TMA4267 Linear Statistical Models
 Part 4: Design of Experiments (DOE)
 Solutions to recommended exercise 6 - V2017

February 20, 2017

Problem 1: Exam V2015, Problem 2

a) The least squares estimator of $\boldsymbol{\beta}$ is in general $\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} \boldsymbol{Y}$. Since the columns of X are orthogonal, $X^{\mathrm{T}} X$ is diagonal with $\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}$ as entry (j, j), where \boldsymbol{x}_{j} denotes the j th column of X. So $\left(X^{\mathrm{T}} X\right)^{-1}$ is diagonal with $1 /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$ as entry (j, j). The j th row of $\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is then $\boldsymbol{x}_{j}^{\mathrm{T}} /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$, and the j th entry of the estimator $\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{Y} /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$.
b) The interaction vector is $\left(\begin{array}{llll}1 & -1 & -1 & 1\end{array}\right)^{\mathrm{T}}$. By the above, the coefficient estimate is $\left(\begin{array}{lllllll}1 & -1 & -1 & 1\end{array}\right)\left(\begin{array}{llll}6 & 4 & 10 & 7\end{array}\right)^{\mathrm{T}} / 4=(6-4-10+7) / 4=-1 / 4$. The estimate of the effect is $2 \cdot(-1 / 4)=-1 / 2$.

Problem 2: Factorial experiments

a)

```
> library(FrF2)
> plan <- FrF2(nruns=16,nfactors=4,randomize=FALSE)
creating full factorial with 16 runs ...
> plan
    A B C D
1 -1 -1 -1 -1
2 1 - 1 - 1 -1
3
4
5 -1 -1 1 1 -1
6
7
8 1 1 1 -1
9 -1 -1 -1 1
10
11 -1 1
12
13 -1 -1 1 1
14
15
16}1014114
class=design, type= full factorial
```

```
> y <- c(14.6,24.8,12.3,20.1,13.8,22.3,12.0,20.0,16.3,23.7,13.5,19.4,11.3,23.6,11.2,21.8)
> plan <- add.response(plan,y)
> plan
    A B C D y
1 -1 -1 -1 -1 14.6
2 1 -1 -1 -1 24.8
3
4
5
6
7
8 1 1 1 -1 20.0
9
10
11 -1 1 1 -1 1 13.5
12
13 -1 -1 1 1 1 11.3
14
15 -1 1 1 1 11.2
16 1 1 1 1 21.8
class=design, type= full factorial
> lm4 <- lm(y~(.)~4,data=plan)
> effects <- 2*lm4$coeff
> summary(lm4)
Call:
lm.default(formula = y ~ (.) ~ 4, data = plan)
Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.54375 NA NA NA
\begin{tabular}{lrlll} 
A1 & 4.41875 & NA & NA & NA \\
B1 & -1.25625 & NA & NA & NA \\
C1 & -0.54375 & NA & NA & NA
\end{tabular}
D1 0.05625 NA NA NA
A1:B1 -0.38125 NA NA NA
A1:C1 \(0.50625 \quad\) NA NA NA
\begin{tabular}{lllll} 
A1:D1 & 0.10625 & NA & NA & N \\
\(B 1: C 1\) & 0.50625 & NA & NA & N
\end{tabular}
B1:D1 \(0.13125 \quad\) NA NA NA
C1:D1 -0.08125 NA NA NA
\begin{tabular}{lrlll} 
A1:B1:C1 & 0.10625 & NA & NA & NA \\
A1:B1:D1 & -0.01875 & NA & NA & NA
\end{tabular}
\begin{tabular}{lllll} 
A1:C1:D1 & 0.69375 & NA & NA & NA \\
\(\mathrm{B} 1: \mathrm{C} 1: \mathrm{D} 1\) & 0.14375 & NA & NA & NA
\end{tabular}
A1:B1:C1:D1 -0.13125 NA NA NA
Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1 ,Adjusted R-squared: NaN
F-statistic: \(N a N\) on 15 and 0 DF, p-value: NA
> anova(lm4) \# to see the seqSS mentioned in the solutions to d)
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
A \(\quad 1312.406312 .406\)
\(\begin{array}{llll}\text { B } & 1 & 25.251 & 25.251\end{array}\)
```

```
\begin{tabular}{llll} 
C & 1 & 4.731 & 4.731 \\
D & 1 & 0.051 & 0.051 \\
A:B & 1 & 2.326 & 2.326 \\
A:C & 1 & 4.101 & 4.101 \\
A:D & 1 & 0.181 & 0.181 \\
B:C & 1 & 4.101 & 4.101 \\
B:D & 1 & 0.276 & 0.276 \\
C:D & 1 & 0.106 & 0.106 \\
A:B:C & 1 & 0.181 & 0.181 \\
A:B:D & 1 & 0.006 & 0.006 \\
A:C:D & 1 & 7.701 & 7.701 \\
B:C:D & 1 & 0.331 & 0.331 \\
A:B:C:D & 1 & 0.276 & 0.276 \\
Besidul & 0 & 0.000 &
\end{tabular}
Residuals 0 0.000
Warning message:
In anova.lm(lm4) :
    ANOVA F-tests on an essentially perfect fit are unreliable
> DanielPlot(lm4)
barplot(sort(abs(effects[-1]), decreasing=FALSE),las=1,horiz=TRUE)
MEPlot(lm4)
> IAPlot(lm4)
```


