
TMA4267 Linear Statistical Models
Part 4: Design of Experiments (DOE)

Solutions to recommended exercise 6 - V2017

February 20, 2017

Problem 1: Exam V2015, Problem 2

a) The least squares estimator of β is in general (XTX)−1XTY . Since the columns of X are
orthogonal, XTX is diagonal with xT

j xj as entry (j, j), where xj denotes the jth column of X.
So (XTX)−1 is diagonal with 1/(xT

j xj) as entry (j, j). The jth row of (XTX)−1XT is then
xT
j /(x

T
j xj), and the jth entry of the estimator xT

j Y /(x
T
j xj).

b) The interaction vector is (1 − 1 − 1 1)T. By the above, the coefficient estimate is
(1 − 1 − 1 1)(6 4 10 7)T/4 = (6 − 4 − 10 + 7)/4 = −1/4. The estimate of the effect is
2 · (−1/4) = −1/2.

Problem 2: Factorial experiments

a)

> library(FrF2)
> plan <- FrF2(nruns=16,nfactors=4,randomize=FALSE)
creating full factorial with 16 runs ...
> plan

A B C D
1 -1 -1 -1 -1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 -1 -1
5 -1 -1 1 -1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 -1
9 -1 -1 -1 1
10 1 -1 -1 1
11 -1 1 -1 1
12 1 1 -1 1
13 -1 -1 1 1
14 1 -1 1 1
15 -1 1 1 1
16 1 1 1 1
class=design, type= full factorial
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> y <- c(14.6,24.8,12.3,20.1,13.8,22.3,12.0,20.0,16.3,23.7,13.5,19.4,11.3,23.6,11.2,21.8)
> plan <- add.response(plan,y)
> plan

A B C D y
1 -1 -1 -1 -1 14.6
2 1 -1 -1 -1 24.8
3 -1 1 -1 -1 12.3
4 1 1 -1 -1 20.1
5 -1 -1 1 -1 13.8
6 1 -1 1 -1 22.3
7 -1 1 1 -1 12.0
8 1 1 1 -1 20.0
9 -1 -1 -1 1 16.3
10 1 -1 -1 1 23.7
11 -1 1 -1 1 13.5
12 1 1 -1 1 19.4
13 -1 -1 1 1 11.3
14 1 -1 1 1 23.6
15 -1 1 1 1 11.2
16 1 1 1 1 21.8
class=design, type= full factorial
> lm4 <- lm(y~(.)^4,data=plan)
> effects <- 2*lm4$coeff
> summary(lm4)

Call:
lm.default(formula = y ~ (.)^4, data = plan)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.54375 NA NA NA
A1 4.41875 NA NA NA
B1 -1.25625 NA NA NA
C1 -0.54375 NA NA NA
D1 0.05625 NA NA NA
A1:B1 -0.38125 NA NA NA
A1:C1 0.50625 NA NA NA
A1:D1 0.10625 NA NA NA
B1:C1 0.50625 NA NA NA
B1:D1 0.13125 NA NA NA
C1:D1 -0.08125 NA NA NA
A1:B1:C1 0.10625 NA NA NA
A1:B1:D1 -0.01875 NA NA NA
A1:C1:D1 0.69375 NA NA NA
B1:C1:D1 0.14375 NA NA NA
A1:B1:C1:D1 -0.13125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1,Adjusted R-squared: NaN
F-statistic: NaN on 15 and 0 DF, p-value: NA
> anova(lm4) # to see the seqSS mentioned in the solutions to d)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 312.406 312.406
B 1 25.251 25.251
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C 1 4.731 4.731
D 1 0.051 0.051
A:B 1 2.326 2.326
A:C 1 4.101 4.101
A:D 1 0.181 0.181
B:C 1 4.101 4.101
B:D 1 0.276 0.276
C:D 1 0.106 0.106
A:B:C 1 0.181 0.181
A:B:D 1 0.006 0.006
A:C:D 1 7.701 7.701
B:C:D 1 0.331 0.331
A:B:C:D 1 0.276 0.276
Residuals 0 0.000
Warning message:
In anova.lm(lm4) :

ANOVA F-tests on an essentially perfect fit are unreliable
> DanielPlot(lm4)
> barplot(sort(abs(effects[-1]),decreasing=FALSE),las=1,horiz=TRUE)
> MEPlot(lm4)
> IAPlot(lm4)
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Â = 8.84

B̂ = −2.51
Ĉ = −1.09
D̂ = 0.11

...
...

