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What is Statistics?

TMAA4267 Linear Statistical Models

» Statistics, linear statistical models and movie recommender
systems.

» Learning outcome.
» TMA4267 core and parts.

» Background knowledge in probability and statistical inference.

» TMA4267 course information.
» Voting and questionnaire.

» Part 1: Multivariate RVs and the multivariate normal
distribution.
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What is Statistics?

» The true foundation of theology is to ascertain the character
of God.

» It is by the aid of Statistics that law in the social sphere can
be ascertained and codified,

> and, certain aspects of the character of God hereby revealed.

» The study of statistics is thus a religious service.
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What is Statistics?

» The true foundation of theology is to ascertain the character
of God.

> It is by the aid of Statistics that law in the social sphere can
be ascertained and codified,

» and, certain aspects of the character of God hereby revealed.
» The study of statistics is thus a religious service.
Florence Nightingale (1820-1910). Quotation from "Games, Gods

and Gambling: A History of Probability and Statistical Ideas" by F.
N. David.
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Word cloud: Probability
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What is Statistics?

» The goal of Statistics is to expand our knowledge based on
collection and analysis of empirical data.
» Two branches:
» Probability: the mathematical study of the probability of
random events.
» Statistical Inference: models and methods for collecting,
describing, analysing and interpreting numerical data.

Drawing taken from http://www.nearingzero.net - now at
http://www.lab-initio.com/
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Word cloud: Statistical Inference
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Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):
Y =00+ Pix+e
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Linear Statistical Models

Simple linear regression (height of child explained by mid-parent
height):
Y=00+pbix+¢e

Multiple linear regression (also include other explanatory variables):
Y = B0+ fix1 + Poxa + -+ Bpxp + €

The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?
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Linear Statistical Models
Simple linear regression (height of child explained by mid-parent
height):
Y=p0+pbix+e
Multiple linear regression (also include other explanatory variables):
Y = Bo+ fix1 + Baxo + -+ Bpxp + €
The multiple linear regression model is our linear statistical model!
So, why is this course not called "Regression"?
We include theory that focus on mathematical understanding:
multivariate random variables, the multivariate normal distribution,
projections, idempotent matrices, hypothesis tests, design of
experiments, .. ..
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Recommender systems

» Recommender systems are a subclass of information filtering
system that seek to predict the 'rating’ or 'preference’ that a
user would give to an item.

Recommender systems

» Recommender systems are a subclass of information filtering
system that seek to predict the 'rating’ or 'preference’ that a
user would give to an item.

Recommender systems have become extremely common in
recent years, and are applied in a variety of applications. The
most popular ones are probably movies, music, news, books,
research articles, search queries, social tags, and products in
general. However, there are also recommender systems for
experts, collaborators, jokes, restaurants, financial services,life
insurance, persons (online dating), and Twitter followers.
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Recommender systems

» Recommender systems are a subclass of information filtering
system that seek to predict the 'rating’ or 'preference’ that a
user would give to an item.

» Recommender systems have become extremely common in
recent years, and are applied in a variety of applications. The
most popular ones are probably movies, music, news, books,
research articles, search queries, social tags, and products in
general. However, there are also recommender systems for
experts, collaborators, jokes, restaurants, financial services, life
insurance, persons (online dating), and Twitter followers.

Source: Wikipedia: Recommender systems
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The Netflix Price: 2006
Text from http:\www.netflixprice.com.

» To help customers find those movies, we've developed our
world-class movie recommendation system: Cinematch.

The Netflix Price: 2006
Text from http:\www.netflixprice.com.

» To help customers find those movies, we've developed our
world-class movie recommendation system: Cinematch.

» Its job is to predict whether someone will enjoy a movie based
on how much they liked or disliked other movies. We use those
predictions to make personal movie recommendations based on
each customer’s unique tastes. And while Cinematch is doing
pretty well, it can always be made better.

» We provide you with a lot of anonymous rating data, and a
prediction accuracy bar that is 10% better than what
Cinematch can do on the same training data set. (Accuracy is
a measurement of how closely predicted ratings of movies
match subsequent actual ratings.)
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» Remark: At this point in time DVDs were sent to customers
by mail - this was before the age of online streaming.
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> Its job is to predict whether someone will enjoy a movie based
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predictions to make personal movie recommendations based on
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Cinematch
The Cinematch recommender system: use statistical linear models
with a lot of data conditioning. | have not found any other
information on the algorithm online.
"Simple" linear suggestion:
(predicted score on movie for person)=
(some overall score for this movie)+
(some overall score used by this person)+
(similarity of this movie with other movie this person has seen)*
(how much this person liked that movie)+
the same for all the movies this person has rated+
error term.
9/29

The Netflix Price: 2006
Text from http:\www.netflixprice.com.

» To help customers find those movies, we've developed our
world-class movie recommendation system: Cinematch.

> Its job is to predict whether someone will enjoy a movie based
on how much they liked or disliked other movies. We use those
predictions to make personal movie recommendations based on
each customer’s unique tastes. And while Cinematch is doing
pretty well, it can always be made better.

» We provide you with a lot of anonymous rating data, and a
prediction accuracy bar that is 10% better than what
Cinematch can do on the same training data set. (Accuracy is
a measurement of how closely predicted ratings of movies
match subsequent actual ratings.)

» Remark: At this point in time DVDs were sent to customers
by mail - this was before the age of online streaming.

The prize was awarded the team BellKor's Pragmatic Chaos in
20009.
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The Netflix Price: Training data

» The training data set consists of more than 100 million ratings
from over 480 thousand randomly-chosen, anonymous
customers on nearly 18 thousand movie titles.

> The ratings are on a scale from 1 to 5 (integral) stars. The
date of each rating and the title and year of release for each
movie are provided.

» No other customer or movie information is provided. No other
data were employed to compute Cinematch’s accuracy values
used in this Contest.

Text from http:\www.netflixprice.com.
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The Netflix Price: Test data

> A qualifying test set is provided containing over 2.8 million
customer/movie id pairs with rating dates but with the ratings
withheld.

» Eligible algorithms must provide predictions for all the withheld
ratings for each customer/movie id pair in the qualifying set.

» The qualifying set is divided into two disjoint subsets
containing randomly selected pairs from the qualifying set.
The assignment of pairs to these subsets is not disclosed.

» The Site will score each subset by computing the square root
of the averaged squared difference between each prediction and
the actual rating (the root mean squared error or "RMSE") in
the subset, rounded to the nearest .0001.

» The RMSE for the first "quiz" subset will be reported publicly
on the Site,

» the RMSE for the second "test" subset will not be reported
publicly but will be employed to qualify a submission as
described below.

Text from http:\www.netflixprice.com.
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The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.
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» Most entries into the competition looked at the problem as a
set of algorithms — focus on prediction rather than on
understanding what drives the preditions.
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on the Netflix Price, Chance, 23, p. 24-29.
» Most entries into the competition looked at the problem as a
set of algorithms — focus on prediction rather than on
understanding what drives the preditions.
» Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).
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The winning algorithm: lessons to learn
Bell, Koren and Volinsky (2010): All Together Now: A Perspective
on the Netflix Price, Chance, 23, p. 24-29.

» Most entries into the competition looked at the problem as a
set of algorithms — focus on prediction rather than on
understanding what drives the preditions.

» Complex models are prone to over fitting or matching small
details rather than the big picture, especially where data are
scarce (importance of cross-validation).

» The final model is an ensemble model combining many
different prediction models (at least more than 100), including
nearest neighbour methods, latent factor models, neural
networks, weighting determined by ridge regression.

» The winning model was never implemented by Netflix, partly
due to implementation issues - but also due to the increase of
available data after "sending DVDs by mail" was replaced by
online streaming.

Read more: Link to talk with interesting points raised.




TMAA4267 Linear statistical methods
Learning outcome, Knowledge

» The student has strong theoretical knowledge about the most
popular statistical models and methods that are used in
science and technology, with emphasis on regression-type
statistical models.
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TMAA4267 Linear statistical methods
Learning outcome, Knowledge

» The student has strong theoretical knowledge about the most
popular statistical models and methods that are used in
science and technology, with emphasis on regression-type
statistical models.