$$
\begin{gathered}
\hat{A}=8.84 \\
\hat{B}=-2.51 \\
\hat{C}=-1.09 \\
\hat{D}=0.11 \\
\vdots \\
\widehat{A B C D}=-0.262
\end{gathered}
$$

From the Pareto and Daniel plots it looks like A and B are the most important factors.
b) The corresponding regression model is

$$
\begin{align*}
Y & =\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{3} z_{3}+\beta_{4} z_{4} \tag{1}\\
& +\beta_{12} z_{1} z_{2}+\beta_{13} z_{1} z_{3}+\beta_{14} z_{1} z_{4} \tag{2}\\
& +\beta_{23} z_{2} z_{3}+\beta_{24} z_{2} z_{4}+\beta_{34} z_{3} z_{4} \tag{3}\\
& +\beta_{123} z_{1} z_{2} z_{3}+\beta_{124} z_{1} z_{2} z_{4}+\beta_{134} z_{1} z_{3} z_{4} \tag{4}\\
& +\beta_{234} z_{2} z_{3} z_{4}+\beta_{1234} z_{1} z_{2} z_{3} z_{4}+\epsilon \tag{5}
\end{align*}
$$

And the estimated effects are of the kind

$$
\begin{equation*}
\hat{A}=2 \hat{\beta}_{1} \tag{6}
\end{equation*}
$$

where $\hat{\beta}_{1}$ is the least squares estimator of β_{1}. Same goes for the other effects.
c) In the analysis in a) we have 16 equations and 16 coefficients to estimate. Therefore there are no degrees of freedom left to estimate the variance. If we assume that the variance is known it is possible to make inference about the effects. For factor A we have:

$$
\left.\begin{array}{l}
\hat{A}=\frac{1}{8}\left(-Y_{1}+Y_{2}-\cdots-Y_{15}+Y_{16}\right) \\
\operatorname{Var}(\hat{A})=\frac{1}{64} 16 \sigma^{2}=\frac{\sigma^{2}}{4}
\end{array}\right\} \Rightarrow \hat{A} \sim N\left(\mu_{A}, \frac{\sigma^{2}}{4}\right)
$$

95% confidence interval for μ_{A} :

$$
\hat{A} \pm z_{0.025} \frac{\sigma}{2}=(6.88,10.80)
$$

95% confidence interval for μ_{B} :

$$
\hat{B} \pm z_{0.025} \frac{\sigma}{2}=(-4.47,-0.5)
$$

```
> nruns <- 16
> sigma <- 2
> sigmaeff <- sqrt(4*sigma^2/nruns)
> sigmaeff
[1] 1
```

