 2: Galapagos

(Exam TMA4267 V2014, Problem 2)

a) The fitted regression model is:

̂Species = 7.07−0.02 ·Area+0.32 ·Elevation+0.009 ·Nearest−0.24 ·Scruz−0.75 ·Adjacent

This model explains 77% of the variability in the data. The regression is significant (the hy-
pothesis that all regression coefficients are zero is rejected) and t-tests claim that Elevation
and Adjacent are significant covariates.

The residual plots: The plot of studentized residuals vs. fitted values hints to heteroscedasticity
in the errors (differing variances), and the qq-plot shows deviance from the normal distribution
in the tails. The latter is also observed by looking at the Anderson-Darling normality test, which
gives a p-value of 0.0002 (reject the null hypothesis that the errors are normal). The Box-Cox
plot doesn’t include 1 in the 95% confidence interval (dotted lines in the plot), and suggests that
the cube root transform (λ = 1/3) may be suitable as a variance stabilizating transform.

b) Let us assume that we have p covariates – where the intercept is included. (Different sources
include and not the intercept.)

Estimate (Intercept): t value*Std. Error=7.365· 0.305=2.25
Meaning: estimate for the regression coefficient. Intercept associated with first column of design
matrix (first column of ones) β̂ = (XTX)−1XTY .

p-value of Area:two tails of t-distribution with 24 degrees of freedom. Can’t find precise value,
but from table 4 of Tabeller og formler i statistikk we see that the critical value in the t-
distribution with 24 degrees of freedom is 2.064 for α = 0.025. This means that the p-value will
approximately be 0.05.
Meaning: Test the null hypothesis that βArea = 0 vs. βArea 6= 0, with the other four covariates
present in the model, and produce a p-value of the test.

Std.Error of Nearest:estimate/tobs=0.012/0.7=0.017
Meaning: the estimated standard deviation for the regression estimate. Mathematically the
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corresponding (Nearest) diagonal element of the square root of (XTX)−1s2, where s2 is the
estimate for the regression variance σ2.

Adjusted R-squared: 1 − (1 − R2)(n − 1)/(n − p) = 1 − (1 − 0.7543) · 29/24 = 0.7032, or in a
two stage process by first observing SSE=s2 · (n − p) = 0.97162 · 24 = 22.65 and then finding

SST from R2=1-SSE/SST, SST=SSE/(1-R2), and finally using R2
adj = 1−

SSE
n−p−1

SST
n−1

.

Yes, I would prefer model B to A. The plot of standardized residuals vs fitted values shows no
clear structure, and the qq-plot looks much better for B and A. The Anderson-Darling normality
test doesn’t reject the null hypothesis of normal data.

c) Let SSE be the sum-of-squares of error, SSR be the regression sum-of-squares, and SST be
the total som of squares. Then R2: coefficient of multiple determination is defined as

1− SSE/SST = SSR/SST

and is interpreted as the amount of variability in the data that is accounted for by the regres-
sion. R2 will increase when regressors are added to the model, even if the new regressors are
independent of the response. Why? The least squares estimator will minimize SSE and if the
regression coefficient for the new regressor is estimated to be a value different from zero, this
means that the SSE of this larger model will be smaller than the SSE of the smaller model.

The R2
adj is constructed to also include information about the number of parameters estimated

and the number of observations in the data set. Assume we have p regression parameters, then

R2
adj = 1−

SSE
n−p
SST
n−1

R2 will always increase when new covariates are added to the model, so R2 can only be used
to select the best model among models with the same number of covariates. This is done when
in best subset selection one model is reported for each total number of covariates. To choose
between these models a criterion taking into account the number of covariates in the model need
to be used, and one such criterion is R2

adj. We therefore use R2
adj to choose between the best

models of each size.

In our example the best model is according to this strategy the model with four covariates.
These are all covariates except Nearest. To write down the estimated regression equation we
need to refit this model.

Problem 3: Inference about a new observation in multiple linear regression

a) β̂ ∼ N(β, σ2(XTX)−1), so that the linear transformation XT
0 β̂ of β̂ has the distribution

N(XT
0 β, σ

2XT
0 (XTX)−1X0), which is univariate. So its expected value is the EY0 specified by

the model, and is thus unbiased.

b) SSE/σ2 ∼ χ2(n − p), where n is the length of Y and p is the length of β, and it is
independent of β̂ and thus of XT

0 β̂. Standardize X0β̂ and divide it by
√

SSE/((n− p)σ2) to
get

T =
XT

0 β̂ − EY0√
XT

0 (XTX)−1X0 SSE/(n− p)
∼ t(n− p).
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Solve the double inequality −tn−p ≤ T ≤ tn−p, where −tα/2 is the α/2-quantile of a t(n − p)
variable, to get a confidence interval having bounds

XT
0 β̂ ±

√
XT

0 (XTX)−1X0 SSE/(n− p).

c) Since Y0 is independent of ε and thus ofXT
0 β̂, Y0−XT

0 β̂ ∼ N(0, σ2(1+XT
0 (XTX)−1X0)).

