
TMA4267 Linear Statistical Models
Part 3: Hypothesis testing and ANOVA

Solutions to recommended exercise 5 - V2017

February 28, 2017

Problem 1: Plant stress

a) T-statistic in Intercept row: t0 = β̂0−0√
V̂ar(β̂0)

= 16.15942
0.04140 = 390.3. Meaning: this is the test

statistic for testing the null hypothesis H0 : β0 = 0 vs H1 : β0 6= 0.

Std.Error in row named D : T : in general, tj = β̂j−0√
V̂ar(β̂j)

so that
√

V̂ar(β̂j) = β̂j
tj

=
−0.00242
−0.058 = 0.04. Alternatively, we may conclude that the Std.Error for β̂D:T is 0.04140
since we have orthogonal columns in our design matrix and the std.error is the same
for all estimated regression parameters in the model. Meaning: the estimated standard
deviation for the regression coefficient estimate. Mathematically we find this by looking
at the diagonal element corresponding to D : T of the square root of (XTX)−1s2, where
s2 is the estimate for the regression variance σ2. For our orthogonal design XTX is a
diagonal matrix with 32 on the diagonal. We read off s from the print-out "Residual
standard error=0.2342". Thus, Std.Error=0.2342 · 1√

32 = 0.04.
p-value in row named D : F : T : two tails of t-distribution with 24 degrees of freedom,
observed t-statistics is 2.198. Can’t find precise value, but from the table on page 4 of
"Tabeller og formler i statistikk" we see that the critical value in the t-distribution with
24 degrees of freedom is 2.064 for α = 0.025 and 2.492 for α = 0.01. This means that the
p-value must be between 0.02 and 0.05.
Meaning: Test the null hypothesis that βD:F :T = 0 vs. βD:F :T 6= 0, (with the other seven
covariates and intercept present in the model), and produce a p-value of the test. Reject
the null hypothesis if the p-value is smaller than the chosen significance level.
Multiple R-squared (also just called R2): R2=1-SSE/SST, so we need SSE and
SST. We find SSE from s since SSE=s2 · (n − p) = 0.23422 · 24 = 1.32, but SST is
more difficult (not impossible, may be found from the F -statistic). But, it is easiest
to find R2 from R2-adjusted (Adjusted R-squared), since Adjusted R-squared: 1 − (1 −
R2)(n − 1)/(n − p) = 0.9594 is given, and we know that n = 32 and n − p = 24. Thus,
R2 = 1 − n−p

n−1(1 − R2
adj) = 1 − 31

24(1 − 0.9594) = 0.9686. Differences in answers is due to
rounding.
For completeness: SST will be SSE in a model where only intercept is included. The
F-test for the null hypothesis that all regression coefficients (except the intercept) equals
zero gives test statistic F =

SST−SSE
31−24

SSE
24

= 105.6, and SSE in the full model we found above

to be 1.32. Solving for SST yields 39.2. Finally, R2 = SST-SSE
SST = 39.3−1.32

39.2 = 0.966.
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b) I would judge the model fit to be good. The model explains 96% of the variability in the
response and the model is significant (from the F-test). The plot of standardized residuals
vs fitted values shows no clear structure, and the qq-plot to follow a straight line. The
Anderson-Darling normality test doesn’t reject the null hypothesis of normal data.
The main effect of damage: when we compare the estimated effect of damage D = 1 with
the estimated effect of no damage D = −1 (keeping the F and T constant at some level),
our estimate is 2 · β̂D = 2 ·0.93739 = 1.87. So, keeping F and T fixed, the effect of damage
raises the gene activity with 1.87.
The interaction plot for D and F is found both in cell (1,2) and (2,1). In cell (1,2) the two
lines are for D = −1 (red) and D = 1 (black). The red line goes from (15.2 + 14.5)/2 =
14.85 (F = −1 and D = −1) to (16.3 + 14.9)/2 = 15.6 (F = 1 and D = −1, and shows
the effect of F when D is kept at D = −1 (no damage) (15.6-14.85=0.75). The numbers
taken from the cube plot. The black line goes from (17.4 + 16.4)/2 = 16.9 (F = −1
and D = 1) to (17.9 + 16.7)/2 = 17.3 (F = 1 and D = −1), and shows the effect of F
(17.3-16.9=0.4) when D is kept at D = 1 (damage). The two lines are not exactly parallel,
since the black line is less steep than the red line (however not much). The estimated
interaction effect for D : F is 2 · β̂D:F = 2 · (−0.08878) = −0.1775 - or equivalently
0.4/2− 0.75/2 = 0.2− 0.375 = −0.175 (change due to rounding in cube plot numbers).
A natural estimator for γ is