> CIefflower $<-$ effects-1.96*sigmaeff			
> CIeffupper	<- effects+1.96*sigmaeff		
> cbind(effects, CIefflower, CIeffupper)			
	effects	CIefflower CIeffupper	
(Intercept)	35.0875	33.1275	37.0475
A1	8.8375	6.8775	10.7975
B1	-2.5125	-4.4725	-0.5525
C1	-1.0875	-3.0475	0.8725
D1	0.1125	-1.8475	2.0725
A1:B1	-0.7625	-2.7225	1.1975
A1:C1	1.0125	-0.9475	2.9725
A1:D1	0.2125	-1.7475	2.1725
B1:C1	1.0125	-0.9475	2.9725
B1:D1	0.2625	-1.6975	2.2225
C1:D1	-0.1625	-2.1225	1.7975
A1:B1:C1	0.2125	-1.7475	2.1725
A1:B1:D1	-0.0375	-1.9975	1.9225
A1:C1:D1	1.3875	-0.5725	3.3475
B1:C1:D1	0.2875	-1.6725	2.2475
A1:B1:C1:D1	-0.2625	-2.2225	1.6975

d) If there are good reasons to assume that the 3 - and 4 -factor interactions are 0 , we have enough degrees of freedom to estimate the variance.

```
> lm2 <- lm(y~(.) ~2,data=plan)
> summary(lm2)
Call:
lm.default(formula = y ~ (.)~2, data = plan)
Residuals:
\(\left.\begin{array}{rrrrrrrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right) 10\)
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lrrrcr} 
(Intercept) & 17.54375 & 0.32583 & 53.844 & \(4.18 \mathrm{e}-08\) & \(* * *\) \\
A1 & 4.41875 & 0.32583 & 13.562 & \(3.91 \mathrm{e}-05\) & \(* * *\) \\
B1 & -1.25625 & 0.32583 & -3.856 & 0.0119 *
\end{tabular}
\begin{tabular}{lllll} 
C1 & -0.54375 & 0.32583 & -1.669 & 0.1560
\end{tabular}
\begin{tabular}{lllll} 
D1 & 0.05625 & 0.32583 & 0.173 & 0.8697
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{A} 1: \mathrm{B1}\) & -0.38125 & 0.32583 & -1.170 & 0.2947
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{A} 1: \mathrm{C} 1\) & 0.50625 & 0.32583 & 1.554 & 0.1810
\end{tabular}
\begin{tabular}{lllll} 
A1:D1 & 0.10625 & 0.32583 & 0.326 & 0.7576
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{B} 1: \mathrm{C} 1\) & 0.50625 & 0.32583 & 1.554 & 0.1810
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{B} 1: \mathrm{D} 1\) & 0.13125 & 0.32583 & 0.403 & 0.7037
\end{tabular}
\begin{tabular}{lllll} 
C1:D1 & -0.08125 & 0.32583 & -0.249 & 0.8130
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' 1
Residual standard error: 1.303 on 5 degrees of freedom
Multiple R-squared: 0.9765,Adjusted R-squared: 0.9296
F-statistic: 20.81 on 10 and 5 DF, p-value: 0.001849
> anova(lm2)
Analysis of Variance Table
```


We see that the estimator for σ^{2} is now:

$$
s^{2}=M S E=1.699
$$

from the anova printout above, look for Mean Square Residuals.
It is also possible to see this from the print-out from anova under a)

$$
s^{2}=\frac{S S_{A B C}+\cdots+S S_{B C D}+S S_{A B C D}}{5}=\frac{0.181+0.006+7.701+0.331+0.276}{5}=1.699
$$

where 8.22 is 3 -way Seq SS (sum of the first 4 numbers above), and 0.276 is 4 -way Seq SS from the full analysis in section a). The variance of the effects is thus estimated by

$$
s_{e f f e c t}^{2}=\frac{4 s^{2}}{n}=0.425
$$

We can also obtain this estimate of $\sigma_{\text {effect }}^{2}$ directly by using the estimated effects
$s_{\text {effect }}^{2}=\frac{\widehat{A B C}^{2}+\cdots+\widehat{B C D}^{2}+\widehat{A B C D}^{2}}{5}=\frac{0.213^{2}+0.038^{2}+1.387^{2}+0.288^{2}+0.263^{2}}{5}=0.425$

Now we can do a T-test or an equivalent F-test to decide which of the effects are significant. This may be read off directly from the anova($\operatorname{lm} 2$) printout above.