» The statistical properties of the multivariate normal
distribution are well known to the student, and the student is
familiar with the role of the multivariate normal distribution
within linear statistical models.
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TMAA4267 Linear statistical methods
Learning outcome, Skills
» The student knows how to design an experiment and
» how to collect informative data of high quality to study a
phenomenon of interest.
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TMAA4267 Linear statistical methods
Learning outcome, Skills

» The student knows how to design an experiment and

» how to collect informative data of high quality to study a
phenomenon of interest.

» Subsequently, the student is able to choose a suitable
statistical model,

» apply sound statistical methods, and
» perform the analyses using statistical software.

» The student knows how to present the results from the
statistical analyses, and how to draw conclusions about the
phenomenon under study.
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TMA4267: Parts

» Part 1: Multivariate RVs and the multivariate normal
distribution [week 2-5].

» Data consists of simultaneous measurements on many
variables: we work with random vectors and random matrices.

» There is a strong connection between the multivariate normal
distribution and the classical linear model.

» Part 2. The classical linear model [week 6-9]

» We want to understand the relationship between many
variables: with focus on linear relationships through the
classical linear model (multiple linear regression).

» Part 3: Hypothesis tests and analysis of variance [week 9-11]

» Is there and association between a response and an explanatory
variable? Does a response vary between treatment groups?

» Part 4: Design of Experiments [week 12-13+project]

» If we want to collect data, we need to do know how to design

an experiment.
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Do you know this?

Recommended background: TMA4240/TMA4245 Statistics.

» Probability: (continuous) random variables (RV), probability
distribution function (pdf), cumulative distribution function
(cdf), mean E, variance Var, covariance Cov, correlation Corr,
transformation formula, momentgenerating function (MFG),
normal, chi-square and t-distributions.
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Recommended background: TMA4240/TMA4245 Statistics.

» Probability: (continuous) random variables (RV), probability
distribution function (pdf), cumulative distribution function
(cdf), mean E, variance Var, covariance Cov, correlation Corr,
transformation formula, momentgenerating function (MFG),
normal, chi-square and t-distributions.

» Inference: population and sample philosophy, parameter
estimation, confidence interval, hypothesis test, p-value,
simple linear regression.

» Linear methods: vector and matrix algebra (trace,
determinant, eigenvalues/vectors), real vector spaces,
orthogonality, spectral decomposition.
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TMAA4267 Linear Statistical Models
Course information

https://innsida.ntnu.no/bb
» Course information.

» Course material.

v

Lectures (and handouts).
Statistical software.

Exercises (6 recommended and 4 compulsory).

v

Exam (80% of portfolio assessment).
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Is this the correct course for you?

Are you afraid that this course have a too strong focus on theory
and to little on the practical aspects of statistics?

Is this the correct course for you?

Are you afraid that this course have a too strong focus on theory
and to little on the practical aspects of statistics? You may also
look at at the following similar courses (that is, a second course in
statistics, with focus on inference)

» ST2304 Statistical modelling for biology/biotechnology:
https://wiki.math.ntnu.no/st2304/

» TMAA4255 Applied statistics, for all siv.ing. studiprograms
(except IndMat): https://wiki.math.ntnu.no/tma4255/

» KLMED Medical statistics II:
https://www.ntnu.no/studier/emner/KLMED8005

18/29
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Electronic voting
— more than an anonymous show of hands?
For student: check that topics are understood, compare to class,
focus on the question asked, while preserving
anonymity.
For lecturer: collect data to design sessions that are more
contingent.
Software: clicker. math.ntnu.no (single questions), Kahoot!
(end-of-lecture sum-up), quiz in Blackboard.
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Future studies?

What is your current plan of topic for future studies?
» A: Statistics
» B: Mathematics
» C: Numerics
» D: Other

» E: Don't know

Part 1: Multivariate random vectors and the multivariate
normal distribution

» Hardle and Simar (2015): Applied Multivariate Statistical
Analysis. Springer.
> Chapter 2 (p. 53-76): A Short Excursion into Matrix Algebra
(partly lectured, manly assumed known).
» Chapter 3.3 (p. 89-93): Summary statistics.
» Chapter 4.1-4.5 (p. 117-149): Multivariate Distributions.
» Chapter 5.1 (p. 183-190): Elementary Properties of the
Multinormal.
» Fahrmair, Kneib, Lang and Marx (2013): Regression. Springer.
» Appendix B: Def B.11 (chis q), B.13 (t) , B14 (F), Theorem
B.2 and B3.3 (distribution of quadratic forms).

A merged pdf named TMA4267Part1.pdf is available from Bb.
Both eBooks and can be downloaded without charge for NTNU
students.

Electronic voting

Use your smart phone, or other devise with internet access and go
to http://clicker.math.ntnu.no/, and then select TMA4267 as
classroom.

Answers

» A: Statistics

B: Mathematics
C: Numerics

D: Other

E: Don't know

v v vV

v

Start voting now!
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The Cork deposit data
» Classical data set from Rao (1948).
» Weigth of bark deposits of n = 28 cork trees in p = 4
directions (N, E, S, W).
Tree N E S W
1 72 66 76 77
2 60 53 66 63
3 56 57 64 58
28 48 54 57 43
How may we define a random vector in connection to the cork
deposit data set?
23/29




Hands-on

Let X (2x1) have joint pdf (see the 3D-printed figure)
1
f(x1,x) = z—ef%(xlszX%) for — oo < x1,x < 0
T
Find:
1. the marginal distributions fi(x1) and f(x2),

2. the conditional distributions f(x1 | x2) and f(x2 | x1).
3. What about F(xi, x2)?

Hint (why?):
o0
1
| e a-n
—0o V2T

Sklar's Theorem [H4.1, p121-122]

Let F be a joint (cumulative) distribution function with marginal
distribution functions F; and F,. Then a copula C exists with

F(Xl,XQ) = C(Fl(Xl), F2(X2))

for every x1,x € R. If F; and F, are continuous, then C is unique.
On the other hand, if C is a copula and F; and F; are (cumulative)
distribution functions, then the function F defined above, is a joint
distribution function with marginals F; and F».

Remark: this is not part of the core of the course (not suitable as
an exam question), but it is a nice concept and you should have
heard about it.

Copula [H4.1, p120]

A two-dimensional copula is a function C : [0,1]2 — [0, 1] with the
following properties:

» For every u € [0,1] : C(0,u) = C(u,0) =0.
» For every u € [0,1]: C(u,1) = u and C(1,u) = u.
> For every (u1, ), (vi, v2) € [0,1] x [0,1] with u; < v; and
up < vo:
C(v1,v2) — C(va, up) — C(ug, v2) + C(u1,p) >0

(The last property is called "2-increasing".)
Remark: this is not part of the core of the course (not suitable as

an exam question), but it is a nice concept and you should have
heard about it.
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Bivariate Copulas
Farlie-Gumbel-Morgenstern family
C(u,v)=uv+0uv(l —u)(l—-v), 0ec[-1,1]

The only copulas that are polynomial quadratic in u and v,
symmetric.
Normal (Gaussian) copulas [H.p141]

1 1
27 g1o04/1 — p?

1 X1 — M1y2 X2 — U292 X1 — M1,,X2 —
= + -2
Q(x1, x2) 1,2 [( o1 ) ( o ) p( o1 ) o

o) oy t(v)
C(Ll, V) = / / f(X17X2)dX1dX2

Fx1.x2) = e 2bu)

Read more? Properties and applications of copulas: A brief survey,
Roger B. Nelsen (And same remark as before.)

M2)




More on copulas?

We will later in Part 1 (recommended exercise 2) look at data and
contour plots from Gaussian copulas, and other copulas poplar in
finance - using R and the copula library in R.
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What have we worked with today?

» A random vector is ... a vector of random variables.

» Joint distribution function.
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» From joint distribution function to marginal and conditional
distributions.
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Joint distribution function.

From joint distribution function to marginal and conditional
distributions.

Cumulative distribution.
Independence.

From marginal cumulative distribution functions to joint using
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What have we worked with today?

» A random vector is ... a vector of random variables.
» Joint distribution function.

» From joint distribution function to marginal and conditional
distributions.