ÂBCD = −0.262

From the Pareto and Daniel plots it looks like A and B are the most important factors.

b) The corresponding regression model is

Y = β0 + β1z1 + β2z2 + β3z3 + β4z4 (1)
+ β12z1z2 + β13z1z3 + β14z1z4 (2)
+ β23z2z3 + β24z2z4 + β34z3z4 (3)
+ β123z1z2z3 + β124z1z2z4 + β134z1z3z4 (4)
+ β234z2z3z4 + β1234z1z2z3z4 + ε (5)

And the estimated effects are of the kind

Â = 2β̂1 (6)

where β̂1 is the least squares estimator of β1. Same goes for the other effects.

c) In the analysis in a) we have 16 equations and 16 coefficients to estimate. Therefore there
are no degrees of freedom left to estimate the variance. If we assume that the variance is known
it is possible to make inference about the effects. For factor A we have:

Â = 1
8(−Y1 + Y2 − · · · − Y15 + Y16)

Var(Â) = 1
6416σ

2 = σ2

4

⇒ Â ∼ N
(
µA,

σ2

4

)

95 % confidence interval for µA:

Â± z0.025
σ

2
= (6.88, 10.80)

95 % confidence interval for µB:

B̂ ± z0.025
σ

2
= (−4.47,−0.5)

> nruns <- 16
> sigma <- 2
> sigmaeff <- sqrt(4*sigma^2/nruns)
> sigmaeff
[1] 1
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> CIefflower <- effects-1.96*sigmaeff
> CIeffupper <- effects+1.96*sigmaeff
> cbind(effects,CIefflower,CIeffupper)

effects CIefflower CIeffupper
(Intercept) 35.0875 33.1275 37.0475
A1 8.8375 6.8775 10.7975
B1 -2.5125 -4.4725 -0.5525
C1 -1.0875 -3.0475 0.8725
D1 0.1125 -1.8475 2.0725
A1:B1 -0.7625 -2.7225 1.1975
A1:C1 1.0125 -0.9475 2.9725
A1:D1 0.2125 -1.7475 2.1725
B1:C1 1.0125 -0.9475 2.9725
B1:D1 0.2625 -1.6975 2.2225
C1:D1 -0.1625 -2.1225 1.7975
A1:B1:C1 0.2125 -1.7475 2.1725
A1:B1:D1 -0.0375 -1.9975 1.9225
A1:C1:D1 1.3875 -0.5725 3.3475
B1:C1:D1 0.2875 -1.6725 2.2475
A1:B1:C1:D1 -0.2625 -2.2225 1.6975

d) If there are good reasons to assume that the 3- and 4-factor interactions are 0, we have
enough degrees of freedom to estimate the variance.

> lm2 <- lm(y~(.)^2,data=plan)
> summary(lm2)

Call:
lm.default(formula = y ~ (.)^2, data = plan)

Residuals:
1 2 3 4 5 6 7 8 9 10

-1.0562 0.7687 -0.3313 0.6188 1.0937 -0.8062 0.2938 -0.5813 0.8437 -0.5562
11 12 13 14 15 16

0.5438 -0.8312 -0.8812 0.5938 -0.5063 0.7937

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.54375 0.32583 53.844 4.18e-08 ***
A1 4.41875 0.32583 13.562 3.91e-05 ***
B1 -1.25625 0.32583 -3.856 0.0119 *
C1 -0.54375 0.32583 -1.669 0.1560
D1 0.05625 0.32583 0.173 0.8697
A1:B1 -0.38125 0.32583 -1.170 0.2947
A1:C1 0.50625 0.32583 1.554 0.1810
A1:D1 0.10625 0.32583 0.326 0.7576
B1:C1 0.50625 0.32583 1.554 0.1810
B1:D1 0.13125 0.32583 0.403 0.7037
C1:D1 -0.08125 0.32583 -0.249 0.8130
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.303 on 5 degrees of freedom
Multiple R-squared: 0.9765,Adjusted R-squared: 0.9296
F-statistic: 20.81 on 10 and 5 DF, p-value: 0.001849

