TMAA4267 Linear Statistical Models V2017 [L7]
Part 2: Linear regression [F p73-86]

Model definition [F3.1], Parameters and residuals [F3.1.1], Model
check [F3.1.2]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 7, 2017
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Part 2: Linear regression

Part 2: Linear regression

» Fahrmeir et al (2013): Regression. Chapter 3.1, 3.2, 3.4 and
required parts of 3.5 and Appendix B.

Part 3: Hypothesis testing and analysis of variance

» Fahrmeir et al (2013): Regression. Chapter 3.3 and required
parts of 3.5 and Appendix B.

» Hardle et al (2015): Applied Multivariate Statistical Analysis.
Chapter 8.1.1. (ANOVA).

» A short note on multiple testing (to be written).
File TMA4267Part2and3.pdf available from course www-page.

Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

B. M. Nes, I. Janszky, U. Wislgff, A. Stgylen, T. Karlsen (2012) in
Scandinavian Journal of Medicine and Science in Sports.

» HRmax describes the highest heart rate achieved by a subject
exercising to exhaustion and is verified by a plateau of heart
rate despite increasing workload. In the literature, HRmax
commonly refers to the peak heart rate at termination of a
graded maximal exercise test.

» However, in clinical settings, a maximal exercise test is not
always feasible and there is a need to predict HRmax from age
prior to testing to be able to adequately assess heart rate
response and relative intensity of effort at submaximal levels.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

» HRmax at a given age is frequently estimated by the "220 -
age" formula.

» The aim of the present study was to develop a new prediction
formula for HRmax through analysis of HRmax measured at
VO2peak in a diverse population of 4635 healthy subjects and
compare this formula with three commonly used prediction
formulas. Furthermore, we wanted to investigate the
relationship between HRmax and gender, physical activity
status, BMI, and objectively measured aerobic fitness.




Age-predicted maximal heart rate in healthy subjects: The

HUNT Fitness Study - Statistical procedures

> Only subjects that fulfilled the criteria of a maximal test, with
registered maximal heart rate (HRmax), were included in the
analysis (n = 3320).

» General linear modeling was used to determine the effect of
age on HRmax. HRmax was entered as the dependent variable
and age as the independent variable. Nonlinearity of the
relationship between age and HRmax was investigated by
including polynomial terms to the regression model.

» In a subsequent analysis, the effects of gender, BMI, physical
activity status, and maximal oxygen uptake were examined by
entering these factors as independent variables in addition to
age. In further subsequent models, interaction terms were
included as well to assess effect modification.

» The continuous variables were checked for normality,
homogeneity of variances, and heteroscedasticity of the

residuals. /20
Munich Rent Index data set
described in Fahrmeir et al (2013) on pages 19-20.
> library("gamlss.data")
> ds=rent99
> dim(ds)
[1] 3082 9
> colnames(ds)
[1] "rent" ‘"rentsgm" "area" '"yearc" "location" "bath"
[7] "kitchen" '"cheating" "district"
> summary (ds)
rent rentsqm area yearc
Min. : 40.51 Min. : 0.4158 Min. : 20.00 Min. 11918
1st Qu.: 322.03 1st Qu.: 5.2610 1st Qu.: 51.00 1st Qu.:1939
Median : 426.97 Median : 6.9802 Median : 65.00 Median :1959
Mean 1 459.44  Mean : 7.1113  Mean : 67.37 Mean 11956
3rd Qu.: 559.36 3rd Qu.: 8.8408 3rd Qu.: 81.00 3rd Qu.:1972
Max. :1843.38 Max. :17.7216 Max. :160.00 Max. :1997
location bath kitchen cheating district
1:1794 0:2891 0:2951 0: 321 Min. : 113
2:1210 1: 191 1: 131 1:2761 1st Qu.: 561
3: 78 Median :1025
Mean 11170
3rd Qu.:1714
Max. 12629
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=~ Men
y=213-0.65x
R%=0.36

=~ Women
¥y=210-0.62x
R3=0.37

Maximal heart rate (beats/min)
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Nes et al (2012): Age-predicted maximal heart rate in healthy
subjects: The HUNT Fitness Study. n = 3320 individuals.
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The classical linear model

The model
Y=XB+e
is called a classical linear model if the following is true:
1. E(e) = 0.

2. Cov(e) = E(eeT) = o2I.
3. The design matrix has full rank, rank(X) = k+1 = p.

The classical normal linear regression model is obtained if
additionally

4. & ~ Ny(0,0°I)

holds. For random covariates these assumptions are to be
understood conditionally on X.




Conditional mean and covariance

If we believe that the vector with elements Y and X are
multivariate normal Nj11(p, ) we may look at the partition

(Y)NNk1(<NY)(ZYY zvx))
X * px )\ Ixy Exx
The conditional distributions of the components are (multivariate)

normal, with conditional mean and variance of Y | X = x are

E(Y | X = x) =py + ZyxExx(x — px)
Var(Y | X = x) =Xy — ZyxZ 1 Exy

Observe: mean is linear in x and variance independent of x.

8/20
Linearity of covariates: Covariate vs. response
Munich Rent Index: area vs rentsqm
£
° T T T T T T T
20 40 60 80 100 120 140 160
ds$area 10/20

Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.

1. Linearity of covariates: Y = X3 + ¢

2. Homoscedastic error variance: Cov(e) = o°1.
3. Uncorrelated errors: Cov(ej,ej) = 0.

4. Additivity of errors: Y = X3+«

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

» Covariate vs response (for each covariate)

» Covariate vs error (when we have simulated data and know the
truth)

» Covariate vs residual (estimated error),

» Predicted response vs residual (to be popular later).