We use the results and do an F-test:

$$
\begin{gathered}
F_{A}=\frac{M S A}{M S E}=\frac{n \hat{A}^{2} / 4}{1.699}=\frac{312.4}{1.699}=184 \\
F_{B}=\frac{M S B}{M S E}=\frac{25.251}{1.699}=14.87
\end{gathered}
$$

and get the p-values:

$$
\begin{gathered}
p=P\left(F_{1,5}>183.9\right) \approx 0 \\
p=P\left(F_{1,5}>14.87\right)=2 P\left(T_{5}>3.85\right)=0.012
\end{gathered}
$$

Either use the t-distribution since

$$
F_{1, \nu}=T_{\nu}^{2}
$$

or use the F-distribution directly.
We conclude that both A and B are significant at level 0.05.
e

```
> design1<-FrF2(16,4,blocks="ABCD",randomize=FALSE)
> summary(design1)
Call:
FrF2(16, 4, blocks = "ABCD", randomize = FALSE)
Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8
Factor settings (scale ends):
    A B C D
1 -1 -1 -1 -1
2
Design generating information:
$legend
[1] A=A B=B C=C D=D
```

We see that ABCD is the only effect confounded with the block effect
f To perform the experiment in four blocks, we need two generators. Choosing $A B C$ and $A D$ as generators gives

$$
\begin{align*}
A B C \cdot A D & =B C D \tag{7}\\
A B C \cdot B C D & =A D \tag{8}\\
A D \cdot B C D & =A B C \tag{9}
\end{align*}
$$

And we see that the effects confounded with the blocks are $A B C, B C D$ and $A D$. This design avoids main efffects being confounded with the block effect.
FrF2 choose default a different blocking (design2 below), but can be forced to choose the same as above (design3 below).
> design2 <- FrF2(16,4,blocks=4,alias.block.2fis=TRUE)
$>$ summary (design2)
Call:
FrF2(16, 4, blocks = 4, alias.block.2fis = TRUE)
Experimental design of type FrF2.blocked
16 runs
blocked design with 4 blocks of size 4
Factor settings (scale ends)

A	B	C	D

$\begin{array}{rrrrr}1 & -1 & -1 & -1 & -1 \\ 2 & 1 & 1 & 1 & 1\end{array}$
Design generating information
\$legend
1] $A=A \quad B=B \quad C=C \quad D=D$
generators for design itself
[1] full factorial
'block generators
[1] ACD BCD
no aliasing of main effects or 2 fis among experimental factors
liased with block main effects
[1] AB
The design itself:

lass=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
> design.info(design2)\$aliased.with.blocks
aliased.with.blocks
[1] "AB"
> design3 <-FrF2(16,4,blocks=c("ABC","AD"), alias.block.2fis=TRUE
summary(design3)
Call
FrF2(16, 4, blocks = c("ABC", "AD"), alias.block. 2 fis = TRUE)
Experimental design of type FrF2.blocked
6 runs
blocked design with 4 blocks of size 4
actor settings (scale ends):
A B C D
$\begin{array}{rrrrr}1 & -1 & -1 & -1 & -1 \\ 2 & 1 & 1 & 1 & 1\end{array}$

Design generating information:
\$legend
1] $A=A \quad B=B \quad C=C \quad D=D$
design.info(design3)\$aliased.with.blocks
1] "AD"

Problem 3: Process development

Run	A	B	C	Response
1	-1	-1	-1	550
2	1	-1	-1	669
3	-1	1	-1	633
4	1	1	-1	642
5	-1	-1	1	1037
6	1	-1	1	749
7	-1	1	1	1075
8	1	1	1	729

Intercept	A	B	C	AB	AC	BC	ABC
760.50	-126.5	$*$	274.0	-42.0	-190.5	-9.5	13.0

a) Let y_{i} be the response in run i.