> anova(lm2)
Analysis of Variance Table
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Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 312.406 312.406 183.9168 3.906e-05 ***
B 1 25.251 25.251 14.8653 0.01193 *
C 1 4.731 4.731 2.7850 0.15602
D 1 0.051 0.051 0.0298 0.86971
A:B 1 2.326 2.326 1.3691 0.29470
A:C 1 4.101 4.101 2.4141 0.18096
A:D 1 0.181 0.181 0.1063 0.75756
B:C 1 4.101 4.101 2.4141 0.18096
B:D 1 0.276 0.276 0.1623 0.70373
C:D 1 0.106 0.106 0.0622 0.81300
Residuals 5 8.493 1.699
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> effects <- lm2$coeff
> plot(lm2$fitted,rstudent(lm2),pch=20)
> qqnorm(rstudent(lm2),pch=20)
> qqline(rstudent(lm2))
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We see that the estimator for σ2 is now:

s2 = MSE = 1.699

from the anova printout above, look for Mean Square Residuals.

It is also possible to see this from the print-out from anova under a)

s2 =
SSABC + · · ·+ SSBCD + SSABCD

5
=

0.181 + 0.006 + 7.701 + 0.331 + 0.276

5
= 1.699

where 8.22 is 3-way Seq SS (sum of the first 4 numbers above), and 0.276 is 4-way Seq SS from
the full analysis in section a). The variance of the effects is thus estimated by

s2effect =
4s2

n
= 0.425

We can also obtain this estimate of σ2effect directly by using the estimated effects

s2effect =
ÂBC

2
+ · · ·+ B̂CD

2
+ ÂBCD

2

5
=

0.2132 + 0.0382 + 1.3872 + 0.2882 + 0.2632

5
= 0.425
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Now we can do a T-test or an equivalent F-test to decide which of the effects are significant.
This may be read off directly from the anova(lm2) printout above.

We use the results and do an F-test:

FA =
MSA

MSE
=
nÂ2/4

1.699
=

312.4

1.699
= 184

FB =
MSB

MSE
=

25.251

1.699
= 14.87,

and get the p-values:
p = P (F1,5 > 183.9) ≈ 0

p = P (F1,5 > 14.87) = 2P (T5 > 3.85) = 0.012

Either use the t-distribution since
F1,ν = T 2

ν

or use the F-distribution directly.

We conclude that both A and B are significant at level 0.05.

e

> design1<-FrF2(16,4,blocks="ABCD",randomize=FALSE)
> summary(design1)
Call:
FrF2(16, 4, blocks = "ABCD", randomize = FALSE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8

Factor settings (scale ends):
A B C D

1 -1 -1 -1 -1
2 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D

We see that ABCD is the only effect confounded with the block effect

f To perform the experiment in four blocks, we need two generators. Choosing ABC and AD
as generators gives

ABC ·AD = BCD (7)
ABC ·BCD = AD (8)
AD ·BCD = ABC (9)

And we see that the effects confounded with the blocks are ABC, BCD and AD. This design
avoids main efffects being confounded with the block effect.

FrF2 choose default a different blocking (design2 below), but can be forced to choose the same
as above (design3 below).
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> design2 <- FrF2(16,4,blocks=4,alias.block.2fis=TRUE)
> summary(design2)
Call:
FrF2(16, 4, blocks = 4, alias.block.2fis = TRUE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 4 blocks of size 4

Factor settings (scale ends):
A B C D

1 -1 -1 -1 -1
2 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D

$‘generators for design itself‘
[1] full factorial

$‘block generators‘
[1] ACD BCD
no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] AB