» Cumulative distribution.
» Independence.
» From marginal cumulative distribution functions to joint using

copula.

Next lecture: Mean vector and covariance matrix. You may want to
look into how to define a positive definite matrix, how to define
eigenvalues/vectors and results for symmetric matrices.
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TMAA4267 Linear Statistical Models V2017 [L2]

Part 1: Multivariate RVs, and the multivariate normal distribution
Moments: mean and covariance [H:4.2]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 13, 2017
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Last lecture

> A random vector X, 1) is ... a p-dimensional vector of
random variables.

> Weight of cork deposits in p = 4 directions (N, E, S, W).

» Rent index in Munich: rent, area, year of construction,
location, bath condition, kitchen condition, central heating,
district.

» Joint distribution function:f(x).
» From joint distribution function to marginal (and conditional
distributions).

oo le'e}
f1(X1):/ / f(x1,x2, ..., xp)dxo - - dxp

» Cumulative distribution (definite integrals!) used to calculate
probabilites.

> Independence: f(x1,x2) = fi(x1) - f(x2) and
f(Xl | X2) = f1(X1).

» From marginal cumulative distribution functions to joint using
copula.
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Word cloud: Probability

BlNOMlSK ~ ~NORMALFORDELING

“STOKASTISK VARIABEL
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The Cork deposit data
> Classical data set from Rao (1948).
» Weigth of bark deposits of n = 28 cork trees in p = 4
directions (N, E, S, W).
Tree N E S W
1 72 66 76 77
2 60 53 66 63
3 56 57 64 58
28 48 54 57 43
How may we define a random vectors and random matrices for cork
trees?
4/15

Today

» Moments: important properties about the distribution of X.

E: Mean of random vector and random matrices.

v

» Cov: Covariance matrix.

Corr: Correlation matrix.

v

v

E and Cov of multiple linear combinations.

3/15

The Cork deposit data

Draw a random sample of size n = 28 from the population of cork
treed and observe a p = 4 dimensional random vector for each tree.

X X2 Xiz Xua
Xo1 X2 Xoz X
X (28a) = X1 Xz Xz Xz
Xog1 Xogo Xog3 Xoga

and B(X) = {E(X;)}.
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Random vectors and matrices: rules for means

» Random vector X, 1y with mean vector 1,1

X1 E(X1)

Xo E(X2)
X(p><1) = . ) H(px1) = E(X) = .

X, E(X)

> 1) Random matrix X, ) and random matrix Y ()
E(X+Y)=E(X)+E(Y)

> 2) Random matrix X () and conformable constant matrices

A and B:
E(AXB) = AE(X)B
6/15
Hands-on

Let X471 have variance-covariance matrix

2 100

1 201

r= 0 0 21

011 2

Explain to your neighbour what this means.
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Variance-covariance matrix

» Random vector X, 1) with mean vector p(,,1):

X1 E(X1) H1
Xo E(X2) H2
Xpx1) = | . |+ Hpx1) = : =1 -
Xp E(X,) Hp
» Variance-covariance matrix X (real and symmetric)
o1 012 O1p
012 02 o2p
T = Cov(X) = E[(X—p)(X—p)T] = ‘ _
O1p 02p Opp
> ojj = E[(Xi — pi)(Xj — )]
7/15
Correlation matrix
Correlation matrix p (real and symmetric)
o1 012 . I1p
V011011 V011022 \/%110,3,; 1 P12 Pip
(o3 [op 2,
o= \/01112022 \/02222(722 o \/ﬁ _ pr2 1 P2p
o1 0’.2 o ) ) )
Toiien  Vomew | Vowow Pp P2p !
011 0 0
0 \/ 022 0
p= (v%)—lz(v%)—l, where V2 = . .
0 0 Opp

9/15




Hands-on

Let X4x1 have variance-covariance matrix

21 00
1 201
r= 0 0 21
011 2
Find the correlation matrix.
10/15
Hands-on: Focus on C7
Xn KN ONN ONE ONS ONW
x— | Xe Cu= | ME | g_| OnE O OB OEw
Xs s ONS OEE 0SS Osw
Xw pw ONW  TEW OSW Oww
» Scientists would like to compare the following three contrasts:
N-S, E-W and (E+W)-(N+S),
> and define a new random vector Y (3,1) = C(3x4)X(4x1)
giving the three contrasts.
» Write down C.
» Use the formulas we just developed and explain how to find
E(Yl) and COV(Yl, Y3).
12/15

Linear combinations

> Random vector X (1) with mean vector ux = E(X) and
variance-covariance matrix £x = Cov(X).

> The linear combinations Z = CX have

rz = E(Z)=E(CX)=Cux
¥z = Cov(Z)=Cov(CX)=CxxCT

11/15

Exam V2014: Problem 1a

X1 1
Let X = ( X ) be a random vector with mean p = E(X) = ( 1 )
X3 1

and covariance matrix X = Cov(X) =1 = (

o O =
o = O

0
0 |. Further, let
1

A=

Define Y =
Y3

Find E(Y) and Cov(Y).

Are X1 and X, independent?

Are Y7 and Y5 independent? Justify your answers.
Find the mean of X" AX.

be a matrix of constants.

WIN W W=

|
Wi W= wIN
|
W WIN Wi
<<

I
>
x
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The covariance matrix

Random vector X(,x1) with mean vector p,,1y and covariance
matrix

011 012 '+ Olp

012 022 -+ O2p
X = Cov(X) = E[(X —p)(X — )T = | % .

O1p O2p *** Opp

The covariance matrix is by construction symmetric, and we would
only consider covariance matrices that are positive definite (PD).
Why would we only consider PD matrices?

Homework for next lecture: Read H.Chapter 2.1-2.2 to remind
yourself of spectral decomposition (diagonalization), positive
definite matrix, eigenvalues and eigenvectors.
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What have we worked with today?

v

Mean: py = E(X) = E(X;)
» Covariance: Cov(X,Y) =E((X — ux)(Y —puy)7).
» Variance-covariance:
T = Cov(X) = E((X — px)(X — px)T), also sometimes
denoted Var(X).
» Correlation: Corr(X) = VizV©:,
» CX: E(CX) = Cuyx and Cov(CX) = CXECT.
Next lecture: First work with the covariance matrix and positive
definiteness, then start with the multivariate normal distribution

(where we use moment generating functions and a multivariate
version of the transformation formula).
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TMA4267 Linear Statistical Models V2017 [L3]

Part 1: Multivariate RVs and normal distribution (L3)
Covariance and positive definiteness [H:2.2,2.3,3.3],

Principal components [H11.1-11.3]
Quiz with Kahoot!

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 17, 2017
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Previously

>

>

X(px1): random vector, described by

joint probability distribution function (pdf) f(x) and
cumulative distribution function (cdf) F(x), or, as we will see
(in L4), by the (multivariate) moment generating function
(MGF) Mx(t) = et'X.

Important aspects: moments.

E(X): mean of a random vector (or matrix) is found as the
mean of each element.

Cov(X) = E((X — pu)(X — p)T): p x p variance-covariance
matrix, with variances on the diagonal and covariance
off-diagonal, real, symmetric.

Rules for vector of linear combinations CX: E(CX) = Cp
and Cov(CX) = CZC'.
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Today!

Requirements and properties of £ = Cov(X): symmetric,
positive definite (SPD), via spectral decomposition
(eigenvalues/eigenvectors).

The square root matrix.

Linear combinations with maximal variability: principal
components are linear combinations made from eigenvectors.

PCA-plots.
Kahoot! on what we have worked with so far.

Next lecture: move on to multivariate normal data!

Drinking habits data set

The variance-covariance matrix and positive definiteness

X (px1) With symmetric ¥ = Cov(X)

>

Want variance of linear combination to be positive: ¢” X ¢ for
all ¢ #0,

which means that X needs to positive definite. Write ¥ > 0.

This is true if all eigenvalues of X are positive (eigenvalues of
symmetric matrix are real).

Spectral decompositions (diagonalization): X = PAPT.

Square root matrix defined from spectral decomposition:
1 1

T2 =PA:PT.

