
TMA4267 Linear Statistical Models
Part 3: Hypothesis testing and ANOVA

Recommended exercise 5 - V2017

March 3, 2017

Keywords: multiple linear regression F-test, analysis of variance, effect coding, sum-zero-
constraint, ANOVA, multiple testing, familywise error rate, false discovery rate.

• Problem 1: Classical multiple regression, only new in Part 3 is e) (all else known from
Part 2), but the concept of using effect coding (and all possible combinations of three
factors with two levels) will be a core part of Part 3 and Part 4. In particular, question b)
on the interaction plot and the start of e) on comparing two models (and observing that
the estimates are equal) will be discussed more in Part 4 (but you have the background
to answer also now).

• Problem 2: Additional multiple testing problem related to Problem 1. This is new on this
years reading list (not part of the reading list on previous years).

• Problem 3: Alternative theoretical outline of F-tests in regression.

• Problem 4: First step from linear regression to analysis of variance with effect coding
(sum-zero constraints).

• Problem 5: Classical analysis of variance problem, formulated without an obvious link to
multiple linear regression.

Problem 1: Plant stress

(Exam TMA4267 V2016, slightly modified to reflect some changes in the reading list - e.g. lasso
not on reading list in 2017 because will be part of new course TMA4268 Statistical Learning
V2018).

At the Department of Biology at NTNU researchers use the model plant Arabidopsis thaliana
to study the response of a plant to different sources of stress. In an experiment Arabidopsis
thaliana seedlings were subject to a stress situation. The following factors were fitted:

• D (damage): D = 1 means that the plant was damaged mechanically by cutting into the
leaves of the plant by a pair of scissors. D = −1 means damage was not inflicted (no
cutting).

• F (flagellin): F = 1 means that the pathogen-derived peptide flagellin was sprayed on the
leaves of the plant. F = −1 means water (not flagellin) was sprayed.
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• T (time): Plants were harvested at two different time points after the stress situation.
T = 1 means that the plant was harvested 60 minutes after the stress situation and
T = −1 means that the plant was harvested 30 minutes after the stress situation.

Thus, we have three factors, D, F and T , each at two levels. In the study experiments for all
possible combinations of the three factors were performed four times yielding 32 experiments
in total.

The response measured in the experiment, was the observed gene activity level (a continuous
measurement) of each of around 40 000 genes. We will only focus on the gene activity level of
one of these genes, the AT1G32920 gene, and we denote the gene activity level of this gene by
Y . It is known that this gene is active in response to wounding.

For experiment number i (where i = 1, . . . , 32): Yi is the observed response, Di is chosen value
of D, Fi is chosen value of F , and Ti is chosen value of T . A multiple regression model with
all main effects, and two- and three-way interactions, was considered,

Yi = β0 + βDDi + βFFi + βTTi + βD:FDiFi + βD:TDiTi + βF :TFiTi + βD:F :TDiFiTi + εi,

where i = 1, . . . , 32, and we assume εi independent and identically normally distributed with
mean 0 and variance σ2. We refer to this as the full model. Note that the interactions are
simply products of the factors. The vector of regression parameters is
β =

(
β0 βD βF βT βD:F βD:T βF :T βD:F :T

)T
, and the ith row of the design matrix X

is
(
1 Di Fi Ti DiFi DiTi FiTi DiFiTi

)
.

In Figure 1 you find R-commands and print-out from fitting the full model.

a) In the print-out from summary(fit) in Figure 1 four numerical values are replaced by
question marks. Calculate numerical values for each of these, and explain what each of the
values means.

A so called cube plot is given in the upper left panel of Figure 2. In the cube plot the fitted
values from the multiple regression for the possible 8 combinations of the three factors are given.
Plots of the main effects (upper right panel) and the interaction effects (lower panel) are found
in Figure 2. In Figure 3 you find residual plots. See Figure 4 for the accompanying R-code and
print-out.

b) How would you, based on Figures 2–4, evaluate the fit of the model?

How would you explain to a biologist what the estimated main effect of damage means in
practice? How would you explain the estimated interaction effect between damage and flagellin?

Let γ = 2βF−βD be a new parameter of interest.