9/20

Linearity of covariates: Covariate vs. residual (residual plot)
Munich Rent Index: area vs residual

10
|

residuals(fitl)

20 40 60 80 100 120 140 160

ds$area 11/20




Linearity of covariates: Transformed covariate vs. response

Munich Rent Index: 1/area vs rentsqm

ds$rentsgm

e T T T T T
0.01 0.02 0.03 0.04 0.05
1/ds$area 12 /20
3.2 Modeling Nonlinear Covariate Effects Through Variable
Transformation
If the continuous covariate z has an approximately nonlinear effect 8 f(z)
with known transformation f', then the model
yi=Bo+Bif@)+. .. +e
can be transformed into the linear regression model
yi=PBo+Bixi +...+ &,
where x; = f(z;) — f. By subtracting
e
f= ; Z f(@),
i=1
the estimated effect /§ 1x is automatically centered around zero. The estimated
curve is best interpreted by plotting 8;x against z (instead of x).
Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.94)
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Linearity of covariates: Transformed covariate vs. residual

(residual plot)

Munich Rent Index: 1/area vs residual

residuals(fit2)

T T T T T T T T
20 40 60 80 100 120 140 160
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3.3 Modeling Nonlinear Covariate Effects Through Polynomials

If the continuous covariate z has an approximately polynomial effect 8,z +
Ba22? 4 ... + iz’ of degree [, then the model

yi = Bo+ Pz +/322,2+...+/311,{ + ...+ &
can be transformed into the linear regression model
yi=PBo+Bixan +Pixio+ ...+ Bixii+... +e&

where x;; = z;, Xi» = zlz, ..
The centering (and possibly orthogonalization) of the vectors x/ =
(xlj,...,x,,,-)/, j=1,....1tox! — %1,...,x" — %, with the mean vector
X; = (X;,...,%;) facilitates interpretation of the estimated effects. A
graphical illustration of the estimated polynomial is a useful way to interpret
the estimated effect of z.

—
» Xil = ;.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.95)
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Homoscedastic errors

n=1000
x=seq(-3,3,length=n)
betal=-1

betal=2
xbeta=betalO+betal*x
sigma=1
el=rnorm(n,mean=0,sd=sigma)
yl=xbetatel
ehatl=residuals(1lm(y1~x))
plot(x,yl,pch=20)
abline(betal,betal,col=1)
plot(x,el,pch=20)

abline (h=0,co0l=2)

16 /20

Homo- and heteroscedastic errors

T T T T T T T T T T T T
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3

Top: homoscedastic errors. Bottom: heteroscedastic errors. Right:
x vs y. Left: x vs error. Example from Fahrmeir et al (2013):
Regression. Springer. (p.79). R code from TMA4267 lectures tab.
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Heteroscedastic errors

sigma=(0.1+0.3%(x+3)) "2
e2=rnorm(n,0,sd=sigma)
y2=xbeta+e2
ehat2=residuals(1m(y2~x))
plot(x,y2,pch=20)
abline(betal,betal,col=2)
plot(x,e2,pch=20)
abline(h=0,col=2)
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Homoscedastic errors?
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Left: area vs rent, right: area vs residuals. Fahrmeir et al (2013):
Regression. Springer. (p.80). R code from TMA4267 lectures tab.
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Today

v

v

v

Normal linear model: implication for Y.

Model parameters 3, 0%, parameter estimators 3,52, residuals

=Y - X3.

Model assumptions.

Next: covariates- how to include in linear regression, and then

parameter estimation.
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TMAA4267 Linear Statistical Models V2017 (L8)

Part 2: Linear regression:
Modelling the effects of covariates [F:3.1.3]
Parameter estimation: Estimator for 3 [F:3.2.1]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 10, 2017

1/18

Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.
1. Linearity of covariates: Y = X3+ ¢
2. Homoscedastic error variance: Var(e;) = 2.
3. Uncorrelated errors: Cov(ej,ej) = 0.
4. Additivity of errors: Y = X(3+¢

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

» Covariate vs response (for each covariate)

» Covariate vs error (when we have simulated data and know the
truth)

» Covariate vs residual (estimated error),

v

Predicted response vs residual.
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The classical linear model

The model
Y=XB+e
is called a classical linear model if the following is true:
1. E(e) =0.
2. Cov(e) = E(ee”) = o2I.
3. The design matrix has full rank rank(X) = k+1 = p.

The classical normal linear regression model is obtained if
additionally

4. € ~ N,(0,0°I)
holds. For random covariates these assumptions are to be
understood conditionally on X.
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Uncorrelated errors?

Top: positively autocorrelated errors. Bottom: negatively correlated
errors. Right: x vsy. Left: x vs error. Example from Fahrmeir et al
(2013): Regression. Springer. (p.81). R code from TMA4267

lectures tab.
3/18




observations and true function observations and regression line
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Fig. 3.4 Illustration for correlated residuals when the model is misspecified: Panel (a) displays
(simulated) data based on the function E(y; |x;) = sin(x;) + x; and & ~ N(0,0.3%).
Panel (b) shows the estimated regression line, i.e., the nonlinear relationship is ignored. The
corresponding residuals can be found in panel (¢)

Fahrmeir et al (2013): Regression. Springer. (p.82)
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Multiplicative errors

x1=runif(n,0,3)
x2=runif (n,0,3)
e=rnorm(n,0,0.4)

y=exp (1+x1-x2+e)
plot(x1l,y,pch=20)
plot(x2,y,pch=20)
plot(x1,log(y),pch=20)
plot(x2,log(y) ,pch=20)

Multiplicative errors

log(y)

T T T T T T T T T T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30

Top: x1 and x2 vs y. Bottom: x1 and x2 vs log(y). Example from
Fahrmeir et al (2013): Regression. Springer. (p.85). R code from
TMA4267 lectures tab.
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5/18
Covariates - how to include in the linear regression?
1. Continuous covariates: as is, transformed or using polynomials.
2. Categorical covariates: dummy variable or effect coding.
3. Interactions between covariates.
7/18




Munich rent index data

> colnames (ds)
[1] "rent" "rentsqm" "area" "yearc" "location" "bath"
[7] "kitchen" "cheating" "district"
> apply(ds[,1:4],2,summary)
rent rentsqm area yearc
Min. 40.51 0.4158 20.00 1918
1st Qu. 322.00 5.2610 51.00 1939
Median  427.00 6.9800 65.00 1959
Mean 459.40 7.1110 67.37 1956
3rd Qu. 559.40 8.8410 81.00 1972
Max. 1843.00 17.7200 160.00 1997
> unlist(apply(ds[,5:8],2,table))
location.1 location.2 location.3 bath.0 bath.1 kitchen.O

1794 1210 78 2891 191 2951
kitchen.1 cheating.0 cheating.1
131 321 2761
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Linear coding

> fit1=Ilm(rentsqm~as.numeric(location) ,data=ds)
> summary(fitl)
Call:

Im(formula = rentsqm
Coefficients:

as.numeric(location), data = ds)

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.54390 0.12368 52.911 < 2e-16 **x*
as.numeric(location) 0.39312 0.08016 4.904 9.88e-07 **x

Signif. codes: 0 ’**x’ 0.001 ’**’ 0.01 ’%> 0.05 ’.” 0.1 > > 1
Residual standard error: 2.427 on 3080 degrees of freedom

Multiple R-squared: 0.007748,Adjusted R-squared: 0.007425
F-statistic: 24.05 on 1 and 3080 DF, p-value: 9.878e-07
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How to code categorical covariates: rentsqgm vs location
with linear coding

» Location average=1, good=2 and top=3, and regression
model
rentsqm; = B + S1location; + ¢;

» Parameter estimate: 31 = 0.39. What does that mean?
» Flat of average Iocation:/rei—sEm = Bo + By-1
> Flat of good location: rentsqm = {5 + [y - 2
» Flat of top location: rentsqm = B9 + 31 - 3
» What is the difference in predicted rentsqm between top and
good location, and between good and average location?