Coffee Tea Cocoa Liquer Wine Beer
Norway 9.800000 0.21 0.61 1.1 6.4 52.0
Danmark 10.400001 0.39 0.54 1.4 20.7 123.2
Finland 12.450000 0.17 0.03 3.1 5.4 79.0
Iceland 8.270001 0.23 0.00 2.2 5.2 23.7
Sweden 10.710000 0.32 0.16 1.8 12.3 57.4
France 5.490000 0.20 1.18 2.5 73.8 40.5
Ireland 0.550000 3.14 2.76 1.4 3.9 114.0
Italy 4.670000 0.08 0.97 1.0 67.0 22.7
Jugoslavia 3.100000 0.11 0.59 1.6 20.3 46.8
The Netherlands 10.970000 0.82 15.35 2.0 14.7 87.0
Poland 1.400000 0.54 0.56 4.3 7.6 30.8
Portugal 3.080000 0.03 0.02 0.8 51.5 60.7
Soviet Union 0.300000 0.98 0.56 1.9 6.6 19.3
Spain 4.250000 0.03 1.11 2.8 38.3 70.7
Schweitz 9.400000 0.25 3.06 1.9 49.6 69.3
Great Britain 2.060000 2.62 2.78 1.8 11.5 110.5
Chech Repl 2.200000 0.13 1.21 3.3 13.6 132.9
Germany 8.970000 0.22 3.94 2.0 26.0 143.0
Hungary 2.270000 0.07 0.85 4.6 21.5 103.9
Austria 10.220000 0.16 1.80 1.5 34.8 119.5
New Zealand 1.920000 1.46 0.03 1.4 14.6 114.2
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Drinking habits

Coffee Tea Cocoa Liquer Wine Beer
Norway 9.800000 0.21 0.61 1.1 6.4 52.0
Danmark 10.400001 0.39 0.54 1.4 20.7 123.2
Finland 12.450000 0.17 0.03 3.1 5.4 79.0
Iceland 8.270001 0.23 0.00 2.2 5.2 23.7
Sweden 10.710000 0.32 0.16 1.8 12.3 57.4
France 5.490000 0.20 1.18 2.5 73.8 40.5
Ireland 0.550000 3.14 2.76 1.4 3.9 114.0
Italy 4.670000 0.08 0.97 1.0 67.0 22.7
Jugoslavia 3.100000 0.11 0.59 1.6 20.3 46.8
The Netherlands 10.970000 0.82 15.35 2.0 14.7 87.0
Poland 1.400000 0.54 0.56 4.3 7.6 30.8
Portugal 3.080000 0.03 0.02 0.8 51.5 60.7
Soviet Union 0.300000 0.98 0.56 1.9 6.6 19.3
Spain 4.250000 0.03 1.11 2.8 38.3 70.7
Schweitz 9.400000 0.25 3.06 1.9 49.6 69.3
Great Britain 2.060000 2.62 2.78 1.8 11.5 110.5
Chech Repl 2.200000 0.13 1.21 3.3 13.6 132.9
Germany 8.970000 0.22 3.94 2.0 26.0 143.0
Hungary 2.270000 0.07 0.85 4.6 21.5 103.9
Austria 10.220000 0.16 1.80 1.5 34.8 119.5
New Zealand 1.920000 1.46 0.03 1.4 14.6 114.2

5/26




Estimators for g and X [H3.3]

X1, X2,...,Xpiid E(X) = p and Cov(X).

1 n
X=-3"X;
nj:1

1 < - -
s?= mZ(Xj—X)(Xj—X)T
j=1

are two commonly used estimators for the mean and covariance
matrix.

RecEx1.P7: we may write S2 using a centering matrix.
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Drinking habits data set

> drinkcov

Coffee Tea Cocoa Liquer Wine Beer
Coffee 16.5471497 -1.4476576 3.6381233 -0.7651859 1.841446 14.386113
Tea -1.4476576 0.7168891 .5154248 -0.1786857 -6.939988 .503595
Cocoa  3.6381233 .5154248 10.8676967 -0.1700214 -3.191860  28.673374
Liquer -0.7651859 -0.1786857 -0.1700214 . -4.307429 1.142071
Wine 1.8414458 -6.9399885 -3.1918596 -4.3074288 432.878505 -159.797675
Beer 14.3861129 9.5035954 28.6733741 1.1420707 -159.797675 1549.731430

o
)
©

-
1)
N
N
N
@
o

g
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prcomp

drink <- read.csv("drikke.TXT",sep=",",header=TRUE)
drink <- na.omit(drink) # remove missing data

# now for PCA
pca <- prcomp(drink,scale=TRUE) # scale: variables are scaled, and automatically center=TRUE

> names (pca)

[1] "sdev" "rotation" "

center"  "scale"  "x"
> pca$rotation # the loadings
PC3 PC4 PCS PC6

2
.66788815 -0.22475187 0.4132467433 0.07431918 0.5092751
.09539757 0.36756357 -0.0002927055 -0.12503940 .6407898

Coffee -0.26029733
Tea 0.65540048 -

=

o
o

Cocoa  0.23510209 0.57754726 -0.06603093 -0.4200858712 -0.61199325 -0.2362164
Liquer 0.02190508 -0.32118904 -0.79997824 -0.3292322714 -0.12307455 0.3644878
Wine -0.50599685 0.06551597 0.37109534 -0.6765579799 0.15862233 0.3450672
Beer 0.43693234 0.32219426 -0.17985159 -0.2943302832 0.75099779 -0.1493533

> s <- cor(drink) # cor, not cov, since covariates are scaled
> eigen(s) # same as pca$rotations - opposite sign of some vectors
$values
[1] 1.7204307 1.4295795 1.1408597 0.7731249 0.7354586 0.2005467
$vectors

[,11 [,2] [,3] [,4] [,5] [,6]
[1,1 .26029733 0.66788815 -0.22475187 0.4132467433 .07431918 -0.5092751
[2,] -0.65540048 -0.09539757 .36756357 -0.0002927055 -0.12503940 -0.6407898
[3,] -0.23510209 .57754726 -0.06603093 -0.4200858712 -0.61199325 0.2362164
[4,] -0.02190508 -0.32118904 -0.79997824 -0.3292322714 -0.12307455 -0.3644878
(5,1
[6,1

o
o

oo o
=3

=

.50599685 0.06551597 0.37109534 -0.6765579799 0.165862233 -0.3450672
-0.43693234 0.32219426 -0.17985159 -0.2943302832 0.75099779 0.1493533

=
=
=
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Principal components

» Let X be the covariance matrix associated with the random
vector Xpx1. The covariance matrix has the eigenvalue-vector
pairs (Aj, €j), where Ay > Ao > --- > X, > 0.

» The mth principal component is given by
Y= e} X = em X1 + emXo + - + empXp
» and has

Var(Yn) = elXenm=2Am, i=12,..,p
Cov(Y;,Ym) = e Zen=0 i#m

10/ 26

Principal components: idea

3. We choose principal component 3, PC; = c3TX, to have
maximal variance and be uncorrelated with PC; and PC,.

max  Var(cd X) and ¢/ Zc3 =0
C3¢0,C;C3=1

fori=1,2.
4. and so on.

It can be shown that choosing ¢; = e; (ith eigenvector of X) fulfills
these requirements.