γ̂ = 2β̂F−β̂D

where β̂F and β̂D are the appropriate elements of the vector of parameter estimates
β̂ = (XTX)−1XTY , were the X is the design matrix and Y is the vector of responses.
We turn to first order Taylor approximations, but first observe that since 2x = exp(x ln 2)
then d(2x)

dx = 2x · ln 2.

h(β̂F , β̂D) = 2β̂F−β̂D

∂h(β̂F , β̂D)
∂β̂F

= ln 2 · 2β̂F−β̂D

∂h(β̂F , β̂D)
∂β̂D

= − ln 2 · 2β̂F−β̂D

where the random variable β̂F has E(β̂F ) = βF and Var(β̂F ) = 1
nσ

2, and β̂D has E(β̂D) =
βD and Var(β̂D) = 1

nσ
2. Further, Cov(β̂F , β̂D) = 0 since we have an orthogonal design

matrix.
Define

h′βF (βF , βD) = ∂h(β̂F , β̂D)
∂β̂F

|β̂F=βF ,β̂D=βD= ln 2 · 2βF−βD

h′βD(βF , βD) = ∂h(β̂F , β̂D)
∂β̂D

|β̂F=βF ,β̂D=βD= − ln 2 · 2βF−βD
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The first order Taylor approximation for two independent RVs gives:

E(h(β̂F , β̂D)) ≈ h(βF , βD) = 2βF−βD

Var(h(β̂F , β̂D)) ≈ (h′βF (βF , βD))2 Var(β̂F ) + (h′βD(βF , βD))2 Var(β̂D)

= (ln 2 · 2βF−βD)2 1
n
σ2 + (− ln 2 · 2βF−βD)2 1

n
σ2 = 2(ln 2)2σ2

n
· 22(βF−βD)

Estimates using numerical values β̂F = 0.28546, β̂D = 0.93739, s2 = 0.23422 (estimat for
σ2), n = 32.

Ê(h(β̂F , β̂D)) ≈ 20.28546−0.93739 = 2−0.65 = 0.64

V̂ar(h(β̂F , β̂D)) ≈ 2(ln 2)20.23422

32 · 22(0.28546−0.93739) = 0.001647 · 2−1.3 = 6.67 · 10−4

c) The hypothesis test can be performed as a general linear hypothesis:

H0 : Cβ = d vs. H1 : Cβ 6= d

with

C =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 , d =

0
0
0

 .
and β = (β0, βD, βF , βT , βD:F , βD:T , βF :T , βD:F :T ). To test the hypothesis we have worked
with the test statistics Fobs:

Fobs = 1
r

(Cβ̂ − d)T[σ̂2C(XTX)−1CT]−1(Cβ̂ − d)

where r is the number of hypotheses being tested (here r = 3), σ̂2 is the unbiased estimator
for σ2 (previously we have used s2 for σ̂2) and β̂ is the least squares estimator for β (in
the full model, where we have p=8 regression parameters). When the null hypothesis is
true Fobs follows a Fisher distribution with r and n − p degrees of freedom. We have
that othogonal columns of the design matrix, and thus XTX is a 8×8 diagonal matrix
with n = 32 on the diagonal, and (XTX)−1 is a 8×8 diagonal matrix with 1

32 on the
diagonal. Further, C(XTX)−1CT is a 3× 3 matrix with 1

32 on the diagonal, and finally
[C(XTX)−1CT]−1 is a 3× 3 matrix with 32 on the diagonal. This means that Fobs will
be a sum with three terms – one for each regression parameter to be tested.