> So, the difference between a top and a good location is the
same as the difference between good and average. Is this what
we want?

9/18

rentsqm vs location with dummy variable coding

aloc; = {
gloc; = {
tloc; = {

rentsqm; = o + Sraloc; + Bagloc; + Batloc; + ¢;

location; is not average
location; is average

location; is not good
location; is good

location; is not top
location; is top

O R O +» O

» Write down the design matrix for this regression model, when
we have 1794 flats with average location, 1210 with good and
78 with top location.

» What is the rank of this design matrix?

» |s there a problem, and a solution?

11/18




3.4 Dummy Coding for Categorical Covariates

For modeling the effect of a covariate x € {1,...,c} with ¢ categories using
dummy coding, we define the ¢ — 1 dummy variables

N 1 x;=1, N 1 x;=c—1,
i1 = . ie—1 = .
0 otherwise, 0 otherwise,
fori = 1,...,n, and include them as explanatory variables in the regression

model
yi=PBo+ Bixii + ...+ Pic—iXiem + ...+

For reasons of identifiability, we omit one of the dummy variables, in this
case the dummy variable for category c. This category is called reference
category. The estimated effects can be interpreted by direct comparison with
the (omitted) reference category.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.97)
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Effect coding via contr.sum
> contrasts(ds$location)=contr.sum(3)
> fit3=1lm(rentsqm~location,data=ds)
> summary(fit3)
Call:
Im(formula = rentsqm ~ location, data = ds)
Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 7.46704 0.09638 T77.477 < 2e-16 ***
locationl -0.51050 0.10189 -5.010 5.75e-07 **x*
location2 -0.19479 0.10445 -1.865 0.0623 .
Signif. codes: O ’**x’ 0.001 ’x*’ 0.01 ’x’ 0.05 ’.” 0.1 > > 1

Residual standard error: 2.426 on 3079 degrees of freedom
Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06
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Dummy coding via contr.treatment

> contrasts(ds$location)=contr.treatment (3)
> fit2=Im(rentsqm~location,data=ds)
> summary(fit2)
Call:
Im(formula = rentsqm ~ location, data = ds)
Coefficients:

Estimate Std. Error t value Pr(>[tl|)
(Intercept) 6.95654 0.05728 121.456 < 2e-16 **x
location2 0.31570 0.09025  3.498 0.000475 ***
location3 1.21579 0.28060 4.333 1.52e-05 **x

Signif. codes: O ’#*%%> 0.001 ’**> 0.01 ’%’ 0.05 *.” 0.1 > > 1
Residual standard error: 2.426 on 3079 degrees of freedom

Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06

13/18

Response: birth weight

Covariates: glucose level of mother and BMI of mother.

Figure from Kathrine Frey Frgslie.
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Response: birth weight

Covariates: glucose level of mother and BMI of mother - with
interaction.

Figure from Kathrine Frey Frgslie.
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The classical linear model

X B + €
(nx1) (nxp)(px1)  (nx1)

E(e)= 0 and Cov(e)= o2l
(nx1)

where

(nxn)

» 3 and o2 are unknown parameters and

> the design matrix X has ith row [xj1xj2 - - - Xjp].

Next: find the estimator /3.

17/18

Today

» Model assessment: residual plots.
» Covariates: how to include in linear regression?

> Least squares and maximum likelihood estimator for 3.

B=(X"X)"'xTy

18/18
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Parameter estimation [F:3.2]
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The classical linear model

= X B + ¢

(nx1) (nxp)(px1)  (nx1)
E(e)= 0 and Cov(e)= ol
( ) (nx1) ( ) (nxn)

where

» 3 and o2 are unknown parameters and

> the design matrix X has full rank, with ith row [xj1xj2 - - - Xjp].
Today

1. find estimator for 3,

2. find estimator for o2, and

3. look at two idempotent matrices H and I — H to arrive at

4. geometric interpretation.

Rules for derivatives with respect to a vector

v

Let 3 be a p-dimensional column vector of interest,

v

and let % denote the p-dimensional vector with partial
derivatives wrt the p elements of 3.

v

Let d be a p-dimensional column vector of constants and

v

D be a p x p symmetric matrix of constants.

Rule 1:
O )= (S 4= d
o 08 =
Rule 2:
9 P P
%(ZZ@-djkm) =2Dg

j=1 k=1

9

T —

See Hardle and Simes (2015), page 65, Equation (2.23) and (2.24).
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Two questions

Have found least squares and maximum likelihood estimator for 3:
B=(XTX)1xTy

and we have assumed that the rank(X) = p for n x p design matrix
(where n > p).

» Q1: What can we say about xXTXx?
» Q2: Why is the following wrong?

Using (AB) ' = B'A™ 1,

B=XTX)'XTYy =x1(x")"'xTy =x"1y

4/22

The classical linear model

The model
Y=XB+e
is called a classical linear model if the following is true:

1. E(e) =0.

2. Cov(e) = E(eeT) = o2I.

3. The design matrix has full rank rank(X) = k+1 = p.
The classical normal linear regression model is obtained if
additionally

4. € ~ Np(0,021)
holds. For random covariates these assumptions are to be
understood conditionally on X.

Acid rain

occurs when emissions of sulfur dioxide (SO2) and oxides of
nitrogen (NOx) react in the atmosphere with water, oxygen, and
oxidants to form various acidic compounds. These compounds then
fall to the earth in either dry form (such as gas and particles) or
wet form (such as rain, snow, and fog).