12/26

Principal components: idea

1. We choose principal component 1, PC; = ¢/ X, to have
maximal variance

max  Var(c] X)

cl;ﬁO,c{cl:l

2. We choose principal component 2, PC, = ¢ X, to have
maximal variance and to be uncorrelated with PCj.

max  Var(cg X) and ¢{ Zc, =0
c2#0,c] c2=1

11/26
Principal component scores

> pca$x

PC1 PC2 PC3 PC4 PC5 PC6
Norway -0.49755266 0.5423321 0.24730564 1.64969605 -0.141194597 -0.259224773
Danmark 0.04736942 1.1407629 -0.01389387 0.62447776 1.286968641 0.032325551
Finland -0.37212624 0.4628190 -1.62846743 1.17223112 0.284805095 0.685797001
Iceland -0.68875794 -0.4028320 -0.40970218 1.46441365 -0.741785804 0.092078151
Sweden -0.57111647 0.4409190 -0.21949104 1.33928137 0.005514957 0.299908368
France -1.92532968 -0.3909512 0.61668510 -1.42238114 -0.200223837 0.818931395
Ireland 3.27114811 -0.5256052 1.42206819 -0.04493512 -0.014828505 0.477585062
Italy -2.04540738 -0.2394487 1.76095443 -0.63624103 -0.367324127 0.054512802
Jugoslavia -0.53258860 -0.7075896 0.45055250 0.39569929 -0.299213104 -0.741778021
The Netherlands 1.15707155 3.2747502 -0.57171870 -0.93460573 -2.324855354 -0.377956367
Poland 0.09667998 -2.0690624 -1.55793948 -0.11990952 -1.118921154 0.196370232
Portugal -1.25572694 -0.3355743 1.55429933 -0.39165369 0.418471226 -0.587655889
Soviet Union 0.35234451 -1.6341096 0.62745644 0.66818676 -1.138865302 -0.446485485
Spain -0.777513565 -0.5475718 -0.39572230 -0.70847071 0.084179130 -0.055157063
Schweitz -1.10755090 0.9248648 0.29621598 -0.49777226 -0.047226891 0.484657020
Great Britain 2.55842016 -0.3473694 0.94755863 -0.24512125 0.028322241 0.555177625
Chech Repl 0.74010278 -0.6054459 -1.36137719 -0.75417409 0.950808503 -0.708681733
Germany 0.35362098 1.5089269 -0.54743939 -0.46975244 0.999859480 -0.289909548
Hungary 0.17766893 -1.2757040 -2.13925810 -1.16454698 0.376532314 -0.009844322
Austria -0.41110347 1.3402182 0.06024028 -0.01769055 1.108477110 0.029376612
New Zealand 1.43034542 -0.5543289 0.86167320 0.09326849 0.850499977 -0.250026615
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Scores PCA1

vs PCA2

Scores PCA1 vs PCA3
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How many PCs are needed?

Dependent on:

» The proportion of the total sample variance that we would like
to explain. 80%7? More?

» Look at the eigenvalues; small eigenvalues may be an evidence
of collinearity problems.

20/26

Proportion of total population variance

» Total population variance:
f:l Var(Xj) = trx = Zf:l Aj = Z}Jﬂ Var(Z).
» Proportion of total population variance explained by PC m:
Am
——
j=1 Aj
» Proportion of total population variance explained by the first

m PCs: m
Zj:l \j
Zf:l Aj

19/26

Importance of components

> summary (pca)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.3117 1.1957 1.0681 0.8793 0.8576 0.44782
Proportion of Variance 0.2867 0.2383 0.1901 0.1288 0.1226 0.03342
Cumulative Proportion 0.2867 0.5250 0.7151 0.8440 0.9666 1.00000

> eigen(s)

$values

[1] 1.7204307 1.4295795 1.1408597 0.7731249 0.7354586 0.2005467
> sqrt(eigen(s)$values)

[1] 1.3116519 1.1956502 1.0681103 0.8792752 0.8575888 0.4478244
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Screeplot
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Variances

0.0
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ncipal components from singular value decomposition

The singular value decomposistion of a (data) matrix X, is given
by:
Xnxp = U”XPDPXPV;—Xp
where
» the columns of U are the eigenvectors of XX T
» D is a diagonal matrix with singular values on the diagonal,
i.e. the square root of the eigenvalues of XX and X7 X
(they have the same eigenvalues).
» the columns of V are the eigenvectors of X7 X.
And, the principal components (scores) of the data are defined as
the columns of
Z=XV=UD

24 /26

PC from standardized variables

» X can be standardized to have mean 0 and unit variances.
X* = VX - )

» Principal components made from standardized variables will be
based on the eigenvalues and eigenvectors of the correlation
matrix p = ViZV©:,

» Achilles heel: Since  and p do not have the same
eigenvectors/eigenvalues, the principal components made from
¥ and p will not be the same.

» Unless we have a good reason to compare the variances for the
different X;s we should make PCs from the standardized
variables.

> For standardized variables 37 ; Var(X;) = p, and

» Proportion of total population variance explained by PC m:
Am
e

PCR: summary

v

PCA finds linear combinations Y that “best” represents the X.

The PCs are found in an unsupervised way. The "truth" is not
known.

v

v

A plot of PC1 vs PC2 is often used to see if there is separation
(subgroups in the data).

» The principal component loadings are often given
interpretation (overall consumption,

v

PCA can be combined with linear regression.
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Let Xj and X, be two (continuous) RVs, and f(xy, xo) be the
joint pdf and fi(x;) and f(x») be the marginal pdfs, and C is

a copula. What is true?

A
B

fx1, %) = fi(x1) - Hr(x2)
f(x1, x2) is found from fi(x;) and f(x>) alone
fi(x1) is found from f(xq, xo)

f(x1,x) = Clh(x), h(x))




Mean of sum

X and Y are two bivariate random vectors with E(X) =
(1,2)" and E(Y) =(2,0)". What is E(X + Y)?

Mean of linear combination

X is a 2-dimensional random vector with E(X) = (2,5)7 ,
and b = (0.5,0.5)7 is a constant vector. What is E(b" X)?

A 35 B 7
2 D 5

A (1517

B 3,27

(_112)7—

D (1,-2)7
Covariance

X is a p-dimensional random vector with mean u. Which of
the following defines the covariance matrix?

A E[(X—pw)"(X—p)

B E[(X—pw)(X—n)T]
E[(X — ) (X —pu)]

D E[(X—-p(X—nu)']

Mean of linear combinations

X is a p-dimensional random vector with mean p and cova-
riance matrix . C is a constant matrix. What is then the
mean of the k-dimensional random vector Y = CX?

A Cp
B cCz
cuc’

D czIc’




Covariance of linear combinations

X is a p-dimensional random vector with mean u and cova-
riance matrix . C is a constant matrix. What is then the
covariance of the k-dimensional random vector Y = CX?

A
B

D

Cu
C:
cuc’
czc’

Correlation

X is a 2-dimensional random vector with covariance matrix

4 08
Z:{O.S 1 }

Then the correlation between the two elements of X are:

A 0.10
B 025

0.40
D 0.80

Symmetric positive definite matrix

Which of the following is not correct for a symmetric positive
definite matrix?

A
B

The trace equals the rank of the matrix.
The determinant is positive.
The trace is the sum of the eigenvalues.

All the eigenvalues are positive.

PCA interpretation

Data set: student’s score on a Math test, a Physics test, a
Reading comprehension test, and a Vocabulary test.

First PC represents overall academic ability,
second PC represents a contrast between quantitative ability
and verbal ability.

What loadings would be consistent with that interpretation?

(0.5,0.5,0.5,0.5) and (0.71,0.71,0,0)

(0.5,0.5,0.5,0.5) and (0.5,0.5,-0.5,-0.5)
(0.71,0.71,0,0) and (0,0,0.71,-0.71)
(

A
B
C
D (0.71,0,-0.71,0) and (0 ,0.71,0,-0.71)




Correct?

Are you sure you want to read the correct answers? Maybe try
first? The answers are explained on the next two slides.

Answers

5. A: Cu is the mean of Y = CX.
6. D: CZC' is the covariance matrix of Y = CX.

7. C: Correlation is 0.40 since covariance was 0.8 and
variances 4 and 1.

8. A: NOT true for a symmetric positive definite matrix: the
trace is in general not equal to the rank - but it is for
idempotent symmetric matrices.

9. B: average means equal weight for all values, difference
between quantitative and verbal means opposite signs for
quantitative (maths and physics) and verbal (reading and
vocabular).

Answers

1. C: We go from joint to marginal distribution by

integration. The product of marginals equal the joint only
for independent variables. We need information on the
dependency structure to construct a joint from marginals,
and that is what is done with the copula - but the
formula is based on the cumulative distribution functions.

. B: Mean of sum (1,2)" +(2,0)" =(3,2)7.
. A: Mean of linear combination (0.5,0.5)7(2,5) =3.5.
. B: Covariance matrix defined as E{(X — p)(X — )7}

This was the only formula that gave a p X p matrix. A
gave a scalar and C and D did not match in dimensions.