Fobs = 32
3σ̂2 (β̂2

D:T + β̂2
F :T + β̂2

D:F :T )

= 32
3 · 0.23422 [(−0.00242)2 + (−0.12614)2 + (0.09099)2] = 4.705

The F-distribution with 3 and 24 degrees of freedom has critical value 3.01 for α = 0.05
and 3.72 for α = 0.025, so we reject the null hypothesis at level 0.025.

d) Let us assume that an intercept term is present in our regression model. In all-subsets
model selection we consider all possible 27 = 128 regression models. Let the model
complexity be the number of regression parameters fitted, that is, our model complexity
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is 1 (only intercept) - 8 (full model). First the best model (minimum SSE, maximum R2

and minimum s) for each model complexity is found, and is presented in the print-out in
Figure 5. E.g. the best model with 2 regression parameters is the one with intercept and
βD. Then, we use R2

adj to choose between each of these 7 best models.

The reason we don’t use R2 to choose between models of different complexity is that
R2 will increase when a regressors is added to the model, even if the new regressors are
independent of the response. Why? The least squares estimator will minimize SSE and
if the regression coefficient for the new regressor is estimated to be a value different from
zero, this means that the SSE of this larger model will be smaller than the SSE of the
smaller model.
The R2

adj is constructed to also include information about the number of parameters
estimated and the number of observations in the data set. In our example the best model
is according to this strategy the model with 6 covariates in addition to the intercept (only
the βD:T is not included). This model has an R2

adj of 0.961. The fitted regression for
this model is found by selecting the estimated regression parameter in Figure 1 (due to
orthogonal columns) for the non-zero coefficients.

ŷ = 16.2 + 0.94D + 0.29F − 0.52T − 0.09D · F − 0.13F · T + 0.09D · F · T

However, there are very minor differences between this best model and smaller models.
The model with 4 covariates (in addition to the intercept) has R2

adj equal to 0.95, so other
choices for the "best model" are possible - if we want model parsimony (which we often
want).

e) The design of our experiment is a full factorial 23 design done in four replications. This
means that the design matrix (both of the full model and the reduced model) will be
an orthogonal matrix. This means that XTX will be a diagonal matrix with n on the
diagonal and thus β̂k = [(XTX)−1XTY ]k = 1

nx
T
kY where xk is the kth column of the

design matrix, i.e. the β̂k will only be a function of xk and Y . Further, Var(β̂)k = 1
nσ

2

and Cov(β̂k, β̂j) = 0 for j 6= k. This is the reason why the estimated regression parameters
are the same in the full and reduced model.
The full and reduced model will give different predictions and also different residuals,
and thus different estimates for the error variance, and thus different estimated standard
deviations for the estimated regression parameters between the full and reduced model.
Finally, prediction and prediction interval. In the reduced model the vector of regression
parameters is (β0, βD, βF , βT , βD:F ).The prediction is to be made atD = 1, F = 1, T = −1,
which gives x0 = (1, 1, 1,−1, 1) as coding for covariates in the reduced model. The
prediction is given as xT

0 β̂ = (1, 1, 1,−1, 1)T(16.16, 0.94, 0.29,−0.52,−0.09) = 16.16 +
0.94 + 0.29 + 0.52− 0.09 = 17.82.
For the interval we need to observe that XTX is a 5×5 diagonal matrix with 32 on the
diagonal, and thus (XTX)−1 is a 5×5 diagonal matrix with 1

32 on the diagonal. Further,
xT

0 (XTX)−1x0 = 5/32, since a quadratic form with a diagonal matrix A and a vector x
is just

∑5
i=1 x

2
iAii. The t critical number is found from Figure 7 to be 2.05, and we have

s = 0.2782 from Figure 7.

xT
0 β̂ ± tα2 ,n−p · s ·

√
1 + xT

0 (XTX)−1x0

=17.82± 2.05 · 0.2782 ·
√

1 + 5
32 = 17.82± 0.61 = [17.2, 18.4]
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Problem 2: Multiple testing with plant stress

a) We are testing m hypotheses and we select a cut-off on p-values that leads to rejecting R
hypotheses. Out of these R rejected hypotheses V is the number of Type I errors (the true
hypotheses among the R rejected).