Source: http://myecoproject.org/get-involved /pollution /acid-rain/

6/22

5/22
Dry Deposition
ﬁ::ui—_,l Gl
Emission %’; sggpg:irltiﬁ;’lletg Ammonia  Wet Deposition of
Source ndiAorosals Release Dissolved Acids
http://www.eoearth.org/view/article /149814 /
7/22




Acid rain in Norwegian lakes

- Acidic Neutral Basic -

0 1 2 3 4 5 & 7 8 9 10 11 12 13 14

Measured pH in Norwegian lakes explained by content of
> x1: SO4: sulfate (the salt of sulfuric acid),
» x2: NOs: nitrate (the conjugate base of nitric acid),

» x3: Ca: CalSlum, Lemon  Wine Normal Milk Baking Soft Ammonia Lye
o

Acid  Juis Rai Sod, Sox
.. i e in a ap
> x4: latent Al: aluminium,

(Source: Physical Geography net])

The pH scale: A value of 7.0 is considered neutral. Values
> x6: area of lake, higher than 7.0 are increasingly alkaline or basic. Values
lower than 7.0 are increasingly acidic.

http://www.eoearth.org/view/article /149814 /

» x5: organic substance,

» x7: position of lake (Telemark or Trgndelag),

pH is a measure of the acidity of alkalinity of water, expressed in
terms of its concentration of hydrogen ions. The pH scale ranges
from 0 to 14. A pH of 7 is considered to be neutral. Substances
with pH of less that 7 are acidic; substances with pH greater than 7
are basic.

8/22 9/22

0=Telemark, 1=Trondelag

asspri
asspH
asspH

" asssos ds$NO3 ds$Ca

asspH
asspH
asspH

dsSlatentAl dsSorganic dsarea
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Acid rain data

LERE)

43 20

a3 13
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Output from fitting the full model in R

> fit=Im(y~.,data=ds)
> summary (fit)
Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 **x*

x1 -0.3150444 0.0587512 -5.362 4.27e-05 *xx*
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 *x**
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398

Signif. codes: 0 ’#%x’ 0.001 %%’ 0.01 ’%”> 0.05 >.” 0.1 * > 1
Residual standard error: 0.1165 on 18 degrees of freedom

Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09

Question: explain how to interpret 3o and fs.

(Intercept)

x1

X2

x3

x4

x5

x6

. (Intercept)

0.8

0.6

0.4

0.2
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3.10 Asymptotic Properties of the Least Squares Estimator
1. The least squares estimator ﬁn for B and the ML or REML estimator 63
for the variance o2 are consistent.
2. The least squares estimator asymptotically follows a normal distribution,
specifically
A d
Va(By = B) > N©.0°V ).
That is the difference ﬁ,, — B normalized with /n converges in distribution
to the normal distribution on the right-hand side.
Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.120)
15/22




Projection matrix: definition and properties Projection matrix: definition and properties

» A matrix A is a projection matrix if it is idempotent, A2 = A. » A matrix A is a projection matrix if it is idempotent, A2 = A.
» An idempotent matrix is an orthogonal projection matrix if, in
the decomposition of a vector, v = Av + (v — Av), Av and

v — Av = (I — A)v are always orthogonal, that is,
(Av)T (v — Av) = 0.
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Projection matrix: definition and properties

A matrix A is a projection matrix if it is idempotent, A® = A.

v

v

An idempotent matrix is an orthogonal projection matrix if, in
the decomposition of a vector, v = Av + (v — Av), Av and
v — Av = (I — A)v are always orthogonal, that is,

(Av)T (v — Av) = 0.

» A symmetric projection matrix is orthogonal.

v

The eigenvalues of a projection matrix are 0 and 1.

v

If a (n x n) symmetric projection matrix A has rank r then r
eigenvalues are 1 and n — r are 0.
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Projection matrix: definition and properties

A matrix A is a projection matrix if it is idempotent, A® = A.

v

» An idempotent matrix is an orthogonal projection matrix if, in
the decomposition of a vector, v = Av + (v — Av), Av and
v — Av = (I — A)v are always orthogonal, that is,
(Av)T (v — Av) = 0.

» A symmetric projection matrix is orthogonal.

» The eigenvalues of a projection matrix are 0 and 1.

» If a (n x n) symmetric projection matrix A has rank r then r
eigenvalues are 1 and n— r are 0.

» The trace and rank of a symmetric projection matrix are equal:
tr(A) = rank(A).

Results so far
» Least squares and maximum likelihood estimator for 3:
B=XTX)"'xTy

> Restricted maximum likelihood estimator for o2:
- 1 N A SSE
o= ——(Y-XB)(Y -XB) = —
n—p n—p
» Projection matrices: idempotent, symmetric/orthogonal:
H=Xx(X"x)1xT

I —H=1-X(X"Xx)"'xT

with important connection:

o <
I
i
I <
I
~<

17/22
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Results from Mathematics 3
Best approximation theorem
The vector Y in the column space of X that makes || Y — Y || as
small as possible, is the orthogonal projection of Y on the column
space of X.
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space of X.

Orthogonal decomposition

We want 3 to minimize || Y — ¥ [|= (Y — XB)7(Y — XB) (least
squares principle).
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complement of the column space of X.
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Results from Mathematics 3

Best approximation theorem

The vector Y in the column space of X that makes || Y — Y || as
small as possible, is the orthogonal projection of Y on the column
space of X.

Orthogonal decomposition

We want 3 to minimize || Y — Y ||= (Y — XB)7(Y — XB3) (least
squares principle).

The column space of X consists of vectors of the form X3, so X3
is the orthogonal projection of Y onto the column space of X.
This is equivalent to observing that ¥ — X3 is in the orthogonal
complement of the column space of X.

E=Y —-—HY =(I—H)Y, and I — H projects onto the space
orthogonal to the column space of X. Observe: (I-H)X=0
Thatis, Y — X,@ is orthogonal to all columns of X, so
X"(Y-XB)=0and X" XB3=XTY.
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Results from Mathematics 3

Best approximation theorem

The vector Y in the column space of X that makes || ¥ — Y || as
small as possible, is the orthogonal projection of Y on the column
space of X.

Orthogonal decomposition

We want 3 to minimize || Y = Y ||= (Y — XB)T(Y — X3) (least
squares principle).

The column space of X consists of vectors of the form X3, so X3
is the orthogonal projection of Y onto the column space of
X.Y=HY,and H=X(X"X)"1XT projects onto the column
space of X. Observe: HX = X.

This is equivalent to observing that Y — X3 is in the orthogonal
complement of the column space of X.

That is, Y — X3 is orthogonal to all columns of X, so
XT(Y-XB)=0and X" XB=X"Y.

18 /22
e=I-Hy=y-y
¢(1:x)
> = Bol + fix
§=
%(1)
Putanen, Styan and Isotalo: Matrix Tricks for Linear Statistical
Models: Our Personal Top Twenty, Figure 8.3.
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3.7 Geometric Properties of the Least Squares Estimator

The method of least squares has the following geometric properties:

1. The predicted values § are orthogonal to the residuals &, i.e., §'& = 0.

2. The columns x/ of X are orthogonal to the residuals &, i.e., (x/)'& = 0 or
X'g=0.

3. The average of the residuals is zero, i.e.,

;&,:0 or %Zéf:O.

