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TMA4267 Linear Statistical Models

I Statistics, linear statistical models and movie recommender
systems.

I Learning outcome.
I TMA4267 core and parts.
I Background knowledge in probability and statistical inference.
I TMA4267 course information.
I Voting and questionnaire.
I Part 1: Multivariate RVs and the multivariate normal

distribution.
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What is Statistics?

I The true foundation of theology is to ascertain the character
of God.

I It is by the aid of Statistics that law in the social sphere can
be ascertained and codified,

I and, certain aspects of the character of God hereby revealed.
I The study of statistics is thus a religious service.

Florence Nightingale (1820-1910). Quotation from "Games, Gods
and Gambling: A History of Probability and Statistical Ideas" by F.
N. David.
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What is Statistics?

I The goal of Statistics is to expand our knowledge based on
collection and analysis of empirical data.

I Two branches:
I Probability: the mathematical study of the probability of

random events.
I Statistical Inference: models and methods for collecting,

describing, analysing and interpreting numerical data.

Drawing taken from http://www.nearingzero.net - now at
http://www.lab-initio.com/
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Word cloud: Probability
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Word cloud: Statistical Inference

5 / 29



Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):

Y = β0 + β1x + ε

Multiple linear regression (also include other explanatory variables):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?
We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, hypothesis tests, design of
experiments, . . ..

6 / 29

Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):

Y = β0 + β1x + ε

Multiple linear regression (also include other explanatory variables):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The multiple linear regression model is our linear statistical model!

So, why is this course not called "Regression"?
We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, hypothesis tests, design of
experiments, . . ..

6 / 29

Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):

Y = β0 + β1x + ε

Multiple linear regression (also include other explanatory variables):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?

We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, hypothesis tests, design of
experiments, . . ..

6 / 29

Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):

Y = β0 + β1x + ε

Multiple linear regression (also include other explanatory variables):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?
We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, hypothesis tests, design of
experiments, . . ..

6 / 29



Recommender systems

I Recommender systems are a subclass of information filtering
system that seek to predict the ’rating’ or ’preference’ that a
user would give to an item.

I Recommender systems have become extremely common in
recent years, and are applied in a variety of applications. The
most popular ones are probably movies, music, news, books,
research articles, search queries, social tags, and products in
general. However, there are also recommender systems for
experts, collaborators, jokes, restaurants, financial services,life
insurance, persons (online dating), and Twitter followers.

Source: Wikipedia: Recommender systems
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The Netflix Price: 2006
Text from http:\www.netflixprice.com.

I To help customers find those movies, we’ve developed our
world-class movie recommendation system: Cinematch.

I Its job is to predict whether someone will enjoy a movie based
on how much they liked or disliked other movies. We use those
predictions to make personal movie recommendations based on
each customer’s unique tastes. And while Cinematch is doing
pretty well, it can always be made better.

I We provide you with a lot of anonymous rating data, and a
prediction accuracy bar that is 10% better than what
Cinematch can do on the same training data set. (Accuracy is
a measurement of how closely predicted ratings of movies
match subsequent actual ratings.)

I Remark: At this point in time DVDs were sent to customers
by mail - this was before the age of online streaming.

The prize was awarded the team BellKor’s Pragmatic Chaos in
2009.
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Cinematch

The Cinematch recommender system: use statistical linear models
with a lot of data conditioning. I have not found any other
information on the algorithm online.

"Simple" linear suggestion:
(predicted score on movie for person)=
(some overall score for this movie)+
(some overall score used by this person)+
(similarity of this movie with other movie this person has seen)*
(how much this person liked that movie)+
the same for all the movies this person has rated+
error term.

9 / 29

The Netflix Price: Training data

I The training data set consists of more than 100 million ratings
from over 480 thousand randomly-chosen, anonymous
customers on nearly 18 thousand movie titles.

I The ratings are on a scale from 1 to 5 (integral) stars. The
date of each rating and the title and year of release for each
movie are provided.

I No other customer or movie information is provided. No other
data were employed to compute Cinematch’s accuracy values
used in this Contest.

Text from http:\www.netflixprice.com.
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The Netflix Price: Test data
I A qualifying test set is provided containing over 2.8 million

customer/movie id pairs with rating dates but with the ratings
withheld.

I Eligible algorithms must provide predictions for all the withheld
ratings for each customer/movie id pair in the qualifying set.

I The qualifying set is divided into two disjoint subsets
containing randomly selected pairs from the qualifying set.
The assignment of pairs to these subsets is not disclosed.

I The Site will score each subset by computing the square root
of the averaged squared difference between each prediction and
the actual rating (the root mean squared error or "RMSE") in
the subset, rounded to the nearest .0001.

I The RMSE for the first "quiz" subset will be reported publicly
on the Site,

I the RMSE for the second "test" subset will not be reported
publicly but will be employed to qualify a submission as
described below.

Text from http:\www.netflixprice.com.
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The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29

The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29

The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29



The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29

The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29

The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.

12 / 29

The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

I Most entries into the competition looked at the problem as a
set of algorithms – focus on prediction rather than on
understanding what drives the preditions.

I Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

I The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

I The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.
12 / 29



TMA4267 Linear statistical methods
Learning outcome, Knowledge

I The student has strong theoretical knowledge about the most
popular statistical models and methods that are used in
science and technology, with emphasis on regression-type
statistical models.

I The statistical properties of the multivariate normal
distribution are well known to the student, and the student is
familiar with the role of the multivariate normal distribution
within linear statistical models.
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TMA4267 Linear statistical methods
Learning outcome, Skills

I The student knows how to design an experiment and

I how to collect informative data of high quality to study a
phenomenon of interest.

I Subsequently, the student is able to choose a suitable
statistical model,

I apply sound statistical methods, and
I perform the analyses using statistical software.
I The student knows how to present the results from the

statistical analyses, and how to draw conclusions about the
phenomenon under study.
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TMA4267: Parts

I Part 1: Multivariate RVs and the multivariate normal
distribution [week 2-5].

I Data consists of simultaneous measurements on many
variables: we work with random vectors and random matrices.

I There is a strong connection between the multivariate normal
distribution and the classical linear model.

I Part 2: The classical linear model [week 6-9]
I We want to understand the relationship between many

variables: with focus on linear relationships through the
classical linear model (multiple linear regression).

I Part 3: Hypothesis tests and analysis of variance [week 9-11]
I Is there and association between a response and an explanatory

variable? Does a response vary between treatment groups?
I Part 4: Design of Experiments [week 12-13+project]

I If we want to collect data, we need to do know how to design
an experiment.
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Do you know this?

Recommended background: TMA4240/TMA4245 Statistics.
I Probability: (continuous) random variables (RV), probability

distribution function (pdf), cumulative distribution function
(cdf), mean E, variance Var, covariance Cov, correlation Corr,
transformation formula, momentgenerating function (MFG),
normal, chi-square and t-distributions.

I Inference: population and sample philosophy, parameter
estimation, confidence interval, hypothesis test, p-value,
simple linear regression.

I Linear methods: vector and matrix algebra (trace,
determinant, eigenvalues/vectors), real vector spaces,
orthogonality, spectral decomposition.
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TMA4267 Linear Statistical Models
Course information

https://innsida.ntnu.no/bb
I Course information.
I Course material.
I Lectures (and handouts).
I Statistical software.
I Exercises (6 recommended and 4 compulsory).
I Exam (80% of portfolio assessment).
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Is this the correct course for you?

Are you afraid that this course have a too strong focus on theory
and to little on the practical aspects of statistics?