TMAA4267 Linear Statistical Models V2017 [L4]

Part 1: Multivariate RVs, and the multivariate normal distribution
The multivariate normal distribution (pdf and mgf) [H:4.2-4.4]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 20, 2017
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What we know, and the plan for this lecture

1/8

What we know, and the plan for this lecture

» A random vector X can be described by the joint pdf f(x).
> Mean: pu = E(X) = {E(Xj)}
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What we know, and the plan for this lecture

» A random vector X can be described by the joint pdf f(x).
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What we know, and the plan for this lecture

» A random vector X can be described by the joint pdf f(x).

» Mean: pu = E(X) = {E(X))}

» Covariance matrix: Cov(X) =E((X — p)(X —p)7),
symmetric and we often require the matrix to be positive
definite.




What we know, and the plan for this lecture

v

v

v

v

A random vector X can be described by the joint pdf f(x).
Mean: p = E(X) = {E(X)}

Covariance matrix: Cov(X) = E((X — u)(X — ) "),
symmetric and we often require the matrix to be positive
definite.

Linear combinations CX: E(CX) = Cuy and
Cov(CX)=CZC'.

1/8

Why is the mulitivariate normal distribution so important in
statistics?

Many natural phenomena may be modelled using this
distribution (just as in the univariate case).

Multivariate version of the central limit theorem- the sample
mean will be approximately multivariate normal for large
samples.

Good interpretability of the covariance.
Mathematically tractable.

Building block in many models and methods.

What we know, and the plan for this lecture

v

A random vector X can be described by the joint pdf f(x).
» Mean: p = E(X) = {E(X))}

» Covariance matrix: Cov(X) = E((X — p)(X — ) "),
symmetric and we often require the matrix to be positive
definite.

» Linear combinations CX: E(CX) = Cuy and
Cov(CX)=CECT.

» Now: derive the joint pdf and the moment generating function
for the multivariate normal distribution.

1/8

Cramer-Wold and moment generating functions

X(px1) is a random vector. The distribution of X is completely
determined by the set of all one-dimensional distributions of the
linear combinations Y = t7 X = 27:1 t; X; where t ranges over all
fixed p-vectors.

» Y = tT X has MGF My(s) = E(exp(sY)) = E(exp(st X)).
> If we choose s = 1 My (1) = E(exp(t” X)) = Mx(t), which is
the MGF of X and thus determines the distribution of X.

Hardle and Simes (2015) use characteristic functions, E(e’t' X) but
we stick with moment generating functions E(eth) . Why: we will
only work with nice distributions and do not have problems with
integrals not existing, and we know MGFs from previous course.

3/8




Multivariate transformation formula [H:4.3]

X = uY) (4.43)
for a one-to-one transformation u: R” — R?. Define the Jacobian of u as
g (axi) _ (au,m)
ay; ay;

and let abs(|J|) be the absolute value of the determinant of this Jacobian. The pdf
of Y is given by

Sr(y) =abs(|T]) - fxltu(y)}. (4.44)
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The Chi-square distribution

pdf X%i
1
fly) = —— p/2=14(-y/2) 0
(v) 272 (p)2)” e ory >
MGF X,233 .
MY(t) = (1 _ 2t)p/2

Addition property:

Let X1 ~ x% and X5 ~ Xfy, and let X1 and X3 be independent.
Then X1 + X5 ~ Xf,Jrq.

Subtraction property:

Let X = X; + Xz with X; ~ x3 and X ~ x3,,. Assume that X;
and X are independent. Then X5 ~ X<27-

5/8

This lecture: derived the MGF and pdf of the multivariate
normal distribution

1. Z~ Ni(0,1)
> MGF: Mz(t) = E(e®) = eit®
2. 21,25, ..., 2y iid Ny(0,1) = Zpx1 ~ N,y(0, 1)
» MGF: Mz(t) = E(et'?) = e3t't
3. X =AZ + p, AAT = X gives Xpx1 ~ Np(1, X)
» MGF: Mx(t) = E(et'¥) = et'nt3t't
> pdf (invertible):

F(x) = exp{ 4 (x — 1) E " (x — o)}

(2m) [z}

7/8




Properties of the mvN - plan for L5
Let X(,x1) be a random vector from Np(p, X).

1. Probability density function f(x) (both when X is invertible
and not).

2. Moment generating function: Mx(t) =exp(t"p + 2t7Xt)

3. Graphical display, contours (ellipsoids), and chisq-distributed
(X =) EHX — p).

4. Linear combinations of components of X are (multivariate)
normal.

5. All subsets of the components of X are (multivariate) normal.

6. Zero covariance implies that the corresponding components
are independently distributed.
7. ALBT =0 < AX and BX are independent.
8. The conditional distributions of the components are
(multivariate) normal. X | (X1 = x1) ~
Noo(pto + Zon Zi (x1 — py), Too — T X1 Ep5)
And then remains estimators for parameters and properties of
quadratic forms in L6.
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TMAA4267 Linear Statistical Models V2017 [L5]

Part 1: Multivariate RVs, and the multivariate normal distribution
Properties of the multivariate normal distribution [H:2.6,4.4,5.1]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 24, 2017
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Last lecture: derived the MGF and pdf of the multivariate
normal distribution

1. Z ~ N(0,1)

» MGF: Mz (t) = E(e) = 3t
2. 21,25, ..., Zpiid Ni(0,1) = Zpx1 ~ Np(0,1)

» MGF: Mz(t) = E(et’?) = e3t't
3. X =AZ + pu, AAT = X gives X1 ~ Np(2, X)

> MGF: Mx(t) = E(et'*) = et'wt3t't

> pdf (X invertible):

f(x)

= atEEePl st I p)

Why is the mulitivariate normal distribution so important in
statistics?

» Many natural phenomena may be modelled using this
distribution (just as in the univariate case).

» Multivariate version of the central limit theorem- the sample
mean will be approximately multivariate normal for large
samples.

» Good interpretability of the covariance.
» Mathematically tractable.

» Building block in many models and methods.

Today: six properties of the mvN

Let X(,x1) be a random vector from Np(p, X).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

3/20

Today: six properties of the mvN

Let X(px1) be a random vector from Nj(p, ).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).
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Today: six properties of the mvN

Let X (,x1) be a random vector from Ny(u, X).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

3/20
Today: six properties of the mvN
Let X(,x1) be a random vector from Np(p, X).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

5. AZBT =0 < AX and BX are independent (will be very
important in Part 2)

3/20

Today: six properties of the mvN

Let X(,x1) be a random vector from N (g, X).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

3/20

Today: six properties of the mvN

Let X(px1) be a random vector from Nj(p, ).
1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).
2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

5. AXBT =0 < AX and BX are independent (will be very
important in Part 2)

6. The conditional distributions of the components are
(multivariate) normal. X | (X1 = x1) ~
Np2(tty + o1 X17 (x1 — 1), Too — T X1 E1p).
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Diabetes data

We will study a data set on diabetes in Part 2. The data set has
measurements on n = 442 diabetes patients, and p = 11 different
measurements are taken for each patients. These measurements
are:

> age

> sex

> body mass index (bmi)

» mean arterial blood pressure (map)

> six blood serum measurements: total cholesterol (tc), Idl
cholesterol (Idl), hdl cholesterol (hdl), tch, ltg, glu.

> a quantitative measurement of disease progression one year
after baseline (prog)

We will look at the four variables bmi, map, tc and Idl. Can we
assume that these follow a multivariate normal distribution?

4/20

Example: Slightly modified version of Exam K2014 1b
X1 L .
Let X = ( X ) be a bivariate normal random vector with mean
2
p=E(X)= ( ; ) and covariance matrix

¥ = Cov(X) = ( 0%5 o )

You find the eigenvalues and eigenvectors of the covariance matrix
Y on the next slide.

Describe the graph of the equation (x — ) TE "} (x — ) = b
where b > 0 is a constant.

Make a drawing of the graph, for b = 1 found above.

What is the probability that a random sample from this distribution
will be inside this graph?

6/20

Contours of multivariate normal distribution

» Contours of constant density for the p-dimensional normal
distribution are ellipsoids defined by x such that

(x—p) E (x—p)=b

where b > 0 is a constant.
These ellipsoids are centered at p and have axes ++/b\;e;,
where Xe; = \je;, fori=1,...,p.