The design itself:
run.no run.no.std.rp Blocks A B C D

1 1 15.1.4 1 1 1 1 -1
2 2 14.1.3 1 1 1 -1 1
3 3 4.1.2 1 -1 -1 1 1
4 4 1.1.1 1 -1 -1 -1 -1

run.no run.no.std.rp Blocks A B C D
5 5 11.2.4 2 1 -1 1 -1
6 6 10.2.3 2 1 -1 -1 1
7 7 8.2.2 2 -1 1 1 1
8 8 5.2.1 2 -1 1 -1 -1

run.no run.no.std.rp Blocks A B C D
9 9 7.3.2 3 -1 1 1 -1
10 10 6.3.1 3 -1 1 -1 1
11 11 12.3.4 3 1 -1 1 1
12 12 9.3.3 3 1 -1 -1 -1

run.no run.no.std.rp Blocks A B C D
13 13 16.4.4 4 1 1 1 1
14 14 13.4.3 4 1 1 -1 -1
15 15 2.4.1 4 -1 -1 -1 1
16 16 3.4.2 4 -1 -1 1 -1
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
> design.info(design2)$aliased.with.blocks
$aliased.with.blocks
[1] "AB"

> design3 <-FrF2(16,4,blocks=c("ABC","AD"),alias.block.2fis=TRUE)
> summary(design3)
Call:
FrF2(16, 4, blocks = c("ABC", "AD"), alias.block.2fis = TRUE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 4 blocks of size 4

Factor settings (scale ends):
A B C D

1 -1 -1 -1 -1
2 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D

> design.info(design3)$aliased.with.blocks
[1] "AD"
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Problem 3: Process development

Run A B C Response
1 −1 −1 −1 550
2 1 −1 −1 669
3 −1 1 −1 633
4 1 1 −1 642
5 −1 −1 1 1037
6 1 −1 1 749
7 −1 1 1 1075
8 1 1 1 729

Intercept A B C AB AC BC ABC
760.50 -126.5 * 274.0 -42.0 -190.5 -9.5 13.0

a) Let yi be the response in run i.

B̂ = mean response with B is high−mean response when B is low
= (y3 + y4 + y7 + y8)/4− (y1 + y2 + y5 + y6)/4

= (633 + 642 + 1075 + 729)/4− (550 + 669 + 1037 + 749)/4

= 769.75− 751.25 = 18.5

The main effects plot for B shows that the mean B response at the low level is at 751.25, and
going from the low to the high level the mean B response increaes with 18.5 to 769.75. The
increase from the low to the high mean level of B is the B main effect.
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b) The “Std. Error” column gives the estimated standard deviation of the regression coef-
ficients. Let s2 be the estimated variance in the regression model (estimate for σ2). Due
to the orthogonality of the DOE design all estimated standard deviations are s/

√
n where
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n = 16. From the printout we see that S = 47.46 (residual standard error) and Std.Error is
then 47.46/4 = 11.865 for all regression coefficients.

The estimated effect for B is by definition twice the estimated coefficient for B.

The Estimate is the estimated regression coefficient, the Std.Error is the estimated standard
deviation of the regression coefficient, the t-value is the value of the t-statistics (see below), the
p-value is from the test described below.

The t-statistic: Estimate/Std.Error=3.688/11.865=0.311.
H0: The coefficient for the covariate B is zero, H1: different from zero. A p-value of 0.76 means
that we do not reject H0 at significance level 0.05 and assume that the B coefficient is zero -
and can be removed from the model.

What are the significant covariates in the model? Significant covariates are A, C and AC (and
the intercept).

c) Since we have an orthogonal design the presence of factors othogonal to A and C does not
change the parameter estimates for the regression coefficients in the model. But, the regression
model is important for the estimation of the error variance σ2 and the Std.Error will then change
with the change in the model.

Just looking at the estimated coefficients in the reduced model we see that the etching rate will
increase with C and decrease with A. This would suggest to keep A at the low level and C at
the high level. The interaction between A and C is negative, so with A at low level and C at
high level the net effect is positive.

We may also calculate the estimated response (predictions) with the four combinations of A and
C, which confirms that A low and C high is optimal.