You may also
look at at the following similar courses (that is, a second course in
statistics, with focus on inference)

I ST2304 Statistical modelling for biology/biotechnology:
https://wiki.math.ntnu.no/st2304/

I TMA4255 Applied statistics, for all siv.ing. studiprograms
(except IndMat): https://wiki.math.ntnu.no/tma4255/

I KLMED Medical statistics II:
https://www.ntnu.no/studier/emner/KLMED8005

18 / 29

Is this the correct course for you?

Are you afraid that this course have a too strong focus on theory
and to little on the practical aspects of statistics? You may also
look at at the following similar courses (that is, a second course in
statistics, with focus on inference)

I ST2304 Statistical modelling for biology/biotechnology:
https://wiki.math.ntnu.no/st2304/

I TMA4255 Applied statistics, for all siv.ing. studiprograms
(except IndMat): https://wiki.math.ntnu.no/tma4255/

I KLMED Medical statistics II:
https://www.ntnu.no/studier/emner/KLMED8005

18 / 29

Electronic voting

– more than an anonymous show of hands?

For student: check that topics are understood, compare to class,
focus on the question asked, while preserving
anonymity.

For lecturer: collect data to design sessions that are more
contingent.

Software: clicker. math.ntnu.no (single questions), Kahoot!
(end-of-lecture sum-up), quiz in Blackboard.
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Future studies?

What is your current plan of topic for future studies?
I A: Statistics
I B: Mathematics
I C: Numerics
I D: Other
I E: Don’t know
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Electronic voting

Use your smart phone, or other devise with internet access and go
to http://clicker.math.ntnu.no/, and then select TMA4267 as
classroom.
Answers

I A: Statistics
I B: Mathematics
I C: Numerics
I D: Other
I E: Don’t know

Start voting now!
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Part 1: Multivariate random vectors and the multivariate
normal distribution

I Härdle and Simar (2015): Applied Multivariate Statistical
Analysis. Springer.

I Chapter 2 (p. 53-76): A Short Excursion into Matrix Algebra
(partly lectured, manly assumed known).

I Chapter 3.3 (p. 89-93): Summary statistics.
I Chapter 4.1-4.5 (p. 117-149): Multivariate Distributions.
I Chapter 5.1 (p. 183-190): Elementary Properties of the

Multinormal.
I Fahrmair, Kneib, Lang and Marx (2013): Regression. Springer.

I Appendix B: Def B.11 (chis q), B.13 (t) , B14 (F), Theorem
B.2 and B3.3 (distribution of quadratic forms).

A merged pdf named TMA4267Part1.pdf is available from Bb.
Both eBooks and can be downloaded without charge for NTNU
students.
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The Cork deposit data

I Classical data set from Rao (1948).
I Weigth of bark deposits of n = 28 cork trees in p = 4

directions (N, E, S, W).

Tree N E S W
1 72 66 76 77
2 60 53 66 63
3 56 57 64 58
...

...
...

...
...

28 48 54 57 43

How may we define a random vector in connection to the cork
deposit data set?
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Hands-on

Let X (2×1) have joint pdf (see the 3D-printed figure)

f (x1, x2) =
1
2π

e−
1
2 (x2

1 +x2
2 ) for −∞ < x1, x2 <∞

Find:
1. the marginal distributions f1(x1) and f2(x2),
2. the conditional distributions f (x1 | x2) and f (x2 | x1).
3. What about F (x1, x2)?

Hint (why?): ∫ ∞

−∞

1√
2π

e−
1
2 x

2
dx = 1
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Copula [H4.1, p120]

A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with the
following properties:

I For every u ∈ [0, 1] : C (0, u) = C (u, 0) = 0.
I For every u ∈ [0, 1] : C (u, 1) = u and C (1, u) = u.
I For every (u1, u2), (v1, v2) ∈ [0, 1]× [0, 1] with u1 ≤ v1 and

u2 ≤ v2:
C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0

(The last property is called "2-increasing".)

Remark: this is not part of the core of the course (not suitable as
an exam question), but it is a nice concept and you should have
heard about it.
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Sklar’s Theorem [H4.1, p121-122]

Let F be a joint (cumulative) distribution function with marginal
distribution functions F1 and F2. Then a copula C exists with

F (x1, x2) = C (F1(x1),F2(x2))

for every x1, x2 ∈ R. If F1 and F2 are continuous, then C is unique.
On the other hand, if C is a copula and F1 and F2 are (cumulative)
distribution functions, then the function F defined above, is a joint
distribution function with marginals F1 and F2.

Remark: this is not part of the core of the course (not suitable as
an exam question), but it is a nice concept and you should have
heard about it.
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Bivariate Copulas
Farlie-Gumbel-Morgenstern family

C (u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1]

The only copulas that are polynomial quadratic in u and v ,
symmetric.
Normal (Gaussian) copulas [H.p141]

f (x1, x2) =
1
2π

1

σ1σ2
√

1− ρ2
e−

1
2Q(x1,x2)

Q(x1, x2) =
1

1− ρ2

[
(
x1 − µ1

σ1
)2 + (

x2 − µ2

σ2
)2 − 2ρ(

x1 − µ1

σ1
)(
x2 − µ2

σ2
)

]

C (u, v) =

∫ Φ−1
1 (u)

−∞

∫ Φ−1
2 (v)

−∞
f (x1, x2)dx1dx2

Read more? Properties and applications of copulas: A brief survey,
Roger B. Nelsen (And same remark as before.)
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More on copulas?

We will later in Part 1 (recommended exercise 2) look at data and
contour plots from Gaussian copulas, and other copulas poplar in
finance - using R and the copula library in R.
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What have we worked with today?

I A random vector is . . . a vector of random variables.

I Joint distribution function.
I From joint distribution function to marginal and conditional

distributions.
I Cumulative distribution.
I Independence.
I From marginal cumulative distribution functions to joint using

copula.

Next lecture: Mean vector and covariance matrix. You may want to
look into how to define a positive definite matrix, how to define
eigenvalues/vectors and results for symmetric matrices.
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TMA4267 Linear Statistical Models V2017 [L2]
Part 1: Multivariate RVs, and the multivariate normal distribution

Moments: mean and covariance [H:4.2]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 13, 2017
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Last lecture
I A random vector X (p×1) is . . . a p-dimensional vector of

random variables.
I Weight of cork deposits in p = 4 directions (N, E, S, W).
I Rent index in Munich: rent, area, year of construction,

location, bath condition, kitchen condition, central heating,
district.

I Joint distribution function:f (x).
I From joint distribution function to marginal (and conditional

distributions).

f1(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, x2, . . . , xp)dx2 · · · dxp

I Cumulative distribution (definite integrals!) used to calculate
probabilites.

I Independence: f (x1, x2) = f1(x1) · f (x2) and
f (x1 | x2) = f1(x1).

I From marginal cumulative distribution functions to joint using
copula.
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Word cloud: Probability
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Today

I Moments: important properties about the distribution of X .
I E: Mean of random vector and random matrices.
I Cov: Covariance matrix.
I Corr: Correlation matrix.
I E and Cov of multiple linear combinations.

3 / 15

The Cork deposit data

I Classical data set from Rao (1948).
I Weigth of bark deposits of n = 28 cork trees in p = 4

directions (N, E, S, W).

Tree N E S W
1 72 66 76 77
2 60 53 66 63
3 56 57 64 58
...

...
...

...
...

28 48 54 57 43

How may we define a random vectors and random matrices for cork
trees?
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The Cork deposit data

Draw a random sample of size n = 28 from the population of cork
treed and observe a p = 4 dimensional random vector for each tree.

X (28×4) =




X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
...

...
. . .