» (x — p)TEZ 7 (x — p) is distributed as x2.
» The volume inside the ellipsoid of x values satisfying

(x—p) =N (x - p) < x3(a)

has probability 1 — a.

Example: Exam K2014 1b

> sigma <- matrix(c(1,0.5,0.5,2),ncol=2)
> eigen(sigma)

$values

[1] 2.2071068 0.7928932

$vectors

[,1] [,2]
[1,] 0.3826834 -0.9238795
[2,] 0.9238795 0.3826834
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Multivariate distributions - in 3D: task for the intermission!

ltx—| % POy
pPOXOy a}% '

The following four 3D-printed figures have been made:
»Arox=1,0,=2,p=03
»Box=10,=1p=0
» Cox=10,=1p=05
»Diox=10,=2p=0

The figures have the following colours:
> white
» purple
> red
» black

Task: match letter and colour by writing the correct letter after the
name of the colour on the available sheets and take the sheet with

you. We report on the solution after the intermission.
10/20

b and map bmiandtc b and d!

100 120

80
50 100 150 200 250

3
100 150 200 250 300

20 25 30 35 40

map and tc map and il tcand dl

50 100 150 200 250
50 100 150 200 250

3
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2 2 3
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Today: six properties of the mvN

Let X(px1) be a random vector from Nj(p, ).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

5. AXBT =0 < AX and BX are independent (will be very
important in Part 2)

6. The conditional distributions of the components are

(multivariate) normal. X | (X1 = x1) ~
Npa(po + Z1E7 (x1 — 1), Too — Enn Ep' T).
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Example: Exam K2014 1a
X1 L .
Let X = X be a bivariate normal random vector with mean
2
p=E(X)= < ; ) and covariance matrix

T = Cov(X) = ( 0%5 b )

Let Y = < :ﬁl ) where Y =3X{ —2X and Ya = X; + Xo.
2

What is the distribution of Y?
What is the distribution of Y7?

Let Z = X1 + aX,. How can you choose a so that Z and Y5 are
independent?

12/20
Example: Exam K2014 1a (slightly modified)
X1 . .
Let X = X be a bivariate normal random vector with mean
2
p=E(X)= ( ; ) and covariance matrix
_ _ 1 05 (T
T = Cov(X) = < 05 2 ) Let Y = ( Y, ) where
Y; =3X; —2X; and Yo = X1 + Xz
What is the distribution of Y?
What is the distribution of Y;?
Let Z = X1 + aXs. How can you choose a so that Z and Y5 are
independent?
14 /20

Example: Exam K2014 1a (slightly modified)

X1
X2

p=EX)= < ; ) and covariance matrix

Let X = ( be a bivariate normal random vector with mean

B (1 05 a7
):_Cov(X)_(O.5 ” ).LetY_(Yz),where

Y1 =3X; —2X5 and Yo = X1 + Xo.
What is the distribution of Y?

What is the distribution of Y;?

Let Z = X1 + aX,. How can you choose a so that Z and Y5 are
independent?
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Today: six properties of the mvN

Let X(px1) be a random vector from Nj(p, ).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF).

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

5. AXBT =0 < AX and BX are independent (will be very
important in Part 2)

6. The conditional distributions of the components are
(multivariate) normal. X | (X1 = x1) ~
Np2(tty + o1 X17 (x1 — 1), Too — T X1 E1p).

15 /20




Independent variables?

Let Xpx1 ~ Np(p, X), with

[Nl ]
— O N -
=N OO
N~ RO

» List the pairs of variables that are independent.
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Today: six properties of the mvN

Let X(,x1) be a random vector from Np(p, X).

1.

The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition).

. Linear combinations of components of X are (multivariate)

normal (proof using MGF).

. All subsets of the components of X are (multivariate) normal

(special case of the above).

Zero covariance implies that the corresponding components
are independently distributed (proof using MGF).

AXBT =0 < AX and BX are independent (will be very
important in Part 2)

. The conditional distributions of the components are

(multivariate) normal. X | (X1 = x1) ~
Noa(pt2 + E21 X371 (x1 = 1), Top — En 17 F12).
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Example: Exam K2014 1a - cont.

Let X = ( §1 ) be a bivariate normal random vector with mean
2
p=E(X)= ( ; and covariance matrix
1 05
> = Cov(X) = ( 05 2 )
Y1
Let Y = Y, |’ where Y1 = 3X7 —2X5 and Y5 = X1 + Xo.

Let Z = X1 + aX,. How can you choose a so that Z and Y5 are
independent?

17 /20

Example: Exam V2010, Problem 1

X1 4
Let X = Xo | ~ N3(p,X) where p=| —3 | and
X; 1
2 0 0
=0 1 -15
0 —-15 5

a) Find the distribution of X; + X2 + X3 and of Xz given X1 = xq
and X3 = x3.

. (X 5} T X
Help: forX_(X2 ) N(( 12 ),(221 T )) we have

Xo | (X1 =x1)~ N(pp+ 221):1_11()(1 — 1), X0 — }:21):1_11):12)

19/20




Today: six properties of the mvN

Let X (,x1) be a random vector from Ny(u, X).

1. The grapical contours of the mvN are ellipsoids (shown using
spectral decomposition). [CompEx1.1b]

2. Linear combinations of components of X are (multivariate)
normal (proof using MGF). [CompEx1.1a]

3. All subsets of the components of X are (multivariate) normal
(special case of the above).

4. Zero covariance implies that the corresponding components are
independently distributed (proof using MGF). [CompEx1.1a]

5. AXBT =0 < AX and BX are independent (will be very
important in Part 2). [CompEx1.2b]

6. The conditional distributions of the components are

(multivariate) normal. X2 | (X1 = x1) ~
No2(y + Ea1 X171 (31— 1), To2 — T 41 Ea).
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TMA4267 Linear Statistical Models V2017 [L6]

Part 1: Multivariate RVs, and the multivariate normal distribution
Estimators for mean and covariance
Quadratic forms [H:3.3,4.5,5.1,F:AppB3|

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: January 27, 2017
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Plan for today

v

estimators for mean and covariance

v

quadratic forms and rules for quadratic forms

v

idempotent matrices

v

more rules for quadratic forms - with idempotent matrices

1/17

Maximum likelihood estimators

Let X1, X5,..., X, be a random sample of size n from the
multivariate normal distribution N,(p, X). The maximum
likelihood estimators for are found by maximizing the likelihood:

D) = [[ftxim )

_ H )% det(X) "2 EXP{*%(Xj — ) TE N (x - p)}

2/17

Maximum likelihood estimators

Let X1, X>,..., X, be a random sample of size n from the
multivariate normal distribution N,(u, X).
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Maximum likelihood estimators

Let X1, X>,..., X, be a random sample of size n from the
multivariate normal distribution Np,(p, X). The maximum
likelihood estimators for are found by maximizing the likelihood:

L(p,X) = Hf(Xj;u,Z)

_ H )5 det(X)~2 eXP{*%(Xj — ) TE N (x - p)}

Could take In and then partial derivatives, but easier to add and
subtract the mean x and rewrite (using trace-formulas)
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Maximum likelihood estimators
Let X1, X>,..., X, be a random sample of size n from the
multivariate normal distribution Np(p, X). The maximum
likelihood estimators for are found by maximizing the likelihood:

L, E) =[] f(xi . E)
j=1

= 10 det(®) 2 expl— (35— 1) =705 — )
j=1

Could take In and then partial derivatives, but easier to add and
subtract the mean X and rewrite (using trace-formulas)

L B) = () det(5) 3
exp{ 5 [ir (= D2~ M) — %)) + n(x — ) EH(x - )])
j=1

2/17

Maximum likelihood estimators: first for p

L %) = () det(E) 3
exp{—5ltr(E D~ R)(x; — W)+ 0% — ) TE - )]}

and see directly for SPD X that the maximum is achieved for
© = X, so that the MLE for p is

X:EZXJ-

>

3/17

Maximum likelihood estimators: then for

exp{ 3 [ir (=320~ M)~ %))+ nlx ) E N (x  p)])

A maximization theorem for matrices it used to find that the MLE
for X is

TN (X - X)X - X)T

4/17

Properties of the ML estimators

» X is distributed as N,(p, LX)

» nS is distributed as a Wishart random matrix with n — 1
degrees of freedom.