4. The average of the predicted values y; is equal to the average of the
observed response y;, i.e.,

S| =

n
Z )A"l = }7

i=1

5. The regression hyperplane runs through the average of the data, i.e.,

0+/§15c1 +~~-+/§k)21<.

=

y=

Box from our text book: Fahrmeir et al (2013): Regression.

Springer. (p.112) 20/22

Alternative summery of Geometry of Least Squares

Mean response vector: E(Y) = X3

As 3 varies, X3 spans the model plane of all linear
combinations. l.e. the space spanned by the columns of X:
the column-space of X.

Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X.
LS-estimation chooses 3 such that X3 is the point in the
column-space of X that is closes to Y.

The residual vector ¢ = Y — ¥ = (I — H)Y s perpendicular
to the column-space of X.

Multiplication by H = X(XTX)~1XT projects a vector onto
the column-space of X.

Multiplication by I — H =1 — X(XTX)"1XT projects a
vector onto the space perpendicular to the column-space of X.

Today

> Least squares and maximum likelihood estimator for 3:
B=(X"X)"'xTy

has mean E(3) = 8 and Cov(B) = o2(X T X) L.

> For the normal model: B ~ N,(3,0%(XTX)™1).

» Asymptotic properties of the least squares estimator:
normality.

» Orthogonal projection matrices H and I — H with geometric
interpretation.

Next time: properties of residuals and 62, confidence intervals and
hypothesis testing for regression coefficients.
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Part 2: Linear regression: Parameter estimation [F:3.2],
Properties of residuals and distribution of estimator for error variance
Confidence interval and hypothesis for one regression coefficient

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 17, 2017
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Today

1. Properties for residuals (from the hat matrix), leading to
properties for §2,

2. Then, confidence interval and hypothesis test for regression
coefficient.

1/17

The classical linear model

The model
Y=XB+e
is called a classical linear model if the following is true:

1. E(e) =0.

2. Cov(e) = E(ee”) = o2I.

3. The design matrix has full rank rank(X) = k+1 = p.
The classical normal linear regression model is obtained if
additionally

1. & ~ Nn(0,0°1)
holds. For random covariates these assumptions are to be
understood conditionally on X.

Results so far
» Least squares and maximum likelihood estimator for 3:
B=(X"X)"'xTy
with mean E(3) = 3 and Cov(3) = o?(X T X)~1.

> Restricted maximum likelihood estimator for o2:

g2 = (Y - XP)T(Y - Xp) = 5
n—p n—p

> Projection matrices: idempotent, symmetric/orthogonal:
H=X(X"x)"1xT
projects onto column space of X
I —H=1-X(X"TXx)"'xT
projects onto space orthogonal to column space of X
with important connection: predictions ¥ = HY and residuals
g=(I—H)Y
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2/17
e=I-Hy=y-y
¢(1:x)
> = Bol + fix
§=
%(1)
Putanen, Styan and Isotalo: Matrix Tricks for Linear Statistical
Models: Our Personal Top Twenty, Figure 8.3.
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Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean p and covariance matrix X,
symmetric constant matrix A.

» Quadratic form: XTAX.
> The "trace-formula": E(XTAX) = tr(AZ) + u” Ap.
Then, let X ~ Ny(0,1), and R is a symmetric and idempotent

matrix with rank r.
XTRX ~ x?

Now, also S is a symmetric and idempotent matrix with rank s,

and RS = 0.
sXTRX
Frs

XTsx "

5/17

Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
» x1: SO4: sulfate (the salt of sulfuric acid),
» x2: NOs: nitrate (the conjugate base of nitric acid),
» x3: Ca: calsium,
> x4: latent Al: aluminium,
» x5: organic substance,
> x6: area of lake,
» x7: position of lake (Telemark or Trgndelag),

Random sample of n = 26 lakes.
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Properties: 3 and 62
» Least squares and maximum likelihood estimator for 3:
B=XTX)"'xTy

has mean E(3) = 8 and Cov(3) = (X7 X)~ 1.

» In addition 3 is best linear unbiased estimator (BLUE), that is,
among all unbiased estimator it has minimum variance in each
component. (More in TMA4295 Statistical Inference.)

» For the normal model: 3 ~ N,(8,52(X"X)™1).

> Restricted maximum likelihood estimator for o2

52— (Y- XB)(Y - XB) = =

» For the normal model
2

(n—p)o 2
T2 Y Xap
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Output from fitting the full model in R

> fit=Im(y~.,data=ds)
> summary (fit)
Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 **x*

x1 -0.3150444 0.0587512 -5.362 4.27e-05 **x*
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 *x**
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398

Signif. codes: 0 ’#x*x’ 0.001 ’*%> 0.01 ’x”> 0.05 >.” 0.1 > ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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W. S. Gosset alias Student

9/17

t-distribution

<

s A
—— standardnormal
— tdf=19
— tdf=5
— tdf=2

™

@

o~

S

-

2

o

=
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Historisk: Student-t fordelingen

> W.S. Gosset (1876-1937) was employed by the Guinness Brewing
Company of Dublin.

> Sample sizes available for experimentation in brewing were
necessarily small, and Gosset knew that a correct way of dealing
with small samples was needed.

> He consulted Karl Pearson (1857-1936) of Universiy College in
London about the problem. Pearson told him the current state of
knowledge was unsatisfactory.

> The following year Gosset undertook a course of study under
Pearson. An outcome of his study was the publication in 1908 of
Gosset's paper on "The Probable Error of a Mean," which
introduced a form of what later became known as Student's
t-distribution.

> Gosset's paper was published under the pseudonym "Student."

> The modern form of Student's t-distribution was derived by R.A.
Fisher and first published in 1925.

10/17

DEF: t-distribution

Let Z be a standard normal random variable and V a
chi-squared random variable with parameter v (degrees of
freedom). If Z and V are independent, the distribution of
the random variable T

4

V/v
has probability density function

M + 1)/2](1 ) (v+1)/2
M(v/2)y/mv

for —co < t < co. This distribution is called the
(Student) t—distribution with v degrees of freedom.

h(t) =

> B(T)=0if v >2.
> Var(T) = ;% if v > 3.

12/17




Are 3 and SSE are independent?

Independence — from Part 1:

Let X(,x1) be a random vector from N,(u, X). Then AX and BX

are independent iff AXB”T = 0.

We

>

have:

Y ~ N,(XB,a21)
AY = 3=(XTX)"1xTY, and
BY = (I - H)Y.