...
X28,1 X28,2 X28,3 X28,4




and E(X ) = {E(Xij)}.
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Random vectors and matrices: rules for means

I Random vector X (p×1) with mean vector µ(p×1):

X (p×1) =




X1
X2
...
Xp


 , µ(p×1) = E(X ) =




E(X1)
E(X2)

...
E(Xp)




I 1) Random matrix X (n×p) and random matrix Y (n×p):

E(X + Y ) = E(X ) + E(Y )

I 2) Random matrix X (n×p) and conformable constant matrices
A and B:

E(AXB) = AE(X )B
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Variance-covariance matrix

I Random vector X (p×1) with mean vector µ(p×1):

X (p×1) =




X1
X2
...
Xp


 , µ(p×1) =




E(X1)
E(X2)

...
E(Xp)


 =




µ1
µ2
...
µp




I Variance-covariance matrix Σ (real and symmetric)

Σ = Cov(X ) = E[(X−µ)(X−µ)T ] =




σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

...
. . .

...
σ1p σ2p · · · σpp




I σij = E[(Xi − µi )(Xj − µj)]
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Hands-on

Let X 4×1 have variance-covariance matrix

Σ =




2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2


 .

Explain to your neighbour what this means.
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Correlation matrix

Correlation matrix ρ (real and symmetric)

ρ =




σ11√
σ11σ11

σ12√
σ11σ22

· · · σ1p√
σ11σpp

σ12√
σ11σ22

σ22√
σ22σ22

· · · σ2p√
σ22σpp

...
...

. . .
...

σ1p√
σ11σpp

σ2p√
σ22σpp

· · · σpp√
σppσpp



=




1 ρ12 · · · ρ1p
ρ12 1 · · · ρ2p
...

...
. . .

...
ρ1p ρ2p · · · 1




ρ = (V
1
2 )−1Σ(V

1
2 )−1, where V

1
2 =




√
σ11 0 · · · 0
0

√
σ22 · · · 0

...
...

. . .
...

0 0 · · · √σpp



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Hands-on

Let X 4×1 have variance-covariance matrix

Σ =




2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2


 .

Find the correlation matrix.
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Linear combinations

I Random vector X (p×1) with mean vector µX = E(X ) and
variance-covariance matrix ΣX = Cov(X ).

I The linear combinations Z = CX have

µZ = E(Z ) = E(CX ) = CµX

ΣZ = Cov(Z ) = Cov(CX ) = CΣXCT
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Hands-on: Focus on C?

X =




XN

XE

XS

XW


 , µ =




µN
µE
µS
µW


 , Σ =




σNN σNE σNS σNW
σNE σEE σES σEW
σNS σEE σSS σSW
σNW σEW σSW σWW




I Scientists would like to compare the following three contrasts:
N-S, E-W and (E+W)-(N+S),

I and define a new random vector Y (3×1) = C (3×4)X (4×1)
giving the three contrasts.

I Write down C .
I Use the formulas we just developed and explain how to find

E(Y1) and Cov(Y1,Y3).
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Exam V2014: Problem 1a

Let X =




X1
X2
X3


 be a random vector with mean µ = E(X ) =




1
1
1




and covariance matrix Σ = Cov(X ) = I =




1 0 0
0 1 0
0 0 1


. Further, let

A =




2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3


 be a matrix of constants.

Define Y =




Y1
Y2
Y3


 = AX .

Find E(Y ) and Cov(Y ).
Are X1 and X2 independent?
Are Y1 and Y2 independent? Justify your answers.
Find the mean of XTAX .

13 / 15



The covariance matrix

Random vector X (p×1) with mean vector µ(p×1) and covariance
matrix

Σ = Cov(X ) = E[(X − µ)(X − µ)T ] =




σ11 σ12 · · · σ1p
σ12 σ22 · · · σ2p
...

...
. . .

...
σ1p σ2p · · · σpp




The covariance matrix is by construction symmetric, and we would
only consider covariance matrices that are positive definite (PD).
Why would we only consider PD matrices?
Homework for next lecture: Read H.Chapter 2.1-2.2 to remind
yourself of spectral decomposition (diagonalization), positive
definite matrix, eigenvalues and eigenvectors.
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What have we worked with today?

I Mean: µX = E (X ) = E(Xj)

I Covariance: Cov(X ,Y ) = E((X − µX )(Y − µY )
T ).

I Variance-covariance:
Σ = Cov(X ) = E((X − µX )(X − µX )

T ), also sometimes
denoted Var(X ).

I Correlation: Corr(X ) = V−
1
2ΣV−

1
2 .

I CX : E(CX ) = CµX and Cov(CX ) = CΣCT .

Next lecture: First work with the covariance matrix and positive
definiteness, then start with the multivariate normal distribution
(where we use moment generating functions and a multivariate
version of the transformation formula).
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Part 1: Multivariate RVs and normal distribution (L3)
Covariance and positive definiteness [H:2.2,2.3,3.3],

Principal components [H11.1-11.3]
Quiz with Kahoot!
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To be lectured: January 17, 2017
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Previously

I X (p×1): random vector, described by
I joint probability distribution function (pdf) f (x) and

cumulative distribution function (cdf) F (x), or, as we will see
(in L4), by the (multivariate) moment generating function
(MGF) MX (t) = etTX .

I Important aspects: moments.
I E(X ): mean of a random vector (or matrix) is found as the

mean of each element.
I Cov(X ) = E((X − µ)(X − µ)T ): p × p variance-covariance

matrix, with variances on the diagonal and covariance
off-diagonal, real, symmetric.

I Rules for vector of linear combinations CX : E(CX ) = Cµ
and Cov(CX ) = CΣCT .
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Today!

I Requirements and properties of Σ = Cov(X ): symmetric,
positive definite (SPD), via spectral decomposition
(eigenvalues/eigenvectors).

I The square root matrix.
I Linear combinations with maximal variability: principal

components are linear combinations made from eigenvectors.
I PCA-plots.
I Kahoot! on what we have worked with so far.
I Next lecture: move on to multivariate normal data!
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Drinking habits data set

Coffee Tea Cocoa Liquer Wine Beer
Norway 9.800000 0.21 0.61 1.1 6.4 52.0
Danmark 10.400001 0.39 0.54 1.4 20.7 123.2
Finland 12.450000 0.17 0.03 3.1 5.4 79.0
Iceland 8.270001 0.23 0.00 2.2 5.2 23.7
Sweden 10.710000 0.32 0.16 1.8 12.3 57.4
France 5.490000 0.20 1.18 2.5 73.8 40.5
Ireland 0.550000 3.14 2.76 1.4 3.9 114.0
Italy 4.670000 0.08 0.97 1.0 67.0 22.7
Jugoslavia 3.100000 0.11 0.59 1.6 20.3 46.8
The Netherlands 10.970000 0.82 15.35 2.0 14.7 87.0
Poland 1.400000 0.54 0.56 4.3 7.6 30.8
Portugal 3.080000 0.03 0.02 0.8 51.5 60.7
Soviet Union 0.300000 0.98 0.56 1.9 6.6 19.3
Spain 4.250000 0.03 1.11 2.8 38.3 70.7
Schweitz 9.400000 0.25 3.06 1.9 49.6 69.3
Great Britain 2.060000 2.62 2.78 1.8 11.5 110.5
Chech Repl 2.200000 0.13 1.21 3.3 13.6 132.9
Germany 8.970000 0.22 3.94 2.0 26.0 143.0
Hungary 2.270000 0.07 0.85 4.6 21.5 103.9
Austria 10.220000 0.16 1.80 1.5 34.8 119.5
New Zealand 1.920000 1.46 0.03 1.4 14.6 114.2
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The variance-covariance matrix and positive definiteness

X (p×1) with symmetric Σ = Cov(X )

I Want variance of linear combination to be positive: cTΣc for
all c 6= 0,

I which means that Σ needs to positive definite. Write Σ > 0.
I This is true if all eigenvalues of Σ are positive (eigenvalues of

symmetric matrix are real).
I Spectral decompositions (diagonalization): Σ = PΛPT .
I Square root matrix defined from spectral decomposition:

Σ
1
2 = PΛ

1
2 PT .