» X and nS are independent.
The Wishart distribution is not on the reading list for TMA4267.

General properties of maximum likelihood estimation is covered in
detail in TMAA4295 Statistical Inference.
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Quadratic forms - first results [F:B3.3, Theorem B.2]

We stay with our random vector X with g and covariance matrix
¥, and a symmetric constant matrix A.

» What is a quadratic form? X7 AX
» The "trace-formula": E(X T AX).

6/17

Useful facts about the trace [H:2.1] and [F:Theorem A.18]

Let A, B and C be conformable matrices

tr(A+ B) = tr(A) + tr(B)
tr(AB) = tr(BA)
tr(ABC) = tr(CAB) = tr(BCA)

8/17

Exam V2014: Problem 1a

X1 1
Let X = ( X ) be a random vector with mean p = E(X) = ( 1 )

X3 1
100

and covariance matrix X = Cov(X)=/= | 0 1 0 |. Further, let
0 01

WIN Wl W=

be a matrix of constants.

i)

Find E(Y) and Cov(Y). Are Xi and X, independent? Are Y; and Y5
independent? Justify your answers.
Find the mean of X AX.

>
Il
|
Wi W= wIN
|

~< ~<w\>—' WIN Wi

N

)
R
Ex
o
<
Il
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Quadratic forms - last results [F:B3.3, Theorem B.2]

Now: X is multivariate normal with mean g and covariance matrix
I, and we also have a symmetric and idempotent matrix R(, )
with rank r.

> Properties of an idempotent matrix.

» Distribution of X TRX ~ x2.

» Distribution of a ratio of two quadratic forms and the Fisher
distribution.

9/17




Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A? = A, and has the
following properties (to be proven in RecEx1.P7).

10/17

Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A’ = A, and has the
following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.

2. The rank of a symmetric matrix (actually: a diagonalizable
quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

10/17

Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A2 = A, and has the
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Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A’ = A, and has the
following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.

2. The rank of a symmetric matrix (actually: a diagonalizable
quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 14+2). If a (n x n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n — r are 0.
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Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A? = A, and has the
following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.

2. The rank of a symmetric matrix (actually: a diagonalizable
quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 142). If a (n x n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n— r are 0.

4. The trace and rank of a symmetric projection matrix are equal:
tr(A) = rank(A).
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Properties of symmetric idempotent matrices

A symmetric matrix A is idempotent, A2 = A, and has the
following properties (to be proven in RecEx1.P7).

1. The eigenvalues are 0 and 1.

2. The rank of a symmetric matrix (actually: a diagonalizable
quadratic matrix) equals the number of nonero eigenvaluse of
the matrix. Should be known from previous courses.

3. (Combining 1+2). If a (n x n) symmetric idempotent matrix
A has rank r then r eigenvalues are 1 and n — r are 0.

4. The trace and rank of a symmetric projection matrix are equal:
tr(A) = rank(A).

5. The matrix I — A is also idempotent, and A(/ — A) = 0.

10/17

The Chi-square distribution

pdf x3:
1
f(y) = p/2=14(=y/2) f
(v) 2P/2F(p/2)y e ory >0
MGF X%: .
MY(t): (172t)p/2

Addition property:

Let X1 ~ X,2; and Xp ~ XZ' and let X; and X5 be independent.
Then X1 + Xo ~ X3, 4.

Subtraction property:

Let X = X1 + Xo with X; ~ XI% and X ~ X;2)+q' Assume that X;
and X; are independent. Then X5 ~ X%-

11/17

Kjikvadrat 1,5,10,20

030
L

025
L

0.20
L

010
L

005
L

0.00
L

12/17




The Fisher distribution [F: B.1 Def 8.14 |, RecEx2.P5+6

“Tabeller og formeler i statistikk’:
If Z; and Z are independent and y?-distributed with v1 and 15
degrees of freedom, then

Zi/1n
F=
2> /1o

is F(isher)-distributed with 11 and v, degrees of freedom.
> The expected value of F is E(F) = -*2

vo—2"

H v1—2 1o
» The mode is at Pt
> ldentity:
1
ﬁ*%WWZZ f
Q,V2,V1

13/17

ESEEEEEENODNEENEOOODE®

The Fisher distribution with different degrees of freedom 14 and v
(given in the legend).

Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean p and covariance matrix X,
symmetric constant matrix A.

> Quadratic form: XTAX.
» The "trace-formula": E(XTAX) = tr(AX) — u” Ap.
Then, let X ~ N,(0,1), and R is a symmetric and idempotent

matrix with rank r.
XTRX ~ 2

Now, also S is a symmetric and idempotent matrix with rank s,

and RS = 0.
sXTRX F

XTsx "

15/17

14 /17
Plan for the last week of Part 1
Supervision in lecture times.
See Blackboard: Part 1: dates and places for supervision.
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Kahoot!

Summing up the last three lectures with a few multiple choice

questions.

17 /17
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Multivariate normal pdf
The probability density function is
()% det(Z) 2 exp{—1 Q} where Q is
A (x—wZ 7 (x—n)
B (x—wZX(x—p)'
Z—u

Trivariate normal pdf
What graphical form has the solution to
f(x) = constant?
A Circle B Parabola
Ellipsoid D Bell shape

Multivariate normal distribution

Xp

Y

A
B

~ N,(u, X), and C is a k X p constant matrix.
=CXis

Chi-squared with k degrees of freedom
Multivariate normal with mean ku
Chi-squared with p degrees of freedom

Multivariate normal with mean Cu
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Independence Constructing independent variables?
110
Let X ~ Ns(i,Z), withZ = | 2 3 1| . Which !_et X ~ Ny(pn, X). How can | co.nstruct a vector of
025 independent standard normal variables from X7
two variables are independent?
A (X —u)
X1 and X2 1
B X (X+pu)
B Xiand X3 .
X, and X 22 (X —u)
1
D None — but two are uncorrelated. D 2> (X + ”)
Conditional distribution: mean Conditional distribution: variance
. . X . o
X = 1 ) is a bivariate normal random vector. X = ( Xl ) is a bivariate normal random vector.
2

What is true for the conditional mean of
X5 given X1 = x17

A Not a function of x;

B A linear function of x;

A quadratic function of x;

What is true for the conditional variance of X, gi-
VEn Xl = Xl?

A Not a function of x;

B A linear function of x;

A quadratic function of xq




Estimator for mean

X1, X5, ..., X, is a random sample from Np(u, X).
What is the distribution of the estimator X for the

mean?
A Ny(p, I) B Np(u, ;X)
X D x;

Distribution of quadratic form

X ~ N,(0,1), and R is a symmetric and idempo-
tent matrix with rank r. What is the distribution of
XTRX?

A N,y(u, rl) B N, (0,1

X7 D x;

Unbiased estimators

X1, X5, ..., X, is a random sample of size n of a
p-dimensional random vector. An unbiased estima-
tor for the covariance matrix X is.

A LYTX—X)(X—X)T
B 42X —X)(X;—X)7
Ly (X —XT (X — X)

D XX X)X~ X)

Correct?

Are you sure you want to read the correct answers? Maybe try
first? The answers are explained on the next two slides.




Answers

1. A: exponent quadratic form is (x — pu)TZ 1 (x — ).
2. C: contours are ellipsoids in general. In two dimensions we

have ellipses. For two dimensions and equal variance and
correlation O we have circles.

3. D: linear combinations of mvN are also mvN.
4. B: Cov(Xz1, X3) =0 and X; and X3 are thus independent.

5. C: The Mahlanobis transform is Z*%(X — ).

Answers
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. B: Conditional mean is linear in x;, which will be very useful
when we start with multiple linear regression.

. A: Conditional variance (covariance) is not a function of x;.

. B: The mean is also mvN with mean u and covariance %Z.

B: 1 " (X;—X)(X;— X)T is the unbiased estimator

n—1 —j=1
for . Observe the (n— 1) and that the dimension is p X p

(to place the transpose). Not a quadratic form.

. C: Quadratic form is related to le