$$
\begin{aligned}
\hat{B} & =\text { mean response with B is high }- \text { mean response when B is low } \\
& =\left(y_{3}+y_{4}+y_{7}+y_{8}\right) / 4-\left(y_{1}+y_{2}+y_{5}+y_{6}\right) / 4 \\
& =(633+642+1075+729) / 4-(550+669+1037+749) / 4 \\
& =769.75-751.25=18.5
\end{aligned}
$$

The main effects plot for B shows that the mean B response at the low level is at 751.25 , and going from the low to the high level the mean B response increaes with 18.5 to 769.75. The increase from the low to the high mean level of B is the B main effect.

b) The "Std. Error" column gives the estimated standard deviation of the regression coefficients. Let s^{2} be the estimated variance in the regression model (estimate for σ^{2}). Due to the orthogonality of the DOE design all estimated standard deviations are s / \sqrt{n} where
$n=16$. From the printout we see that $S=47.46$ (residual standard error) and Std.Error is then $47.46 / 4=11.865$ for all regression coefficients.

The estimated effect for B is by definition twice the estimated coefficient for B .
The Estimate is the estimated regression coefficient, the Std.Error is the estimated standard deviation of the regression coefficient, the t-value is the value of the t-statistics (see below), the p-value is from the test described below.

The t-statistic: Estimate/Std.Error $=3.688 / 11.865=0.311$.
H_{0} : The coefficient for the covariate B is zero, H_{1} : different from zero. A p-value of 0.76 means that we do not reject H_{0} at significance level 0.05 and assume that the B coefficient is zero and can be removed from the model.

What are the significant covariates in the model? Significant covariates are A, C and AC (and the intercept).
c) Since we have an orthogonal design the presence of factors othogonal to A and C does not change the parameter estimates for the regression coefficients in the model. But, the regression model is important for the estimation of the error variance σ^{2} and the Std.Error will then change with the change in the model.

Just looking at the estimated coefficients in the reduced model we see that the etching rate will increase with C and decrease with A. This would suggest to keep A at the low level and C at the high level. The interaction between A and C is negative, so with A at low level and C at high level the net effect is positive.

We may also calculate the estimated response (predictions) with the four combinations of A and C, which confirms that A low and C high is optimal.

A low and C low: $\hat{y}=776.062+50.812-153.062-76.812=597$.
A low and C high: $\hat{y}=776.062+50.812-153.062+76.812=1056.75$.
A high and C low: $\hat{y}=776.062-50.812-153.062+76.812=649$.
A high and C high: $\hat{y}=776.062-50.812+153.062-76.812=801.5$.

Calculate a 95% prediction interval for the etch rate based on your chosen levels for A and C. Since we have an othogonal design, the covariance matrix for the regression coefficients will be diagonal (all correlations are zero). The formula for the prediction interval with covariates $\boldsymbol{x}_{\mathbf{0}}$ is

$$
\left[\boldsymbol{x}_{0}^{T} \boldsymbol{B} \pm t_{n-k-1}\left(\frac{\alpha}{2}\right) \sqrt{\left(1+\boldsymbol{x}_{0}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}\right) s^{2}}\right]
$$

The covariate vector is $x_{0}=(1,-1,1,-1)$ for the intercept, A at low and C at high and thus AC at low level. \boldsymbol{B} is the vector of regression coefficients for the intercept, A, C and AC, thus $(776.06,-50.81,153.06,-76.81)$. The matrix $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$ is a diagonal matrix with $1 / 16$ on the diagonal. s is read off the printout as 41.96. The t critical value is $t_{16-3-1}(0.25)=t_{12}(0.25)=$ 2.18.
$\boldsymbol{x}_{0}^{T} \boldsymbol{B}=y_{0}=1056.75$ and we add
$2.18 \cdot \sqrt{1+(1,-1,1,-1) \operatorname{diag}(1 / 16)(1,-1,1,-1)} \cdot 41.96=2.18 \cdot \sqrt{1+4 / 16} \cdot 41.96=102.3$. The interval is then $[954.45,1159.05]$.
d) We now assume that in a pilot study with three factors only runs 1, 4, 6 and 7 from the table in the start of this problem were performed.