4 / 26

Drinking habits

Coffee Tea Cocoa Liquer Wine Beer
Norway 9.800000 0.21 0.61 1.1 6.4 52.0
Danmark 10.400001 0.39 0.54 1.4 20.7 123.2
Finland 12.450000 0.17 0.03 3.1 5.4 79.0
Iceland 8.270001 0.23 0.00 2.2 5.2 23.7
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Portugal 3.080000 0.03 0.02 0.8 51.5 60.7
Soviet Union 0.300000 0.98 0.56 1.9 6.6 19.3
Spain 4.250000 0.03 1.11 2.8 38.3 70.7
Schweitz 9.400000 0.25 3.06 1.9 49.6 69.3
Great Britain 2.060000 2.62 2.78 1.8 11.5 110.5
Chech Repl 2.200000 0.13 1.21 3.3 13.6 132.9
Germany 8.970000 0.22 3.94 2.0 26.0 143.0
Hungary 2.270000 0.07 0.85 4.6 21.5 103.9
Austria 10.220000 0.16 1.80 1.5 34.8 119.5
New Zealand 1.920000 1.46 0.03 1.4 14.6 114.2
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Estimators for µ and Σ [H3.3]

X 1,X 2, . . . ,X n i.i.d E(X ) = µ and Cov(X ).

X̄ =
1
n

n∑

j=1

X j

S2 =
1

n − 1

n∑

j=1

(X j − X̄ )(X j − X̄ )T

are two commonly used estimators for the mean and covariance
matrix.

RecEx1.P7: we may write S2 using a centering matrix.
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Drinking habits data set

> drinkcov
Coffee Tea Cocoa Liquer Wine Beer

Coffee 16.5471497 -1.4476576 3.6381233 -0.7651859 1.841446 14.386113
Tea -1.4476576 0.7168891 0.5154248 -0.1786857 -6.939988 9.503595
Cocoa 3.6381233 0.5154248 10.8676967 -0.1700214 -3.191860 28.673374
Liquer -0.7651859 -0.1786857 -0.1700214 1.0222857 -4.307429 1.142071
Wine 1.8414458 -6.9399885 -3.1918596 -4.3074288 432.878505 -159.797675
Beer 14.3861129 9.5035954 28.6733741 1.1420707 -159.797675 1549.731430
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Correlation plot
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prcomp

drink <- read.csv("drikke.TXT",sep=",",header=TRUE)
drink <- na.omit(drink) # remove missing data

# now for PCA
pca <- prcomp(drink,scale=TRUE) # scale: variables are scaled, and automatically center=TRUE

> names(pca)
[1] "sdev" "rotation" "center" "scale" "x"

> pca$rotation # the loadings
PC1 PC2 PC3 PC4 PC5 PC6

Coffee -0.26029733 0.66788815 -0.22475187 0.4132467433 0.07431918 0.5092751
Tea 0.65540048 -0.09539757 0.36756357 -0.0002927055 -0.12503940 0.6407898
Cocoa 0.23510209 0.57754726 -0.06603093 -0.4200858712 -0.61199325 -0.2362164
Liquer 0.02190508 -0.32118904 -0.79997824 -0.3292322714 -0.12307455 0.3644878
Wine -0.50599685 0.06551597 0.37109534 -0.6765579799 0.15862233 0.3450672
Beer 0.43693234 0.32219426 -0.17985159 -0.2943302832 0.75099779 -0.1493533

> s <- cor(drink) # cor, not cov, since covariates are scaled
> eigen(s) # same as pca$rotations - opposite sign of some vectors
$values
[1] 1.7204307 1.4295795 1.1408597 0.7731249 0.7354586 0.2005467
$vectors

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.26029733 0.66788815 -0.22475187 0.4132467433 0.07431918 -0.5092751
[2,] -0.65540048 -0.09539757 0.36756357 -0.0002927055 -0.12503940 -0.6407898
[3,] -0.23510209 0.57754726 -0.06603093 -0.4200858712 -0.61199325 0.2362164
[4,] -0.02190508 -0.32118904 -0.79997824 -0.3292322714 -0.12307455 -0.3644878
[5,] 0.50599685 0.06551597 0.37109534 -0.6765579799 0.15862233 -0.3450672
[6,] -0.43693234 0.32219426 -0.17985159 -0.2943302832 0.75099779 0.1493533
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Principal components

I Let Σ be the covariance matrix associated with the random
vector X p×1. The covariance matrix has the eigenvalue-vector
pairs (λj , e j), where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

I The mth principal component is given by

Ym = eT
mX = em1X1 + em2X2 + · · ·+ empXp

I and has

Var(Ym) = eT
mΣem = λm, i = 1, 2, ..., p

Cov(Yi ,Ym) = eT
i Σem = 0 i 6= m
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Principal components: idea

1. We choose principal component 1, PC1 = cT
1 X , to have

maximal variance

max
c1 6=0,cT

1 c1=1
Var(cT

1 X )

2. We choose principal component 2, PC2 = cT
2 X , to have

maximal variance and to be uncorrelated with PC1.

max
c2 6=0,cT

2 c2=1
Var(cT

2 X ) and cT
1 Σc2 = 0
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Principal components: idea

3. We choose principal component 3, PC1 = cT
3 X , to have

maximal variance and be uncorrelated with PC1 and PC2.

max
c3 6=0,cT

3 c3=1
Var(cT

3 X ) and cT
i Σc3 = 0

for i = 1, 2.
4. and so on.

It can be shown that choosing c i = e i (ith eigenvector of Σ) fulfills
these requirements.
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Principal component scores

> pca$x
PC1 PC2 PC3 PC4 PC5 PC6

Norway -0.49755266 0.5423321 0.24730564 1.64969605 -0.141194597 -0.259224773
Danmark 0.04736942 1.1407629 -0.01389387 0.62447776 1.286968641 0.032325551
Finland -0.37212624 0.4628190 -1.62846743 1.17223112 0.284805095 0.685797001
Iceland -0.68875794 -0.4028320 -0.40970218 1.46441365 -0.741785804 0.092078151
Sweden -0.57111547 0.4409190 -0.21949104 1.33928137 0.005514957 0.299908368
France -1.92532968 -0.3909512 0.61668510 -1.42238114 -0.200223837 0.818931395
Ireland 3.27114811 -0.5256052 1.42206819 -0.04493512 -0.014828505 0.477585062
Italy -2.04540738 -0.2394487 1.76095443 -0.63624103 -0.367324127 0.054512802
Jugoslavia -0.53258860 -0.7075896 0.45055250 0.39569929 -0.299213104 -0.741778021
The Netherlands 1.15707155 3.2747502 -0.57171870 -0.93460573 -2.324855354 -0.377956367
Poland 0.09667998 -2.0690624 -1.55793948 -0.11990952 -1.118921154 0.196370232
Portugal -1.25572594 -0.3355743 1.55429933 -0.39165369 0.418471226 -0.587655889
Soviet Union 0.35234451 -1.6341096 0.62745644 0.66818676 -1.138865302 -0.446485485
Spain -0.77751355 -0.5475718 -0.39572230 -0.70847071 0.084179130 -0.055157063
Schweitz -1.10755090 0.9248648 0.29621598 -0.49777226 -0.047226891 0.484657020
Great Britain 2.55842016 -0.3473694 0.94755863 -0.24512125 0.028322241 0.555177625
Chech Repl 0.74010278 -0.6054459 -1.36137719 -0.75417409 0.950808503 -0.708681733
Germany 0.35362098 1.5089269 -0.54743939 -0.46975244 0.999859480 -0.289909548
Hungary 0.17766893 -1.2757040 -2.13925810 -1.16454698 0.376532314 -0.009844322
Austria -0.41110347 1.3402182 0.06024028 -0.01769055 1.108477110 0.029376612
New Zealand 1.43034542 -0.5543289 0.86167320 0.09326849 0.850499977 -0.250026615
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Scores PCA1 vs PCA3
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Scores PCA2 vs PCA3
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Scores PCA1 vs PCA2 with biplot
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Biplots
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Proportion of total population variance