Now Ac?IBT = 0?AB" = o2(X" X)X (1 — H)
since X(I—H)=X-HX=X-X=0.

We conclude that {3 is independent of (I — H)Y,
and, since SSE=function of (I — H)Y: SSE=YT(I — H)Y,
then B and SSE are independent.

=0
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Kritiske verdier i ¢-fordelingen

P(T > to,) =a

via | 150 100 .075 .050 .025 010 005 001 0005
1[1.963 3078 4165 6314 12706 31.821 63.657 318.309 686.61
2[1.386 1886 2282 2920 4303 6965 9.925 22327 31599
3[1.250 1638 1.924 2353 3.182 4541 5841 10215 12.924
411190 1533 1778 2132 2776 3.747 4.604 7.173 8.610
5|1.156 1476 1699 2.015 2571 3.365 4.032 5.893 6.869
61134 1440 1.650 1943 2447 3143 3707 5.208 5.959
7[1.119 1415 1617 1895 2365 2998 3.499 4785 5.408
8(1.108 1397 1592 1860 2306 2.896 3.355 4.501 5.041
9(1.100 1.383 1574 1.833 2262 2821 3.250 4.297 4.781
10(1.093 1.372 1559 1.812 2228 2764 3.169 4.144 4.587
11(1088 1363 1548 1796 2201 2718 3.106 4.025 4.437
121083 1.356 1538 1.782 2179 2681 3.055 3.930 4.318
13(1.079 1.350 1530 1.771 2160 2650 3.012 3.852 4.221
141076 1.345 1523 1.761 2145 2624 2977 3.787 4.140
15(1.074 1.341 1517 1753 2131 2602 2947 3.733 4.073
16(1.071 1.337 1512 1746 2120 2583 2921 3.686 4.015
171069 1.333 1508 1.740 2110 2567 2898 3.646 3.965
181067 1.330 1504 1734 2101 2552 2878 3.610 3.922
19/1.066 1.328 1500 1.729 2093 2539 2861 3.579 3.883
20|1.064 1325 1497 1725 2.086 2528 2.845 3.552 3.850
21|1.063 1323 1494 1721 2.080 2518 2.831 3527 3.819
221061 1321 1492 1717 2.074 2508 2819 3.505 3.792
23|1.060 1319 1.489 1714 2069 2500 2.807 3.485 3.768
24(1.059 1318 1.487 1711 2064 2492 2797 3.467 3.745
25(1.058 1.316 1.485 1708 2.060 2485 2787 3.450 3.725
26|1.058 1.315 1483 1706 2.056 2479 2779 3.435 3.707
27|1.057 1.314 1482 1703 2.052 2473 2771 3421 3.690
28(1.056 1313 1.480 1701 2048 2467 2763 3.408 3.674
29(1.055 1311 1.479 1699 2045 2462 2756 3.396 3.659
30|1.055 1.310 1.477 1697 2042 2457 2750 3.385 3.646
35(1.052 1306 1.472 1690 2030 2438 2724 3.340 3.591
40|1.050 1.303 1468 1684 2.021 2423 2704 3.307 3.551
50(1.047 1299 1462 1676 2009 2403 2678 3.261 3.496
60|1.045 1296 1.458 1671 2.000 2390 2660 3.232 3.460
80(1.043 1292 1.453 1664 1.990 2374 2639 3.195 3.416
100(1.042 1.290 1451 1660 1984 2364 2626 3.174 3.390
120(1.041 1.289 1449 1658 1980 2358 2617 3.160 3.373
o0 [1.036 1.282 1440 1.645 1960 2326 2576 3.090 3.291

4
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Quantiles and critical values: N og t: a/2 = 0.025

<
34
)
2
o~
S84
= -1.96 1.96
2.09 —— standardnormal 209
— tdf=19
-2.26 226
— tdf=9
A N
S 4
T T T r .
—4 - o 2 .
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Acid rain in R

ds=read.table("https://www.math.ntnu.no/emner/
TMA4267/2017v/acidrain.txt" ,header=TRUE)
fit=1lm(y~.,data=ds)
> confint(fit)

2.5 % 97.5 %

(Intercept) 5.384581378 5.9682854281
x1 -0.438476153 -0.1916126966
x2 -0.004497716 0.0007911594
x3 0.670735075 1.2796138706
x4 -0.002335625 0.0018820903
x5 -0.080696921 0.0138484550
x6 -0.156117992 0.1482381575
x7 -0.126624544 0.3043688780

P-values: http://www.statistrikk.no/wp-content/uploads/
2017/02/nerdekort. jpg
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Today

» Distribution of SSE/o? is chisquared (n — p).
» Independence of 3 and SSE.

» Inference about 3 components can be performed using the
t-distribution
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Hypothesis testing for £;.

2. Residuals: standardized (or studentized) preferred.
3. Decomposition of variability: SST=SSR+SSE, and

significance of regression.

. R? gives the proportion of variability explained by the

regression model. and will never decrease if new covariates are
added to the model.

5. Model choice considerations.

6. SPSE: Expected squared prediction error.
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TMA4267 Linear Statistical Models V2017 (L11)

Part 2: Linear regression:

Parameter estimation [F:3.2] and model selection [F:3.4]
Hypothesis test for one regression coefficient
Studentized and standardized residuals
decomposition of variability and signficance of regression
R?, SPSE=Expected squared prediction error

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 21, 2017
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The classical linear model

The model
Y=XB+¢
is called a classical linear model if the following is true:

1. E(e) = 0.

2. Cov(e) = E(eeT) = o2I.

3. The design matrix has full rank rank(X) = k+ 1 = p.
The classical normal linear regression model is obtained if
additionally

1. € ~ Ny(0,521)
holds. For random covariates these assumptions are to be
understood conditionally on X.




Properties for the normal linear model

> Least squares and maximum likelihood estimator for 3:
B=(X"X)"'xTy
with B ~ N,(8,a%(XTX)™1).
> Restricted maximum likelihood estimator for o2:
1 A A SSE

o= (Y= XB)(Y - XB) = =

—_n)52
with % ~ XA

» Statistic for inference about 3}, ¢ is diagonal element j of

(XTx)™.
il
=T =h n—p
\ Cijo
3/30
Output from fitting the full model in R

> fit=1m(y~.,data=ds)
> summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 **x*
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 **x
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724  0.866 0.398
Signif. codes: O ’#x*> 0.001 ’**> 0.01 ’*> 0.05 .7 0.1 > > 1
Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
> x1: SO4: sulfate (the salt of sulfuric acid),
» x2: NOs: nitrate (the conjugate base of nitric acid),
» x3: Ca: calsium,
> x4: latent Al: aluminium,
» x5: organic substance,
> x6: area of lake,
> X7: position of lake (Telemark or Trgndelag),

Random sample of n = 26 lakes.