FWER is the probability of one or more false positive finding (at least one fake news), and is
mathematically P (V > 0).

FDR is the expected proportion of false positive findings among the rejections (expected pro-
portion of news that are fake): E(V/R) (and when R = 0 then 0).

b) The Bonferroni rule choose αloc = α
m , and for us we choose α = 0.05 and we havem = 10000

so αloc = 0.05
10000 = 5 · 10−6.

Bonferronis method can always be used, for any dependency structure between the p-values.

People often state that the method of Bonferroni is conservative, but what they most often
mean is that FWER is a very strict criterion. Controlling that the probability of one or more
Type I error when m is large is very strict. On the other hand FDR is less strict and can be
used.

Other reasons for saying that the Bonferroni rule is conservative is related to that the rule is
valid for all types of dependency structures, also when the p-values from the m hypotheses are
independent. Often, at least in genetical applications the tests performed are dependent on
each other because the genes or genetic markers tested are correlated. Then more elaborate
methods that take into account this dependency structure will give a much higher value for the
p-value cut-off.

c) It is now known that m0 = 9000 of the hypotheses are true and and m1 = 1000 are false.
This gives the following numbers in our table (see R-code below). In particular we do not have
any type I errors, V = 0.

In the table below - when the true nature of which hypotheses are true and false are unknown
to us - then we only can observe m and R.

Not reject H0 Reject H0 Total
H0 true 9000 0 9000
H0 false 981 19 1000
Total 9981 19 10000

d) Now αloc = 0.05 and we do as on c), and get the following table. Observe that we have
428 false positives (fake news).

Not reject H0 Reject H0 Total
H0 true 8572 428 9000
H0 false 178 822 1000
Total 8750 1250 10000
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Problem 3: F test and partial F test in multiple linear regression

a) We already know from the theory that I −H and H0 are idempotent. (H −H0)2 =
H2 −HH0 −H0H +H2

0 = H −HH0 −H0H +H0. Since H0 is a projection onto the
column space of X0, a further projection by H to the column space of X will do nothing
further, and HH0 = H0. Also, I−H projects onto a subspace orthogonal to the column
space of X, so a further projection by H0 gives H0(I −H) = 0, and H0H = H0. So
(H −H0)2 = H −H0.

b) The first identity is true in general since (I −H)X = 0. For the second identity, under the
null hypothesis Xβ is in the column space of X0, so that HXβ = H0Xβ = Xβ, and
(H −H0)Xβ = 0.

c) We know from the theory that rank(I −H) = n − p, rankH = p and that rankH0 = r.
Then rank(H −H0) = tr(H −H0) = trH − trH0 = p − r. The statement about the
distribution of the F -statistic follows from

1. the independence of the two quadratic forms Y T (H − H0)Y and Y T (I − H)Y
(which is itself a consequence of the orthogonality of the projections H −H0 and
I −H; see point 4 of Theorem B.8 on p. 651 of Fahrmeir et al.) and

2. the definition of the F -distribution as the distribution of a ratio of two independent
chi-square distributed random variables, each divided by its number of degrees of
freedom (Definition B.14 on p. 645 in Fahrmeir et al.).

d) # How does pH in Nowegian lakes depend on sulfate, nitrate, calcium, aluminium
# and organic content (x1, ... x5), area of lake (x6) and location (x7 = 0,
# Telemark, or x7 = 1, Tr{\o}ndelag)? Data from the Norwegian pollution control
# authority (Statens forurensningstilsyn, 1986). Here, 26 lakes located in
# Telemark and Tr{\o}ndelag have been randomly selected from among 1005 lakes.