I Total population variance:∑p
j=1 Var(Xj) = trΣ =

∑p
j=1 λj =

∑p
j=1 Var(Zj).

I Proportion of total population variance explained by PC m:

λm∑p
j=1 λj

I Proportion of total population variance explained by the first
m PCs: ∑m

j=1 λj∑p
j=1 λj
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How many PCs are needed?

Dependent on:
I The proportion of the total sample variance that we would like

to explain. 80%? More?
I Look at the eigenvalues; small eigenvalues may be an evidence

of collinearity problems.
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Importance of components

> summary(pca)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.3117 1.1957 1.0681 0.8793 0.8576 0.44782
Proportion of Variance 0.2867 0.2383 0.1901 0.1288 0.1226 0.03342
Cumulative Proportion 0.2867 0.5250 0.7151 0.8440 0.9666 1.00000

> eigen(s)
$values
[1] 1.7204307 1.4295795 1.1408597 0.7731249 0.7354586 0.2005467
> sqrt(eigen(s)$values)
[1] 1.3116519 1.1956502 1.0681103 0.8792752 0.8575888 0.4478244
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PC from standardized variables
I X can be standardized to have mean 0 and unit variances.

X ∗ = V−
1
2 (X − µ)

I Principal components made from standardized variables will be
based on the eigenvalues and eigenvectors of the correlation
matrix ρ = V−

1
2ΣV−

1
2 .

I Achilles heel: Since Σ and ρ do not have the same
eigenvectors/eigenvalues, the principal components made from
Σ and ρ will not be the same.

I Unless we have a good reason to compare the variances for the
different Xjs we should make PCs from the standardized
variables.

I For standardized variables
∑p

j=1 Var(X ∗j ) = p, and
I Proportion of total population variance explained by PC m:

λm
p .

23 / 26

Principal components from singular value decomposition

The singular value decomposistion of a (data) matrix X n×p is given
by:

X n×p = Un×pDp×pV T
p×p

where
I the columns of U are the eigenvectors of XXT

I D is a diagonal matrix with singular values on the diagonal,
i.e. the square root of the eigenvalues of XXT and XTX
(they have the same eigenvalues).

I the columns of V are the eigenvectors of XTX .
And, the principal components (scores) of the data are defined as
the columns of

Z = XV = UD
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PCR: summary

I PCA finds linear combinations Y that “best” represents the X .
I The PCs are found in an unsupervised way. The "truth" is not

known.
I A plot of PC1 vs PC2 is often used to see if there is separation

(subgroups in the data).
I The principal component loadings are often given

interpretation (overall consumption,
I PCA can be combined with linear regression.
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Quiz

with Kahoot! at kahoot.it. - based on what we have gone through
so far!

26 / 26

 





f (x)
Let X1 and X2 be two (continuous) RVs, and f (x1, x2) be the
joint pdf and f1(x1) and f2(x2) be the marginal pdfs, and C is
a copula. What is true?

A f (x1, x2) = f1(x1) · f2(x2)

B f (x1, x2) is found from f1(x1) and f2(x2) alone
C f1(x1) is found from f (x1, x2)

D f (x1, x2) = C(f1(x1), f2(x2))



Mean of sum
X and Y are two bivariate random vectors with E(X) =
(1, 2)T and E(Y ) = (2, 0)T . What is E(X + Y )?

A (1.5, 1)T

B (3, 2)T

C (−1, 2)T

D (1,−2)T

Mean of linear combination
X is a 2-dimensional random vector with E(X) = (2, 5)T ,
and b = (0.5, 0.5)T is a constant vector. What is E(bT X)?

A 3.5 B 7
C 2 D 5

Covariance
X is a p-dimensional random vector with mean µ. Which of
the following defines the covariance matrix?

A E [(X − µ)T (X − µ)]

B E [(X − µ)(X − µ)T ]

C E [(X − µ)(X − µ)]

D E [(X − µ)T (X − µ)T ]

Mean of linear combinations
X is a p-dimensional random vector with mean µ and cova-
riance matrix Σ. C is a constant matrix. What is then the
mean of the k-dimensional random vector Y = CX?

A Cµ

B CΣ

C CµCT

D CΣCT



Covariance of linear combinations
X is a p-dimensional random vector with mean µ and cova-
riance matrix Σ. C is a constant matrix. What is then the
covariance of the k-dimensional random vector Y = CX?

A Cµ

B CΣ

C CµCT

D CΣCT

Correlation
X is a 2-dimensional random vector with covariance matrix

Σ =

[
4 0.8
0.8 1

]

Then the correlation between the two elements of X are:

A 0.10
B 0.25
C 0.40
D 0.80

Symmetric positive definite matrix
Which of the following is not correct for a symmetric positive
definite matrix?

A The trace equals the rank of the matrix.
B The determinant is positive.
C The trace is the sum of the eigenvalues.
D All the eigenvalues are positive.

PCA interpretation
Data set: student’s score on a Math test, a Physics test, a
Reading comprehension test, and a Vocabulary test.

First PC represents overall academic ability,
second PC represents a contrast between quantitative ability
and verbal ability.

What loadings would be consistent with that interpretation?

A (0.5,0.5,0.5,0.5) and (0.71,0.71,0,0)
B (0.5,0.5,0.5,0.5) and (0.5,0.5,-0.5,-0.5)
C (0.71,0.71,0,0) and (0,0,0.71,-0.71)
D (0.71,0,-0.71,0) and (0 ,0.71,0,-0.71)



Correct?
Are you sure you want to read the correct answers? Maybe try
first? The answers are explained on the next two slides.

Answers

1. C: We go from joint to marginal distribution by
integration. The product of marginals equal the joint only
for independent variables. We need information on the
dependency structure to construct a joint from marginals,
and that is what is done with the copula - but the
formula is based on the cumulative distribution functions.

2. B: Mean of sum (1, 2)T + (2, 0)T = (3, 2)T .
3. A: Mean of linear combination (0.5, 0.5)T (2, 5) = 3.5 .
4. B: Covariance matrix defined as E {(X − µ)(X − µ)T }.

This was the only formula that gave a p × p matrix. A
gave a scalar and C and D did not match in dimensions.

Answers

5. A: Cµ is the mean of Y = CX .
6. D: CΣCT is the covariance matrix of Y = CX .
7. C: Correlation is 0.40 since covariance was 0.8 and

variances 4 and 1.
8. A: NOT true for a symmetric positive definite matrix: the

trace is in general not equal to the rank - but it is for
idempotent symmetric matrices.