Standardize Y0 −XT
0 β̂ and proceed as in (b) to get a prediction interval having bounds

XT
0 β̂ ±

√(
1 +XT

0 (XTX)−1X0

)
SSE/(n− p).

d)

# How does pH in Nowegian lakes depend on sulfate, nitrate, calcium, aluminium
# and organic content (x1, ... x5), area of lake (x6) and location (x7 = 0,
# Telemark, or x7 = 1, Tr?ndelag)? Data from Statens forurensningstilsyn
# (1986). Here 26 random lakes from Telemark and Tr?ndelag out of 1005 lakes
# have been drawn .

acidrain <-
read.table("https://www.math.ntnu.no/emner/TMA4267/2017v/acidrain.txt",
header=TRUE)

attach(acidrain)

n <- length(y)

x <- cbind(rep(1,n),acidrain[,2:8]) # we want intercept in model
names(x)[1] <- 1
x <- as.matrix(x)
p <- dim(x)[2]

i <- diag(n)
h <- x%*%solve(t(x)%*%x)%*%t(x)

# Test of submodel where coefficients of x2, x4, x5, x6, x7 are zero:
r <- 3
x0 <- x[,c(1,2,4)]
h0 <- x0%*%solve(t(x0)%*%x0)%*%t(x0)
f <- t(y)%*%(h-h0)%*%y/(p-r)/(t(y)%*%(i-h)%*%y/(n-p))
f
pf(f,p-r,n-p,lower.tail=FALSE) # p-value - cannot reject null hypothesis
# or by R functions (1 is added by R as a covariate):
fit <- lm(y~x1+x2+x3+x4+x5+x6+x7)
fit0 <- lm(y~x1+x3)
anova(fit0,fit)

# Test of whether all coefficients except the intercept are zero
r <- 1
x0 <- x[,1]
h0 <- x0%*%solve(t(x0)%*%x0)%*%t(x0)
f <- t(y)%*%(h-h0)%*%y/(p-r)/(t(y)%*%(i-h)%*%y/(n-p))
f
pf(f,p-r,n-p,lower.tail=FALSE) # p-value - cannot reject null hypothesis
# or by R functions:
fit0 <- lm(y~1)
anova(fit0,fit)
# or:
fit2 <- lm(y~x)
anova(fit2)

# Confidence interval for EY0 and prediction interval for Y0 with new
# covariate vector
x0 <- c(1,3,50,1,50,2,1,0) # remember intercept (the first 1)
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sse <- y%*%(i-h)%*%y # R automatically transposes vector when necessary
betahat <- solve(t(x)%*%x)%*%t(x)%*%y
# Confidence interval:
halflength <-

qt(.025,n-p,lower.tail=FALSE)*sqrt(x0%*%solve(t(x)%*%x)%*%x0*sse/(n-p))
sum(x0*betahat)-halflength
sum(x0*betahat)+halflength
# Prediction interval:
halflength2 <-

qt(.025,n-p,lower.tail=FALSE)*sqrt((1+x0%*%solve(t(x)%*%x)%*%x0)*sse/(n-p))
sum(x0*betahat)-halflength2
sum(x0*betahat)+halflength2

# By R functions instead:
newdata <- data.frame(x1=3,x2=50,x3=1,x4=50,x5=2,x6=1,x7=0)
# or the following two lines
newdata <- data.frame(3,50,1,50,2,1,0)
names(newdata) <- names(coefficients(fit)[-1])
# In either case:
predict(fit,newdata,level=.95,interval="confidence")
predict(fit,newdata,level=.95,interval="prediction")

e) The design matrix in this case is

X =

(
1 · · · 1
x1 · · · xn

)T
,

and you can verify that

XT
0 (XTX)−1X0 =

∑
i(xi − x0)2

n
∑

i(xi − x̄)2
.

Next, write xi − x0 = (xi − x̄) + (x̄ − x0) to get
∑

i(xi − x0)2 =
∑

i(xi − x̄)2 + n(x̄ − x0)2
(crossterms vanish). The bounds given follow.
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