This is a half fraction of a 2^{3} experiment, thus a 2^{3-1} experiment. The generator for the design is $A B=-C$, and the defining relation is thus $I=-A B C$. The alias stucture is: $A=-B C$, $B=-A C, C=-A B$. The defining relation has three letters, and thus this is a resolution III experiment.

Problem 4: Blocking

For 2^{5} experiments, we have five factors: A B C D and E. The requirements are as follows: no main effect and the two-factor interactions involved factor $\mathrm{A}: \mathrm{AB}, \mathrm{AC}, \mathrm{AE}, \mathrm{AD}$, and AE should not be confounded with the block-effects.

For DOE blocks, there is no general method for how to choose the blocking factors. However, in this problem, as we can see, no two-factor interactions involved with A should be confounded. This can give us the first impression that we only use interactions involved with $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E for blocking. Let B1, B2, and B3 be threse block generators. (Remember that we may produce 8 blocks from three block generators by letting the block be defined by the 8 combinations of -1 and 1 for the three block generators, see page 16 of the DOE note).

For instance we can try with $\mathrm{B} 1=\mathrm{BC}, \mathrm{B} 2=\mathrm{CD}, \mathrm{B} 3=\mathrm{DE}$, which gives us
$\mathrm{B} 1 \mathrm{~B} 2=\mathrm{BD}$
$\mathrm{B} 1 \mathrm{~B} 3=\mathrm{BCDE}$
$\mathrm{B} 2 \mathrm{~B} 3=\mathrm{CE}$
$\mathrm{B} 1 \mathrm{~B} 2 \mathrm{~B} 3=\mathrm{BE}$

Similarly, blocking factors such as $\mathrm{B} 1=\mathrm{BD}, \mathrm{B} 2=\mathrm{CE}, \mathrm{B} 3=\mathrm{CD}$ also satisfies the requirement, you can check by yourself.

We may think about the factor A now:
$\mathrm{B} 1=\mathrm{ABC}, \mathrm{B} 2=\mathrm{ACD}, \mathrm{B} 3=\mathrm{ADE}$ will also satisfy the requirements since
$\mathrm{B} 1 \mathrm{~B} 2=\mathrm{BD}$
$\mathrm{B} 1 \mathrm{~B} 3=\mathrm{BCDE}$
$\mathrm{B} 2 \mathrm{~B} 3=\mathrm{CE}$
$\mathrm{B} 1 \mathrm{~B} 2 \mathrm{~B} 3=\mathrm{ABE}$.
You can actually find many other choices which satisfy the requirements.

Problem 5: Design resolution

a) $\mathrm{D}=\mathrm{ABC}, \mathrm{I}=\mathrm{ABCD}$. Therefore the resolution is IV. The resolution is the length of the shortes defining relation.
b) $\mathrm{E}=\mathrm{ABC}$
$\mathrm{F}=\mathrm{ABD}$
$\mathrm{G}=\mathrm{ACD}$
$\mathrm{H}=\mathrm{BCD}$
which gives $\mathrm{I}=\mathrm{ABCE}=\mathrm{ABDF}=\mathrm{ACDG}=\mathrm{BCDH}$
The additional words are obtained from
$I^{2}=\mathrm{CDEF}=\mathrm{BDEG}=\mathrm{ADEH}=\mathrm{BCFG}=\mathrm{ACFH}=\mathrm{ABGH}$

$I^{3}=\mathrm{AEFG}=\mathrm{BEFH}=\mathrm{CEGH}=\mathrm{DFGH}$
 $I^{4}=\mathrm{ABCDEFGH}$

None of the words have shorter length than four which means that the design is of resolution IV.
c) With $\mathrm{B} 1=\mathrm{AB}$ we get that the two-factor interactions CE, DF and GH also are confounded with the block effect in addition to some four-factor interactions and a six-factor interaction.
d) It is possible to investigate 16 factors in 32 runs and still have a resolution IV design. This can be seen as follows. A fold-over of a resolution III design becomes a resolution IV design. In 16 runs it is possible to construct a resolution III design in 15 factors. Adding a column of plus 1 's and then do the folding gives us a resolution IV design for 16 factors in 32 runs.