A low and C low: ŷ = 776.062 + 50.812− 153.062− 76.812 = 597.
A low and C high: ŷ = 776.062 + 50.812− 153.062 + 76.812 = 1056.75.
A high and C low: ŷ = 776.062− 50.812− 153.062 + 76.812 = 649.
A high and C high: ŷ = 776.062− 50.812 + 153.062− 76.812 = 801.5.

Calculate a 95% prediction interval for the etch rate based on your chosen levels for A and C.
Since we have an othogonal design, the covariance matrix for the regression coefficients will be
diagonal (all correlations are zero). The formula for the prediction interval with covariates x0 is

[xT0B ± tn−k−1(
α

2
)
√
(1 + xT0 (X

TX)−1x0)s2]

The covariate vector is x0 = (1,−1, 1,−1) for the intercept, A at low and C at high and thus
AC at low level. B is the vector of regression coefficients for the intercept, A, C and AC, thus
(776.06,−50.81, 153.06,−76.81). The matrix (XTX)−1 is a diagonal matrix with 1/16 on the
diagonal. s is read off the printout as 41.96. The t critical value is t16−3−1(0.25) = t12(0.25) =
2.18.

xT0B = y0 = 1056.75 and we add
2.18 ·

√
1 + (1,−1, 1,−1)diag(1/16)(1,−1, 1,−1) · 41.96 = 2.18 ·

√
1 + 4/16 · 41.96 = 102.3. The

interval is then [954.45, 1159.05].

d) We now assume that in a pilot study with three factors only runs 1, 4, 6 and 7 from the
table in the start of this problem were performed.
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This is a half fraction of a 23 experiment, thus a 23−1 experiment. The generator for the design
is AB = −C, and the defining relation is thus I = −ABC. The alias stucture is: A = −BC,
B = −AC, C = −AB. The defining relation has three letters, and thus this is a resolution III
experiment.

Problem 4: Blocking

For 25 experiments, we have five factors: A B C D and E. The requirements are as follows: no
main effect and the two-factor interactions involved factor A: AB, AC, AE, AD, and AE should
not be confounded with the block-effects.

For DOE blocks, there is no general method for how to choose the blocking factors. However, in
this problem, as we can see, no two-factor interactions involved with A should be confounded.
This can give us the first impression that we only use interactions involved with B, C, D and E
for blocking. Let B1, B2, and B3 be threse block generators. (Remember that we may produce
8 blocks from three block generators by letting the block be defined by the 8 combinations of -1
and 1 for the three block generators, see page 16 of the DOE note).

For instance we can try with B1=BC, B2=CD, B3=DE, which gives us
B1B2=BD
B1B3=BCDE
B2B3=CE
B1B2B3=BE

Similarly, blocking factors such as B1=BD, B2=CE, B3=CD also satisfies the requirement, you
can check by yourself.

We may think about the factor A now:
B1=ABC, B2=ACD, B3=ADE will also satisfy the requirements since
B1B2=BD
B1B3=BCDE
B2B3=CE
B1B2B3=ABE.

You can actually find many other choices which satisfy the requirements.

Problem 5: Design resolution

a) D=ABC, I=ABCD. Therefore the resolution is IV. The resolution is the length of the shortes
defining relation.

b) E=ABC
F=ABD
G=ACD
H=BCD
which gives I=ABCE=ABDF=ACDG=BCDH

The additional words are obtained from
I2= CDEF=BDEG=ADEH=BCFG=ACFH=ABGH
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I3=AEFG=BEFH=CEGH=DFGH
I4=ABCDEFGH

None of the words have shorter length than four which means that the design is of resolution
IV.

c) With B1=AB we get that the two-factor interactions CE, DF and GH also are confounded
with the block effect in addition to some four-factor interactions and a six-factor interaction.

d) It is possible to investigate 16 factors in 32 runs and still have a resolution IV design. This
can be seen as follows. A fold-over of a resolution III design becomes a resolution IV design. In
16 runs it is possible to construct a resolution III design in 15 factors. Adding a column of plus
1’s and then do the folding gives us a resolution IV design for 16 factors in 32 runs.
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