4/30

Quantiles and critical values: N og t: /2 = 0.025

0.4

0.2

—— standardnormal
tdf=19
— tdf=9

0.0

T T T
-4 -2 0 2 4

In R: specify area to the left, but our notation gives area to the
right. Fahrmeir et al: notation with area to the left.
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Properties of the residuals

> Residuals (raw): e =Y — V.

» with mean E(&) = 0 and covariance matrix
Cov(é) = o?(1 — H) where H = X(XTX)1xT.

> In the normal model € ~ N,(0,c%I) and then also the vector
of residuals are normal, but with heteroscedastic variances and
non-zero covariances.

» Standardized residuals: divide (raw) residuals by estimated
standard deviation.

» Studentized residuals: leave-one-out version.

» Studentized residuals are compared with the normal
distribution to assess normality of the error term.
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3.12 Overview of Residuals

Ordinary Residuals

The residuals are given by

G=yi—Pi=y—xp i=1.., n.

Standardized Residuals
The standardized residuals are defined by
&
61—y

where /;; is the ith diagonal element of the hat matrix.

=

Studentized Residuals

The studentized residuals are defined by

* 20 & ("*P*l )I'/z
= — = =r .
T e+ XX X )T )2 T G /Ty n—p—r?

The studentized residuals are used to verify model assumptions and to
discover outliers (see Sect.3.4.4).

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.126)

Simulating data and checking residuals

n=1000

beta=matrix(c(0,1,1/2,1/3) ,ncol=1)

set.seed(123)

x1=rnorm(n,0,1); x2=rnorm(n,0,2); x3=rnorm(n,0,3)
X=cbind(rep(1,n),x1,x2,x3)

y=XJ*)betatrnorm(n,0,2)

fit=Im(y~x1+x2+x3)

yhat=predict (fit)

summary (fit)

ehat=residuals(fit); estand=rstandard(fit); estud=rstudent(fit)
plot (yhat,ehat,pch=20)

points(yhat,estand,pch=20,col=2)
#points(yhat,estud,pch=20,col=5)
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Examination of model assumptions

Linearity of covariates: Y = X3 +¢
Homoscedastic error variance: Cov(e) = 1.
Uncorrelated errors: Cov(ej, ;) = 0.
Additivity of errors: Y = X3+¢

Assumption of normality: € ~ N,(0, 1)

AT
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Plotting residuals

1. Plot the residuals, r* against the predicted values, ;.
» Dependence of the residuals on the predicted value: wrong
regression model?
» Nonconstant variance: transformation or weighted least
squares is needed?
2. Plot the residuals, r¥, against predictor variable or functions of
predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, r, versus time or collection order (if
possible). Look for dependence or autocorrelation.
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Volume of a tree

Data for 31 trees of a certain kind in a national park in the US are
given below. Three variables are measured for each tree. These are:

» D: The diameter of the tree measured in inches 1.5 m above
ground level

» H: The height of the tree measured in feet.

» V: The volume of the tree measured in cubic feet.

Obs. D H v Obs. D H v
1 8.3 70 10.3 17 12.9 85 33.8
2 8.6 65 10.3 18 13.3 86 27.4
3 8.8 63 10.2 19 13.7 71 25.7
4 10.5 72 16.4 20 13.8 64 249
5 10.7 81 18.8 21 14.0 78 345
6 10.8 83 19.7 22 14.2 80 317
7 11.0 66 15.6 23 14.5 74 36.3
8 11.0 75 18.2 24 16.0 72 38.3
9 11.1 80 22,6 25 16.3 77 42.6

10 11.2 75 19.9 26 17.3 81 55.4
11 11.3 79 24.2 27 17.5 82 55.7
12 11.4 76 21.0 28 17.9 80 58.3
13 11.4 76 21.4 29 18.0 80 51.5
14 11.7 69 21.3 30 18.0 80 51.0
15 12.0 75 19.1 31 20.6 87 77.0

16 129 74 222
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Volume of a tree

» If one wants to measure the volume of a tree the tree has to
be cut down.

» But, height and diameter can be measured without cutting
down the tree.

» Of interest: develop a model that can be used to estimate the
tree volume from the height and diameter.

As an illustration assume we want to fit a linear model with V as
response and D and H as covariates. What is the R? of this model?

Comment: if we start with the volume of a cylinder (area of circle times
height) we may suggest a different regression model (on the log scale).
Which model?
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Volume: height and diameter

fit <- 1m(Volume~.,data=ds)

summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>lt|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 *x*x
Height 0.3393 0.1302 2.607 0.0145 =*

Signif. codes: O ?*x%> 0.001 %%’ 0.01 ’x’ 0.05 >.” 0.1’
Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Volume: height and diameter — and IQ of lumberjack

set.seed(123) # reproducible results

iq <- rnorm(31,100,16)

fit2 <- 1lm(Volume~Height+Diameter+iq,data=ds)
summary (£it2)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -61.03399 10.20868 -5.979 2.24e-06 *x*

Height 0.34099 0.13176 2.588 0.0154 =*
Diameter 4.72507 0.26906 17.561 2.68e-16 **xx*
iq 0.02704 0.04678 0.578 0.5681

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 ’.” 0.1’

Residual standard error: 3.929 on 27 degrees of freedom
Multiple R-squared: 0.9486,Adjusted R-squared: 0.9429
F-statistic: 166.1 on 3 and 27 DF, p-value: < 2.2e-16
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Volume of a tree: 1Q of lumberjack added

» We want to add the 1Q of the lumberjack that cut down the
tree as a covariate in the model.

» This should for obvious reasons not be a good predictor for the
volume of the tree.

» To mimic this situation we simulate new data to resemble the
IQ of different lumberjacks by drawing data from the normal
distribution with mean 100 and standard deviation 16, and
since we have 31 trees we simulate 31 observations.

» Q: will the R? of this new model be higher than the R? of the
previous model?
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Acid rain in Norwegian lakes

Data on n = 26 lakes, with
> y: measured pH in lake,
> x1: SO4: sulfate (the salt of sulfuric acid),
> x2: NOs: nitrate (the conjugate base of nitric acid),
» x3: Ca: calsium,
» x4: latent Al: aluminium,
» x5: organic substance,
» x6: area of lake,
> x7: position of lake (Telemark or Trgndelag),

We would like to use a regression model with pH of the lake as the
response. Should we fit a model will all 7 covariates, or choose a
subset?
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Simulated data (Fahrmeir et al: Fig 3.17)

True model:
Yi = Bo + Bixi + Bax? + B3xd + <

Known that the model is polynomial in nature, but not up to which
degree.
Try to fit polynomial also with higher order terms.