9. B: average means equal weight for all values, difference
between quantitative and verbal means opposite signs for
quantitative (maths and physics) and verbal (reading and
vocabular).

TMA4267 Linear Statistical Models V2017 [L4]
Part 1: Multivariate RVs, and the multivariate normal distribution

The multivariate normal distribution (pdf and mgf) [H:4.2-4.4]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 20, 2017
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What we know, and the plan for this lecture

I A random vector X can be described by the joint pdf f (x).
I Mean: µ = E (X ) = {E(Xj)}
I Covariance matrix: Cov(X ) = E((X − µ)(X − µ)T ),

symmetric and we often require the matrix to be positive
definite.

I Linear combinations CX : E(CX ) = CµX and
Cov(CX ) = CΣCT .

I Now: derive the joint pdf and the moment generating function
for the multivariate normal distribution.
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Why is the mulitivariate normal distribution so important in
statistics?

I Many natural phenomena may be modelled using this
distribution (just as in the univariate case).

I Multivariate version of the central limit theorem- the sample
mean will be approximately multivariate normal for large
samples.

I Good interpretability of the covariance.
I Mathematically tractable.
I Building block in many models and methods.
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Cramer-Wold and moment generating functions
X (p×1) is a random vector. The distribution of X is completely
determined by the set of all one-dimensional distributions of the
linear combinations Y = tTX =

∑p
i=1 tiXi where t ranges over all

fixed p-vectors.

I Y = tTX has MGF MY (s) = E(exp(sY )) = E(exp(stTX )).
I If we choose s = 1 MY (1) = E(exp(tTX )) = MX (t), which is

the MGF of X and thus determines the distribution of X .

Härdle and Simes (2015) use characteristic functions, E(e it
TX ) but

we stick with moment generating functions E(etTX ) . Why: we will
only work with nice distributions and do not have problems with
integrals not existing, and we know MGFs from previous course.
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Multivariate transformation formula [H:4.3]

4.3 Transformations 135

4.3 Transformations

Suppose that X has pdf fX.x/. What is the pdf of Y D 3X? Or if X D
.X1;X2;X3/

>, what is the pdf of

Y D

0

@
3X1

X1 ! 4X2
X3

1

A‹

This is a special case of asking for the pdf of Y when

X D u.Y / (4.43)

for a one-to-one transformation u: Rp ! Rp . Define the Jacobian of u as

J D
!
@xi

@yj

"
D
!
@ui .y/
@yj

"

and let abs.jJ j/ be the absolute value of the determinant of this Jacobian. The pdf
of Y is given by

fY .y/ D abs.jJ j/ " fX fu.y/g: (4.44)

Using this we can answer the introductory questions, namely

.x1; : : : ; xp/
> D u.y1; : : : ; yp/ D

1

3
.y1; : : : ; yp/

>

with

J D

0

B@

1
3

0
: : :

0 1
3

1

CA

and hence abs.jJ j/ D
#
1
3

$p
. So the pdf of Y is

1

3p
fX

%y
3

&
.

This introductory example is a special case of

Y D AX C b; whereA is nonsingular.

The inverse transformation is

X D A!1.Y ! b/:
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The Chi-square distribution

pdf χ2
p:

f (y) =
1

2p/2Γ(p/2)
yp/2−1e(−y/2) for y > 0

MGF χ2
p:

MY (t) =
1

(1− 2t)p/2

Addition property:
Let X1 ∼ χ2

p and X2 ∼ χ2
q, and let X1 and X2 be independent.

Then X1 + X2 ∼ χ2
p+q.

Subtraction property:
Let X = X1 + X2 with X1 ∼ χ2

p and X ∼ χ2
p+q. Assume that X1

and X2 are independent. Then X2 ∼ χ2
q.
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This lecture: derived the MGF and pdf of the multivariate
normal distribution

1. Z ∼ N1(0, 1)

I MGF: MZ (t) = E(etz) = e
1
2 t

2

2. Z1,Z2, . . . ,Zp iid N1(0, 1)→ Zp×1 ∼ Np(0, I )

I MGF: MZ (t) = E(etT z) = e
1
2 tT t

3. X = AZ + µ, AAT = Σ gives X p×1 ∼ Np(µ,Σ)

I MGF: MX (t) = E(etT x) = etTµ+ 1
2 tT t

I pdf (invertible):

f (x) =
1

(2π)
p
2 |Σ| 12

exp{−1
2

(x − µ)TΣ−1(x − µ)}
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Properties of the mvN - plan for L5
Let X (p×1) be a random vector from Np(µ,Σ).
1. Probability density function f (x) (both when Σ is invertible

and not).
2. Moment generating function: MX (t) = exp(tTµ + 1

2t
TΣt)

3. Graphical display, contours (ellipsoids), and chisq-distributed
(X − µ)TΣ−1(X − µ).

4. Linear combinations of components of X are (multivariate)
normal.

5. All subsets of the components of X are (multivariate) normal.
6. Zero covariance implies that the corresponding components

are independently distributed.
7. AΣBT = 0⇔ AX and BX are independent.
8. The conditional distributions of the components are

(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12)

And then remains estimators for parameters and properties of
quadratic forms in L6.
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Properties of the multivariate normal distribution [H:2.6,4.4,5.1]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 24, 2017

1 / 20



Last lecture: derived the MGF and pdf of the multivariate
normal distribution

1. Z ∼ N1(0, 1)

I MGF: MZ (t) = E(etz) = e
1
2 t

2

2. Z1,Z2, . . . ,Zp iid N1(0, 1)→ Zp×1 ∼ Np(0, I )

I MGF: MZ (t) = E(etT z) = e
1
2 tT t

3. X = AZ + µ, AAT = Σ gives X p×1 ∼ Np(µ,Σ)

I MGF: MX (t) = E(etT x) = etTµ+ 1
2 tT t

I pdf (Σ invertible):

f (x) =
1

(2π)
p
2 |Σ| 12

exp{−1
2

(x − µ)TΣ−1(x − µ)}
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Why is the mulitivariate normal distribution so important in
statistics?

I Many natural phenomena may be modelled using this
distribution (just as in the univariate case).

I Multivariate version of the central limit theorem- the sample
mean will be approximately multivariate normal for large
samples.

I Good interpretability of the covariance.
I Mathematically tractable.
I Building block in many models and methods.

2 / 20

Today: six properties of the mvN

Let X (p×1) be a random vector from Np(µ,Σ).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

5. AΣBT = 0⇔ AX and BX are independent (will be very
important in Part 2)

6. The conditional distributions of the components are
(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Diabetes data
We will study a data set on diabetes in Part 2. The data set has
measurements on n = 442 diabetes patients, and p = 11 different
measurements are taken for each patients. These measurements
are:

I age
I sex
I body mass index (bmi)
I mean arterial blood pressure (map)
I six blood serum measurements: total cholesterol (tc), ldl

cholesterol (ldl), hdl cholesterol (hdl), tch, ltg, glu.
I a quantitative measurement of disease progression one year

after baseline (prog)
We will look at the four variables bmi, map, tc and ldl. Can we
assume that these follow a multivariate normal distribution?

4 / 20

Contours of multivariate normal distribution

I Contours of constant density for the p-dimensional normal
distribution are ellipsoids defined by x such that

(x − µ)TΣ−1(x − µ) = b

where b > 0 is a constant.
These ellipsoids are centered at µ and have axes ±√bλie i ,
where Σe i = λie i , for i = 1, ..., p.

I (x − µ)TΣ−1(x − µ) is distributed as χ2
p.

I The volume inside the ellipsoid of x values satisfying

(x − µ)TΣ−1(x − µ) ≤ χ2
p(α)

has probability 1− α.