acidrain <-
read.table("http://www.math.ntnu.no/~mettela/TMA4267/Data/acidrain.txt",
header=TRUE)

attach(acidrain)

n <- length(y)

x <- cbind(rep(1,n),acidrain[,2:8]) # we want intercept in model
names(x)[1] <- 1
x <- as.matrix(x)
p <- dim(x)[2]

i <- diag(n)
h <- x%*%solve(t(x)%*%x)%*%t(x)

# Test of submodel where coefficients of x2, x4, x5, x6, x7 are zero:
r <- 3
x0 <- x[,c(1,2,4)]
h0 <- x0%*%solve(t(x0)%*%x0)%*%t(x0)
f <- t(y)%*%(h-h0)%*%y/(p-r)/(t(y)%*%(i-h)%*%y/(n-p))
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f
pf(f,p-r,n-p,lower.tail=FALSE) # p-value - cannot reject null hypothesis
# or by R functions (1 is added by R as a covariate):
fit <- lm(y~x1+x2+x3+x4+x5+x6+x7)
fit0 <- lm(y~x1+x3)
anova(fit0,fit)

# Test of whether all coefficients except the intercept are zero
r <- 1
x0 <- x[,1]
h0 <- x0%*%solve(t(x0)%*%x0)%*%t(x0)
f <- t(y)%*%(h-h0)%*%y/(p-r)/(t(y)%*%(i-h)%*%y/(n-p))
f
pf(f,p-r,n-p,lower.tail=FALSE) # p-value - cannot reject null hypothesis
# or by R functions:
fit0 <- lm(y~1)
anova(fit0,fit)
# or:
fit2 <- lm(y~x)
anova(fit2)

e) In this case X0 = 1, so that H0 = X0(XT
0 X0)−1XT

0 = 1(1T1)−11T = 1n−11T = 1
n11T .

R code is given above.

Problem 4: One- and two-way ANOVA – and the linear model

a) income <- c(300, 350, 370, 360, 400, 370, 420, 390,
400, 430, 420, 410, 300, 320, 310, 305,
350, 370, 340, 355, 370, 380, 360, 365)

gender <- c(rep("Male", 12),rep("Female",12))
place <- rep(c(rep("A",4),rep("B",4),rep("C",4)),2)
data <- data.frame(income,gender=factor(gender,levels=c("Female","Male")),

place=factor(place,levels=c("A","B","C")))
data

pairs(data)
plot(income~place,data=data)
plot(income~gender,data=data)
interaction.plot(data$gender, data$place, data$income)
plot.design(income~place+gender, data = data)

b) X = cbind(rep(1,length(data$income)),data$place=="A",
data$place=="B",data$place=="C")

X
XtX <- t(X)%*%X
qr(XtX)$rank

c) model = lm(income~place-1,data=data,x=TRUE)
model$x # design matrix
summary(model)
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anova(model)

This is a parametrization without intercept, and with three estimated effects for place.

d) options(contrasts=c("contr.treatment","contr.poly"))
model1 = lm(income~place,data=data,x=TRUE)
model1$x
summary(model1)
anova(model1)

Treatment contrast parametrization codes the factor at the lowest level (which is A here)
as 0, so that the value of the intercept will be the estimate for the level A. Compare this
with the model above.

model$coeff
model1$coeff

options(contrasts=c("contr.sum","contr.poly"))
model2 = lm(income ~ place,data=data,x=TRUE)
model2$x
summary(model2)
model2$coeff

Sum-to-zero contrast parametrization puts C as -A-B so that A+B+C=0.

e) Using linear hypothesis - Starting with model 1:

r=2
C=cbind(rep(0,r),diag(r))
d=matrix(rep(0,r),ncol=1)

betahat=matrix(model1$coefficients,ncol=1)
sigma2hat=summary(model1)$sigma^2
X=model.matrix(model1)