Suggest an estimator, γ̂, for γ. Use approximate methods to find the expected value and variance
of this estimator, that is, E(γ̂) and Var(γ̂). Use results in Figure 1 to calculate numerical value
for γ̂, and estimated numerical values for E(γ̂) and Var(γ̂).

Hint: You may use that 2x = exp(x ln 2), where ln is the natural logarithm.

The researchers want to test the hypothesis

H0 : βD:T = βF :T = βD:F :T = 0 vs.
H1 : at least one of βD:T , βF :T , βD:F :T is different from 0.
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# data is in "standard order" in data frame with name "ds"
> ds %showing only rows 1-6 and 27-32 for space considerations

Y D F T
1 15.45169 -1 -1 -1
2 15.15908 -1 -1 -1
3 14.93064 -1 -1 -1
4 15.06569 -1 -1 -1
5 14.51032 -1 -1 1
6 14.76922 -1 -1 1
...
27 18.23645 1 1 -1
28 17.70327 1 1 -1
29 16.66523 1 1 1
30 16.96046 1 1 1
31 16.73133 1 1 1
32 16.57248 1 1 1
> fit=lm(Y~D*F*T,data=ds)
> model.matrix(fit)%only showing rows 1-6 and 27-32

(Intercept) D F T D:F D:T F:T D:F:T
1 1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 1 1 1 -1
3 1 -1 -1 -1 1 1 1 -1
4 1 -1 -1 -1 1 1 1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 -1 -1 1 1 -1 -1 1
...
27 1 1 1 -1 1 -1 -1 -1
28 1 1 1 -1 1 -1 -1 -1
29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04140 ? < 2e-16
D 0.93739 0.04140 22.644 < 2e-16
F 0.28546 0.04140 6.896 3.93e-07
T -0.52354 0.04140 -12.647 4.18e-12
D:F -0.08878 0.04140 -2.145 0.04231
D:T -0.00242 ? -0.058 0.95386
F:T -0.12614 0.04140 -3.047 0.00555
D:F:T 0.09099 0.04140 2.198 ?
Residual standard error: 0.2342 on 24 degrees of freedom
Multiple R-squared: ?, Adjusted R-squared: 0.9594
F-statistic: 105.6 on 7 and 24 DF, p-value: < 2.2e-16

Figure 1: Printout from R-commands and statistical analyses for the plant stress data set. Four
numbers are replaced by question marks.
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Figure 2: Cube plot (upper left panel), main effects plot (upper right panel) and interaction
effects plot (lower panel) for the full model fitted to the plant stress data set.
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Figure 3: Residual plots (studentized residual versus fitted values in the left panel, normal plot
based on studentized residuals in the right panel) for the full model fitted to the plant stress
data set.

> library(FrF2)
> MEPlot(fit)
> IAPlot(fit)
> cubePlot(fit,"D","F","T",round=1,size=0.33,main="")
> plot(fit$fitted,rstudent(fit),pch=20)
> qqnorm(rstudent(fit),pch=20)
> qqline(rstudent(fit))
> ad.test(rstudent(fit))

Anderson-Darling normality test
data: rstudent(fit)
A = 0.43191, p-value = 0.2869

Figure 4: Print-out from R-commands and statistical analyses for the full model fitted to plant
stress data set.
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> x <- model.matrix(fit)[,-1]; dim(x)
[1] 32 7
> y <- ds$Y
> library(leaps)
> bests <- regsubsets(x,y)
> sumbests=summary(bests)
> sumbests
1 subsets of each size up to 7
Selection Algorithm: exhaustive

D F T D:F D:T F:T D:F:T
1 ( 1 ) "*" " " " " " " " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " " " "*" " "
5 ( 1 ) "*" "*" "*" " " " " "*" "*"
6 ( 1 ) "*" "*" "*" "*" " " "*" "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
> plot(bests,scale="adjr2",col=gray(seq(0.6,0.9,length=20)))
> round(sumbests$adjr2,3)
[1] 0.661 0.874 0.938 0.950 0.955 0.961 0.959

Figure 5: Print-out from R performing best subset selection on the plant stress data.

c) Perform the hypothesis test at a significance level of your own choice. All the numerical
values you need for the calculations are found in Figure 1.