5 / 20

Example: Slightly modified version of Exam K2014 1b

Let X =

(
X1
X2

)
be a bivariate normal random vector with mean

µ = E(X ) =

(
1
2

)
and covariance matrix

Σ = Cov(X ) =

(
1 0.5
0.5 2

)
.

You find the eigenvalues and eigenvectors of the covariance matrix
Σ on the next slide.

Describe the graph of the equation (x − µ)TΣ−1(x − µ) = b
where b > 0 is a constant.
Make a drawing of the graph, for b = 1 found above.
What is the probability that a random sample from this distribution
will be inside this graph?

6 / 20

Example: Exam K2014 1b

> sigma <- matrix(c(1,0.5,0.5,2),ncol=2)
> eigen(sigma)
$values
[1] 2.2071068 0.7928932

$vectors
[,1] [,2]

[1,] 0.3826834 -0.9238795
[2,] 0.9238795 0.3826834

7 / 20
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Multivariate distributions - in 3D: task for the intermission!
Let Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

The following four 3D-printed figures have been made:
I A: σx = 1, σy = 2, ρ = 0.3
I B: σx = 1, σy = 1, ρ = 0
I C: σx = 1, σy = 1, ρ = 0.5
I D: σx = 1, σy = 2, ρ = 0

The figures have the following colours:
I white
I purple
I red
I black

Task: match letter and colour by writing the correct letter after the
name of the colour on the available sheets and take the sheet with
you. We report on the solution after the intermission.
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Today: six properties of the mvN

Let X (p×1) be a random vector from Np(µ,Σ).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition).
2. Linear combinations of components of X are (multivariate)

normal (proof using MGF).
3. All subsets of the components of X are (multivariate) normal

(special case of the above).
4. Zero covariance implies that the corresponding components

are independently distributed (proof using MGF).
5. AΣBT = 0⇔ AX and BX are independent (will be very

important in Part 2)
6. The conditional distributions of the components are

(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Example: Exam K2014 1a

Let X =

(
X1
X2

)
be a bivariate normal random vector with mean

µ = E(X ) =

(
1
2

)
and covariance matrix

Σ = Cov(X ) =

(
1 0.5
0.5 2

)
.

Let Y =

(
Y1
Y2

)
, where Y1 = 3X1 − 2X2 and Y2 = X1 + X2.

What is the distribution of Y ?

What is the distribution of Y1?

Let Z = X1 + aX2. How can you choose a so that Z and Y2 are
independent?
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Example: Exam K2014 1a (slightly modified)

Let X =

(
X1
X2

)
be a bivariate normal random vector with mean

µ = E(X ) =

(
1
2

)
and covariance matrix

Σ = Cov(X ) =

(
1 0.5
0.5 2

)
. Let Y =

(
Y1
Y2

)
, where

Y1 = 3X1 − 2X2 and Y2 = X1 + X2.
What is the distribution of Y ?

What is the distribution of Y1?

Let Z = X1 + aX2. How can you choose a so that Z and Y2 are
independent?
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are independently distributed (proof using MGF).
5. AΣBT = 0⇔ AX and BX are independent (will be very

important in Part 2)
6. The conditional distributions of the components are

(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Independent variables?

Let X p×1 ∼ Np(µ,Σ), with

Σ =




2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2




I List the pairs of variables that are independent.
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Example: Exam K2014 1a - cont.

Let X =

(
X1
X2

)
be a bivariate normal random vector with mean

µ = E(X ) =

(
1
2

)
and covariance matrix

Σ = Cov(X ) =

(
1 0.5
0.5 2

)
.

Let Y =

(
Y1
Y2

)
, where Y1 = 3X1 − 2X2 and Y2 = X1 + X2.

Let Z = X1 + aX2. How can you choose a so that Z and Y2 are
independent?
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Today: six properties of the mvN

Let X (p×1) be a random vector from Np(µ,Σ).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition).
2. Linear combinations of components of X are (multivariate)

normal (proof using MGF).
3. All subsets of the components of X are (multivariate) normal

(special case of the above).
4. Zero covariance implies that the corresponding components

are independently distributed (proof using MGF).
5. AΣBT = 0⇔ AX and BX are independent (will be very

important in Part 2)
6. The conditional distributions of the components are

(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Example: Exam V2010, Problem 1

Let X =




X1
X2
X3


 ∼ N3(µ,Σ) where µ =




4
−3
1


 and

Σ =




2 0 0
0 1 −1.5
0 −1.5 5


.

a) Find the distribution of X1 + X2 + X3 and of X2 given X1 = x1
and X3 = x3.

Help: for X =

(
X1
X2

)
∼ N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
we have

X 2 | (X 1 = x1) ∼ N(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12)
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Today: six properties of the mvN

Let X (p×1) be a random vector from Np(µ,Σ).
1. The grapical contours of the mvN are ellipsoids (shown using

spectral decomposition). [CompEx1.1b]
2. Linear combinations of components of X are (multivariate)

normal (proof using MGF). [CompEx1.1a]
3. All subsets of the components of X are (multivariate) normal

(special case of the above).
4. Zero covariance implies that the corresponding components are

independently distributed (proof using MGF). [CompEx1.1a]
5. AΣBT = 0⇔ AX and BX are independent (will be very

important in Part 2). [CompEx1.2b]
6. The conditional distributions of the components are

(multivariate) normal. X 2 | (X 1 = x1) ∼
Np2(µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Part 1: Multivariate RVs, and the multivariate normal distribution

Estimators for mean and covariance
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Plan for today

I estimators for mean and covariance
I quadratic forms and rules for quadratic forms
I idempotent matrices
I more rules for quadratic forms - with idempotent matrices

1 / 17

Maximum likelihood estimators
Let X 1,X 2, . . . ,X n be a random sample of size n from the
multivariate normal distribution Np(µ,Σ).

The maximum
likelihood estimators for are found by maximizing the likelihood:

L(µ,Σ) =
n∏

j=1

f (x j ;µ,Σ)

=
n∏

j=1

(
1
2π

)
p
2 det(Σ)−

1
2 exp{−1

2
(x j − µ)TΣ−1(x j − µ)}

Could take ln and then partial derivatives, but easier to add and
subtract the mean x̄ and rewrite (using trace-formulas)

L(µ,Σ) = (
1
2π

)
np
2 det(Σ)−

n
2

exp{−1
2

[tr(Σ−1
n∑

j=1

(x j − x̄)(x j − x̄)T ) + n(x̄ − µ)TΣ−1(x̄ − µ)]}
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Maximum likelihood estimators: first for µ

L(µ,Σ) = (
1
2π

)
np
2 det(Σ)−

n
2

exp{−1
2

[tr(Σ−1
n∑

j=1

(x j − x̄)(x j − x̄)T ) + n(x̄ − µ)TΣ−1(x̄ − µ)]}

and see directly for SPD Σ that the maximum is achieved for
µ = x̄ , so that the MLE for µ is

X̄ =
1
n

n∑

j=1

X j

3 / 17

Maximum likelihood estimators: then for Σ

L(µ,Σ) = (
1
2π

)
np
2 det(Σ)

n
2

exp{−1
2

[tr(Σ−1
n∑

j=1

(x j − x̄)(x j − x̄)T ) + n(x̄ − µ)TΣ−1(x̄ − µ)]}

A maximization theorem for matrices it used to find that the MLE
for Σ is

Σ̂ =
1
n

n∑

j=1

(X j − X̄ )(X j − X̄ )T

4 / 17

Properties of the ML estimators

I X̄ is distributed as Np(µ, 1
nΣ)

I nS is distributed as a Wishart random matrix with n − 1
degrees of freedom.