Fobs1=(t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)

Fobs1
1-pf(Fobs1,r,n-length(betahat))

betahat=matrix(model2$coefficients,ncol=1)
sigma2hat=summary(model2)$sigma^2
X=model.matrix(model2)

Fobs2=(t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)

Fobs2
1-pf(Fobs2,r,n-length(betahat))

Same result of hypothesis test. What about the no intercept that was in b) (not asked
for)?
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r=2
C=matrix(c(1,-1,0,0,1,-1),ncol=3,byrow=TRUE)
C
d=matrix(rep(0,r),ncol=1)

betahat=matrix(model$coefficients,ncol=1)
sigma2hat=summary(model)$sigma^2
X=model.matrix(model)

Fobs=(t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)

Fobs
1-pf(Fobs,r,n-length(betahat))

This also gives the same result.

f) options(contrasts=c("contr.treatment","contr.poly"))
model3 = lm(income~place+gender,data=data,x=TRUE)
model3$x
anova(model3)
summary(model3)

options(contrasts=c("contr.sum","contr.poly"))
model4 = lm(income~place+gender,data=data,x=TRUE)
model4$x
summary(model4)
anova(model4)

Testing the place effect in model 4, and then the gender effect:

betahat=matrix(model4$coefficients,ncol=1)
sigma2hat=summary(model4)$sigma^2
X=model.matrix(model4)

r=2
Cplace=cbind(rep(0,r),diag(r),rep(0,r)) #add gener coeff last column
d=matrix(rep(0,r),ncol=1)

Fobsplace=(t(Cplace%*%betahat-d)%*%
solve(Cplace%*%solve(t(X)%*%X)%*%t(Cplace))%*%
(Cplace%*%betahat-d))/(r*sigma2hat)

Fobsplace
1-pf(Fobsplace,r,n-length(betahat))

There’s no need to test the significance of gender, since only one parameter can be read
off of the summary. This gives the same result as using anova(model4).

options(contrasts=c("contr.sum","contr.poly"))
model5 = lm(income~place*gender,data=data,x=TRUE)
summary(model5)
X=model5$x
anova(model5)
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The interaction is not significant. Now perform the same test (significance of place:gender-
interaction, given that all main effects are in the model) using the Cβ-approach.

r=2
Csamspill=cbind(rep(0,r),rep(0,r),rep(0,r),rep(0,r),diag(r))
# add gender coef. to last column
d=matrix(rep(0,r),ncol=1)

betahat=model5$coefficients
betahat
Csamspill%*%betahat
sigma2hat=summary(model5)$sigma^2
Fobssamspill=(t(Csamspill%*%betahat-d)%*%solve(Csamspill%*%

solve(t(X)%*%X)%*%t(Csamspill))%*%
(Csamspill%*%betahat-d))/(r*sigma2hat)

Fobssamspill
1-pf(Fobssamspill,r,n-length(betahat))

This gives the same result as above. Finally, repeat the same test using dummy variable
coding (contr.treatment).

options(contrasts=c("contr.treatment","contr.poly"))
model5 = lm(income~place*gender,data=data,x=TRUE)
summary(model5)
X=model5$x
anova(model5)
r=2
Csamspill=cbind(rep(0,r),rep(0,r),rep(0,r),rep(0,r),diag(r))
d=matrix(rep(0,r),ncol=1)

betahat=model5$coefficients
betahat
Csamspill%*%betahat
sigma2hat=summary(model5)$sigma^2
Fobssamspill=(t(Csamspill%*%betahat-d)%*%

solve(Csamspill%*%solve(t(X)%*%X)%*%t(Csamspill))%*%
(Csamspill%*%betahat-d))/(r*sigma2hat)

Fobssamspill
1-pf(Fobssamspill,r,n-length(betahat))

This also gives the same result.

Problem 5: Teaching reading

a) We would like to investigate if the expected reading score varies between the teaching meth-
ods.
Write down the null- and alternative hypothesis and perform one hypothesis test based
on the summary statistics in the table above.
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What are the assumptions you need to make to use this test?
What is the conclusion from the test? Hypotheses:
Let µA, µB and µC be the expected reading scores for each of the three methods.