The researchers want to use the data to fit a prediction model, and want to consider reduced
versions of the full model, using best subset model selection. Results are presented in Figure 5.

d) Explain briefly what is done in the best subset model selection, and choose a good model
based on the R2

adj-criterion. Write down the fitted regression model for the model you choose.

The researchers choose to use the following reduced model for prediction:

Yi = β0 + βDDi + βFFi + βTTi + βD:FDiFi + εi,

where i = 1, . . . , 32, and we assume εi independent and identically normally distributed with
mean 0 and variance σ2. Output from fitting the reduced model is given in Figure 7.

e) Compare the estimated regression parameters and the estimated standard deviations of the
estimated regression parameters for the full model (Figure 1) and the reduced model (Figure
7), and explain what you observe.

Based on the reduced model (Figure 7), provide a prediction and a 95% prediction interval for
the gene activity level for the factor combination D = 1, F = 1, T = −1.

Hint: In a multiple linear regression with n×p design matrixX, estimated regression coefficients
β̂ and unbiased estimated error variance s2, a (1− α)100% prediction interval at x0 is given as

xT0 β̂ ± tα2 ,n−p s
√

1 + xT0 (XTX)−1x0,

where tα/2,n−p denotes the value in the t-distribution with n − p degrees of freedom that has
area α

2 to the right. See Figure 7 for some possible values for tα/2,n−p.
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Figure 6: Figure from model selection, with R-code in Figure 5.

> fitRED=lm(Y~D+F+T+D:F,data=ds)
> summary(fitRED)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04919 328.528 < 2e-16
D 0.93739 0.04919 19.057 < 2e-16
F 0.28546 0.04919 5.804 3.56e-06
T -0.52354 0.04919 -10.644 3.66e-11
D:F -0.08878 0.04919 -1.805 0.0822
Residual standard error: 0.2782 on 27 degrees of freedom
Multiple R-squared: 0.95, Adjusted R-squared: 0.9426
F-statistic: 128.4 on 4 and 27 DF, p-value: < 2.2e-16
> qt(0.025,32,lower.tail=FALSE)
[1] 2.036933
> qt(0.025,27,lower.tail=FALSE)
[1] 2.051831
> qt(0.025,24,lower.tail=FALSE)
[1] 2.063899

Figure 7: Print-out from R performing linear regression on the reduced model for the plant
stress data set.
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Problem 2: Multiple testing with plant stress

In this problem we work with the same biological problem as in Problem 1, but we will here
focus on multiple hypothesis testing.

We want to study the gene activity level of each of m = 10 000 genes (in Problem 1 we only
looked at one of the genes), and test for relationship with damage. Let µj denote the regression
coefficient of damage for gene j (j = 1, . . . ,m) (previously denoted βD for one gene). Our
aim is now to identify genes that respond to damage, and we do this by testing the two-sided
hypotheses

H0 : µj = 0 vs. H1 : µj 6= 0

for j = 1, . . . ,m (all genes). Assume that we have performed the hypothesis tests and we have
calculated two-sided p-values p1, . . . , pm.

Note: for each gene we have performed one regression, with the gene activity level of that gene
as the response, so the µjs are from m different regression models with different responses. (Not
to be confused with different regression parameters.)

These p-values are available as an m-dimensional vector from the course www-page, to be read
into R as:

pvalues=scan("https://www.math.ntnu.no/emner/TMA4267/2017v/damagePvalues.txt")
m=length(pvalues)

a) We want to test the m hypotheses stated above, and want to set a cut-off on the p-values to
declare that a test is significant (i.e. decide when we want to reject each of the null hypotheses).
To do that we want to control some overall version of the Type I error rate. Explain with words
and a formula what the familywise error rate (FWER) and the false discovery rate (FDR) is.

b) The FWER can be controlled at level α by the Bonferroni method, by producing a local
significance level αloc to be used as cut-off for the p-values.

We choose to control the FWER at level α = 0.05. Calculate the Bonferroni αloc for our data.
How many null hypotheses will you reject? Are there any requirements for when we can use
the Bonferroni method? Why do people say that the Bonferroni method is conservative?

c) The p-values given above have been artificially generated and the truth is that the 9000
first p-values are from true null hypotheses and the last 1000 are from the false null hypotheses.
Based on your rule in b) fill in numerical values for the quantities denoted S, T , U , V , R, m
and m0 in the following table. What is the number of false positives?