I X̄ and nS are independent.

The Wishart distribution is not on the reading list for TMA4267.
General properties of maximum likelihood estimation is covered in
detail in TMA4295 Statistical Inference.
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Quadratic forms - first results [F:B3.3, Theorem B.2]

We stay with our random vector X with µ and covariance matrix
Σ, and a symmetric constant matrix A.

I What is a quadratic form? XTAX
I The "trace-formula": E(XTAX ).

6 / 17

Exam V2014: Problem 1a

Let X =




X1
X2
X3


 be a random vector with mean µ = E(X ) =




1
1
1




and covariance matrix Σ = Cov(X ) = I =




1 0 0
0 1 0
0 0 1


. Further, let

A =




2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3


 be a matrix of constants.

Define Y =




Y1
Y2
Y3


 = AX .

Find E(Y ) and Cov(Y ). Are X1 and X2 independent? Are Y1 and Y2
independent? Justify your answers.
Find the mean of XTAX .
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Useful facts about the trace [H:2.1] and [F:Theorem A.18]

Let A, B and C be conformable matrices

tr(A + B) = tr(A) + tr(B)

tr(AB) = tr(BA)

tr(ABC ) = tr(CAB) = tr(BCA)

8 / 17

Quadratic forms - last results [F:B3.3, Theorem B.2]

Now: X is multivariate normal with mean µ and covariance matrix
I , and we also have a symmetric and idempotent matrix R(p×p)

with rank r .

I Properties of an idempotent matrix.
I Distribution of XTRX ∼ χ2

r .
I Distribution of a ratio of two quadratic forms and the Fisher

distribution.

9 / 17



Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A2 = A, and has the
following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable

quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 1+2). If a (n × n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n − r are 0.

4. The trace and rank of a symmetric projection matrix are equal:
tr(A) = rank(A).

5. The matrix I − A is also idempotent, and A(I − A) = 0.
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The Chi-square distribution

pdf χ2
p:

f (y) =
1

2p/2Γ(p/2)
yp/2−1e(−y/2) for y > 0

MGF χ2
p:

MY (t) =
1

(1− 2t)p/2

Addition property:
Let X1 ∼ χ2

p and X2 ∼ χ2
q, and let X1 and X2 be independent.

Then X1 + X2 ∼ χ2
p+q.

Subtraction property:
Let X = X1 + X2 with X1 ∼ χ2

p and X ∼ χ2
p+q. Assume that X1

and X2 are independent. Then X2 ∼ χ2
q.

11 / 17 12 / 17



The Fisher distribution [F: B.1 Def 8.14 ], RecEx2.P5+6

“Tabeller og formeler i statistikk”:
If Z1 and Z2 are independent and χ2-distributed with ν1 and ν2
degrees of freedom, then

F =
Z1/ν1

Z2/ν2

is F(isher)-distributed with ν1 and ν2 degrees of freedom.
I The expected value of F is E(F ) = ν2

ν2−2 .

I The mode is at ν1−2
ν1

ν2
ν2+2 .

I Identity:

f1−α,ν1,ν2 =
1

fα,ν2,ν1

13 / 17

The Fisher distribution with different degrees of freedom ν1 and ν2
(given in the legend).
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Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean µ and covariance matrix Σ,
symmetric constant matrix A.

I Quadratic form: XTAX .
I The "trace-formula": E(XTAX ) = tr(AΣ)− µTAµ.

Then, let X ∼ Np(0, I ), and R is a symmetric and idempotent
matrix with rank r .

XTRX ∼ χ2
r

Now, also S is a symmetric and idempotent matrix with rank s,
and RS = 0.

sXTRX
rXTSX

∼ Fr ,s

15 / 17

Plan for the last week of Part 1

Supervision in lecture times.
See Blackboard: Part 1: dates and places for supervision.
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Kahoot!

Summing up the last three lectures with a few multiple choice
questions.
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Multivariate normal pdf
The probability density function is
( 1
2π)

p
2 det(Σ)− 1

2 exp{−1
2Q} where Q is

A (x − µ)TΣ−1(x − µ)

B (x − µ)Σ(x − µ)T

C Σ− µ

Trivariate normal pdf
What graphical form has the solution to
f (x) = constant?

A Circle B Parabola

C Ellipsoid D Bell shape

Multivariate normal distribution
Xp ∼ Np(µ,Σ), and C is a k × p constant matrix.
Y = CX is

A Chi-squared with k degrees of freedom

B Multivariate normal with mean kµ

C Chi-squared with p degrees of freedom

D Multivariate normal with mean Cµ



Independence

Let X ∼ N3(µ,Σ), with Σ =




1 1 0
2 3 1
0 2 5


 . Which

two variables are independent?

A X1 and X2

B X1 and X3

C X2 and X3

D None – but two are uncorrelated.

Constructing independent variables?
Let X ∼ Np(µ,Σ). How can I construct a vector of
independent standard normal variables from X?

A Σ(X − µ)

B Σ−1(X + µ)

C Σ− 1
2 (X − µ)

D Σ
1
2 (X + µ)

Conditional distribution: mean

X =

(
X1
X2

)
is a bivariate normal random vector.

What is true for the conditional mean of
X2 given X1 = x1?

A Not a function of x1
B A linear function of x1
C A quadratic function of x1

Conditional distribution: variance

X =

(
X1
X2

)
is a bivariate normal random vector.

What is true for the conditional variance of X2 gi-
ven X1 = x1?

A Not a function of x1
B A linear function of x1
C A quadratic function of x1



Estimator for mean
X1, X2, . . . , Xn is a random sample from Np(µ,Σ).
What is the distribution of the estimator X̄ for the
mean?

A Nn(µ,Σ) B Np(µ, 1
nΣ)

C χ2
p D χ2

n

Unbiased estimators
X1, X2, . . . , Xn is a random sample of size n of a
p-dimensional random vector. An unbiased estima-
tor for the covariance matrix Σ is.

A 1
n
∑n

j=1(X j − X̄)(X j − X̄)T

B 1
n−1

∑n
j=1(X j − X̄)(X j − X̄)T

C 1
n
∑n

j=1(X j − X̄)T (X j − X̄)

D 1
n−1

∑n
j=1(X j − X̄)T (X j − X̄)

Distribution of quadratic form
X ∼ Np(0, I), and R is a symmetric and idempo-
tent matrix with rank r . What is the distribution of
XT RX?

A Np(µ, r I) B Nr(0, I)

C χ2
r D χ2

p

Correct?
Are you sure you want to read the correct answers? Maybe try
first? The answers are explained on the next two slides.



Answers

1. A: exponent quadratic form is (x − µ)TΣ−1(x − µ).
2. C: contours are ellipsoids in general. In two dimensions we

have ellipses. For two dimensions and equal variance and
correlation 0 we have circles.

3. D: linear combinations of mvN are also mvN.
4. B: Cov(X1, X3) = 0 and X1 and X3 are thus independent.
5. C: The Mahlanobis transform is Σ− 1

2 (X − µ).

Answers

6. B: Conditional mean is linear in x1, which will be very useful
when we start with multiple linear regression.

7. A: Conditional variance (covariance) is not a function of x1.
8. B: The mean is also mvN with mean µ and covariance 1

nΣ.
9. B: 1

n−1
∑n

j=1(X j − X̄)(X j − X̄)T is the unbiased estimator
for Σ. Observe the (n − 1) and that the dimension is p × p
(to place the transpose). Not a quadratic form.

10. C: Quadratic form is related to χ2.