H0 : µA = µB = µC vs. H1 : at least one pair differs

This hypothesis can be tested using one-way analysis of variance. We need to fill in the
ANOVA table (SS, MS, df, F), which can be calculated from the summary statistics.
Let x̄A denote the average and sA the standard deviation of method A. Ditto for methods
B and C. Let x̄ denote the grand mean.

SSA = nA(x̄A − x̄)2 + nB(x̄B − x̄)2 + nC(x̄C − x̄)2

= 22 · (41.05− 44.02)2 + 22 · (46.73− 44.02)2 + 22 · (44.27− 44.02)2

= 357.005
SSE = (nA − 1)s2

A + (nB − 1)s2
B + (nC − 1)s2

C

= 25511.712

Source SS df MS F

Method 357.005 2 178.5 4.47
Error 2511.712 63 39.9
Total 2868.717 65

The F statistic, here observed to be 4.47, should be compared with the critical value
f0.05,2,63. We find f0.05,2,60 = 3.15 in Table A.6, and we thus reject the null hypothesis.
(We know that f0.05,2,63<f0.05,2,60.)
Assumptions:
The one-way ANOVA model is

Yij = µ+ αi + εij

where the error terms are independent and normally distributed with the same variance
across treatment groups.
Conclusion:
There is reason to believe that the expected reading score is not the same for all the
methods.

b) C has dimension 2× 3, since we are testing 2 linear hypotheses and we have 3 parameters
in our regression.
But, since we only have summary data - and not pairs of response and method, we can’t
fit a regression model directly. It is however possible to calculate the F-test statistics with
some effort, see R-code at course webpage, but that involves at bit of fiddling with the
terms and is not within the core of the course. Only those especially interested should
check out the R-code.

c) Let X̄B be the mean of a random sample from using method A and X̄C the mean of a
random sample from using method C. A natural estimator for γ is

γ̂ = X̄B

X̄C

11



We turn to first order Taylor approximations with

h(X̄B, X̄C) = X̄B

X̄C

∂h(X̄B, X̄C)
∂X̄B

= 1
X̄C

∂h(X̄B, X̄C)
∂X̄C

= −X̄B

X̄2
C

where the random variable X̄B has E(X̄B) = µB and Var(X̄B) = σ2
B/nB, and X̄C has

E(X̄C) = µC and Var(X̄C) = σ2
C/nC .

Define

h′B(µB, µC) = ∂h(X̄B, X̄C)
∂X̄B

|X̄B=µB ,X̄C=µC= 1
µC

h′C(µB, µC) = ∂h(X̄B, X̄C)
∂X̄C

|X̄B=µB ,X̄C=µC= −µB
µ2
C

We assume that the two samples are independent. The first order Taylor approximation
for two independent samples:

E(h(X̄B, X̄C)) ≈ h(µB, µC) = µB
µC

Var(h(X̄B, X̄C)) ≈ (h′B(µB, µC))2 Var(X̄B) + (h′C(µB, µC))2 Var(X̄C)

=
( 1
µC

)2
· σ

2
B

nB
+
(
−µB
µ2
C

)2

· σ
2
C

nC

Estimates using numerical values nB = 22, nC = 22, µ̂B = x̄B = 46.73, µ̂C = x̄C = 44.27,
σ̂2
B = s2

B = 7.3882, σ̂2
C = s2

C = 22 are as follows.

γ̂ = 46.73
44.27 = 1.06

E(h(X̄B, X̄C)) ≈ 46.73
44.27 = 1.06

Var(h(X̄B, X̄C) ≈
( 1

44.27

)2
· 7.3882

22 +
( 46.73

44.272

)2
· 5.7672

22
= 0.00127 + 0.00086 = 0.00212

SD(h(X̄B, X̄C)) ≈
√

0.00212 = 0.046
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