Not reject H0 Reject H0 Total
H0 true U V m0
H0 false T S m−m0
Total m−R R m

In a multiple hypothesis setting where the true nature of the hypotheses are not known, which
of the entries in the table above are actually known?
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d) What if we choose to say that all p-values below 0.05 gave a significant result. What would
then S, T , U , V , R, m and m0 become. What is the number of false positives now?

In a scientific research situation it is important to avoid false positive results (fake news). That
is why a cut-off of 0.05 never should be used in a research situation where more than one
hypothesis test is formally conducted.

Problem 3: F test and partial F test in multiple linear regression

Consider a multiple linear regression model Y = Xβ + ε, with β = (β1 · · · βp)T and ε ∼
N(0, σ2I). We want to test the null hypothesis βr+1 = βr+2 = · · · = βp = 0. In effect, we
want to compare the full model, involving p covariates and p parameters, with a reduced model,
involving only r covariates and r parameters. LetX0 be the design matrix consisting only of the
first r columns of X. Let H = X(XTX)−1XT and H0 = X0(XT

0 X0)−1XT
0 be the projection

matrices of the full and the reduced model, respectively.

a) Show that in the partition I = (I −H) + (H −H0) +H0, all three terms on the right are
idempotent. (Hint for H −H0: View H and H0 as projections onto the column space of
X and X0, respectively, to see that HH0 = H0 and that H0(I −H) = 0.)

b) Show that under the null hypothesis, (I −H)(Y −Xβ) = (I −H)Y and that

(H −H0)(Y −Xβ) = (H −H0)Y .

c) What are the ranks of I−H and H −H0 (assuming X has full rank)? Use Definition B.14
and Theorem B.8 in Fahrmeir et al. to show that if the null hypothesis is true, then

F = Y T (H −H0)Y /(p− r)
Y T (I −H)Y /(n− p) ∼ Fp−r,n−p

where Y T (I −H)Y is the error sum of squares. The quadratic form Y T (H −H0)Y is
sometimes called a sequential sum of squares. A large sequential sum of squares compared
to the error sum of squares, thus a large F , indicates that the null hypothesis is false.

d) Use the acid rain data (see course www-page) to test whether all coefficients except the
intercept and the coefficients of x1 and x3 are zero.

e) Show that if the model includes an intercept, and the null hypothesis is that all other
parameters are zero, the projection matrixH0 = 1

n11T , so that in that case the sequential
sum of squares is equal to what is called the regression sum of squares. For the acid rain
data, test whether all coefficients except the intercept are zero.

Problem 4: One- and two-way ANOVA – and the linear model

In this problem we will consider a data set where income is explained by the two factors place
and sex.

Place A Place B Place C
Male 300 350 370 360 400 370 420 390 400 430 420 410
Female 300 320 310 305 350 370 340 355 370 380 360 365

Hence two categorical predictors: sex with 2 levels (Male and Female) and place with 3 levels
(named A, B and C).
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a) Enter the data in R as a data.frame with three columns, income, gender and place. Make
gender and place to be factors. Call this data.

Examine the data visually with e.g.

pairs(data)
plot(income~place,data=data)
plot(income~gender,data=data)
interaction.plot(data$gender, data$place, data$income)
plot.design(income~place+gender, data = data)

b) (One-way anova).
Consider first a model with a factor αi occurring at i = 1, . . . , I levels, with K observations per
level. Use the model

yik = µ+ αi + eik, i = 1, . . . , I k = 1, . . . ,K (1)

where e11, . . . , eIK iid and eik ∼ N(0, σ2), ∀i, k. Assume place is the only factor. The design
matrix X can be found by:

X = cbind(rep(1,length(data$income)),data$place=="A",
data$place=="B",data$place=="C")

What is the rank of XTX? Why do we need XTX to have full rank. How can we solve rank
problems?

Hint: qr(matrix)$rank.

c) Fit the model:

model = lm(income~place-1,data=data,x=TRUE)

where x=TRUE tells the function to calculate the design matrix X, which is stored as model$x.
Examine the results with summary and anova.

What parametrization is used? What is the interpretation of the parameters? Which null
hypothesis is tested in the anova-call? What is the result of the hypothesis test?

d) Fit the models:

options(contrasts=c("contr.treatment","contr.poly"))
model1 = lm(income~place,data=data,x=TRUE)

options(contrasts=c("contr.sum","contr.poly"))
model2 = lm(income ~ place,data=data,x=TRUE)

We have talked about dummy- and effect encoding of categorical covariates. What are the
parametrizations used here? What is the interpretation of the parameters and how do the
parameter interpretations differ between the models in c) and d)?

(You can read about contr.treatment by typing ?contr.treatment, and ignore contr.poly.)
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e) Let Y = Xβ + ε where ε ∼ Nn(0, σ2I), and X has dimension n × p. Let β̂ and σ̂2 be
estimators in this model.

We want to test the linear hypotheses

H0 : Cβ = d vs. H1 : Cβ 6= d.

Here C is a r × p matrix. This can be done using Fobs, which under the null has a Fisher-
distribution with r and n− p degrees of freedom.

Fobs = 1
r

(Cβ̂ − d)T (σ̂2C(XTX)−1CT )−1(Cβ̂ − d)

We want to test the one-way ANOVA null hypothesis that there is no factor effect of place. Use
the Fobs to do this both using the dummy-variable and the effect coding of the place-factor.
Compare the results from the two coding strategies.

f) (Two-way anova) Suppose now that there are two factors: αi at I levels and βj at J levels,
with K observations per level. Then a general model is

yijk = µ+ αi + βj + eijk, i = 1, . . . , I j = 1, . . . , J (2)

where e111, . . . , eIJK iid and eijk ∼ N(0, σ2), ∀i, j, k.

Fit the model without interactions effects:

options(contrasts=c("contr.treatment","contr.poly"))
model3 = lm(income~place+sex,data=data,x=TRUE)
summary(model3)
anova(model3)

options(contrasts=c("contr.sum","contr.poly"))
model4 = lm(income~place+sex,data=data,x=TRUE)
summary(model4)
anova(model4)

What are the parameterizations? What is the interpretation of the parameters? Does the
ANOVA table look different for the two parametrizations?

Finally, fit a model with interactions (model formula is place*sex for both the contrasts and
check if the interaction effect is significant. Do this also using the Fobs from e).

Problem 5: Teaching reading

In a randomized study the aim was to compare three methods for teaching reading, one method
currently in use (A), and two new methods (B and C). A total of 66 pupils were randomly
assigned to one of the three teaching methods, with 22 pupils for each method.

We will look at data on reading score. Reading score is a numerical value, and high value for the
reading score is preferred. A box plot of the data is presented in Figure 8, and summary statistics
are given in Table 1. (The standard deviation is calculated using the unbiased estimator.)
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Figure 8: Box plot for reading data

Method Sample size Average Standard deviation
A 22 41.05 5.636
B 22 46.73 7.388
C 22 44.27 5.767
Total 66 44.02

Table 1: Summary statistics for the reading data
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a) We would like to investigate if the expected reading score varies between the teaching
methods. Write down the null and alternative hypotheses and perform a single hypothesis test
based on the summary statistics in Table 1.
What are the assumptions you need to make to use this test?
What is the conclusion from the test?

b) The hypothesis test in a) can also be performed using results for linear hypotheses (Cβ =
d) in a regression model (Y = Xβ + ε). What is the dimension of C in this case? Is there a
simple way to calculate the F-statistic, Fobs = 1

r (Cβ̂ − d)T (σ̂2C(XTX)−1CT )−1(Cβ̂ − d) in
this case?

c) We will now compare the two new teaching methods, method B and C. Let µB and µC be
the expected scores for teaching methods B and C. We would like to study the ratio, γ, between
these two expected scores,

γ = µB
µC

.

Suggest an estimator, γ̂, for γ.

Use Taylor methods to approximate the expected value and standard deviation of this estimator,
that is, E(γ̂) and SD(γ̂) =

√
Var(γ̂).

Use the relevant data in Table 1 to calculate γ̂, and the estimated approximate values for E(γ̂)
and SD(γ̂) numerically.
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