New: in addition to the data set to be used to fit the regression
(called training set) also a data set to assess the model fit is
present (called a validation set).

Mean Squared Error (MSE) is a scaled version of the SSE, that is
5 (Y= Vi)

19/30
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Fig. 317 Simulated training data
design points . = 1......50. Tt
0.8x + & with & ~ N(0,0.07%).
based on the training set. Panel (
in relation to the polynomial degree (solid line). The dashed line shows MSE(!),if the estimated
polynomials are used to predict the validation data y;*

Figure from our text book: Fahrmeir et al (2013): Regression. Springer. (p.140) 20/30

Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ~ N(—1+0.3x; 4 0.2x3,0.2?)

where also x; = x; + u is observed (u ~ uniform in 0,1). The
variables x; and x3 are uncorrelated.

21/30

scatter plot matrix for y, x1, x2, x3

S
LS X T

%‘?f"’r&cﬁcﬁ Bl 5

St Tl

x3

‘ig. 3.18 Scatter plot matrix for the variables y, x,, x,, and x3

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)
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Table 3.3 Results for the model based on covariates x;, x, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval
intercept —0.970 0.047 —20.46 <0.001 —1.064 —0.877
X 0.146 0.187 0.78 0.436 —0.224 0.516
X2 0.027 0.177 0.15 0.880 —0.323 0.377
X3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x; and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval
intercept —0.967 0.039 —24.91 <0.001 —1.042 —0.889
X 0.173 0.055 3.17 0.002 0.065 0.281
X3 0.226 0.052 4.33 <0.001 0.123 0.330

Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Two subsets of covariates (Exam V2014 Problem 4b)

Classical linear model with identically normally distributed random
errors, Cov(e) = 021, but now look at misspecification of E(Y).
Suppose that the true model is

Y =X18;+ X206, + €,

e ~ N,(0,5°1), )

where we have partitioned the design matrix into two parts X
(nx p1) and X2 (n x pp) and By and B, are unknown p;- and
p2-dimensional vectors of regression coefficients (p = p1 + p2).
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.

24 /30

Two subsets of covariates (cont.)

Assume that we ignore the covariates in X5 and fit the model

Y = X171 + 6,

2
8 ~ N,o(0,721). )
Here a1 is used in place of 3; to emphasize that a; (and estimates
thereof) will in general be different from 3; in the true model.

The least squares estimator for model (2) is
dy = (X{ X1)7'X] Y.
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Two subsets of covariates (cont.)

Find the expected value and covariance matrix of &1 under the true
model.

E(d1) = By + (X{ X1) ' X] X128,

We see that the bias term for &; is (X{ X1)~*X{ X23,. When is
the bias term equal to zero?

Cov(d) = o?(X{ X1)™?

Observe, Cov(di) is not dependent on 3,.
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Missing covariates: findings

Bias : The estimator for the (true) covariates (in the
model) is only unbiased if the true and missing
covariates are uncorrelated (orthogonal design) in the
data.

Variance : The variance of the estimator for the true covariates
may be smaller based on the model with the missing
covariates (than for the correctly specified model),
and even the sum of the bias? and the variance may
better for the model with the missing variables. So
the sparse model may be better on overall (even
though it is biased).

Irrelevant covariates included: findings

Bias : The estimator for the true covariates are unbiased,
also if irrelevant covariates are included.

Variance : The model with the irrelevant covariants have larger
variance for the true covariates, compared with the
model without the irrelevant covariates. So, again
sparse model is the best.
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Irrelevant and/or missing covariates in the regression
Irrelevant : variables that are included in the regression but
should not have been.
missing : variables that are not included, but should have
been.
Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
30/30




Law of parsimony

If two models are not very different — then always choose the

31/30
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» T-test for significance of one regression coefficient.

> Residuals: standardized (or studentized) preferred.

» Significance of regression based on F-test with SSR/(p-1)
divided by SST/(n-1).

> R? gives the proportion of variability explained by the
regression model.

SSR | SSE
SST SST

and will never decrease if new covariates are added to the
model.

R* =

» Model selection: want to choose the model that minimize the
expected squared prediction error.
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TMAA4267 Linear Statistical Models V2017 (L12)

Part 2: Linear regression:
Model selection [F:3.4]
Transformation and Taylor expansion
Quiz
Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 24, 2017
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What is the "best" model?

Acid rain in Norwegian lakes, data on n = 26 lakes, with

> y: measured pH in lake,

>

>

>

x1:
x2:
x3:
x4:
x5:
x6:
X7

SO0y: sulfate (the salt of sulfuric acid),

NO0s: nitrate (the conjugate base of nitric acid),
Ca: calsium,

latent A/: aluminium,

organic substance,

area of lake,

position of lake (Telemark or Trgndelag),

1/47




Topic: choosing the "best" linear regression model!

» First, debunk popular strategies (based on simulations studies
were we knew the "true" model):
» Popular 1: fit all available covariates.
Problem: overfitting (=fitting trends and noise).
» Popular 2: fit all available covariates, then remove the
insignificant ones (=those f3; where Hy : 8; = 0 is not
rejected).

2/47

Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ~ N(—1+0.3x; + 0.2x3,0.2%)

where also xp = x; + u is observed (u ~ uniform in 0,1). The
variables x; and x3 are uncorrelated.

scatter plot matrix for y, x1, x2, x3

‘ig. 3.18 Scatter plot matrix for the variables y, x;, x5, and x3

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)

4/a7
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Table 3.3 Results for the model based on covariates xj, x,, and x3
Variable Coefficient Standard error t-value p-value 95 % Confidence interval
intercept —0.970 0.047 —20.46 <0.001 —1.064 —0.877
X 0.146 0.187 0.78 0.436 —0.224 0.516
X2 0.027 0.177 0.15 0.880 —0.323 0.377
X3 0.227 0.052 4.32 <0.001 0.123 0.331
Table 3.4 Results for the correctly specified model based on covariates x; and x3
Variable Coefficient Standard error t-value p-value 95 % Confidence interval
intercept —0.967 0.039 —24.91 <0.001 —1.042 —0.889
X 0.173 0.055 3.17 0.002 0.065 0.281
X3 0.226 0.052 433 <0.001 0.123 0.330
Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Topic: choosing the "best" linear regression model!
» First, debunk popular strategies (based on simulations studies
were we knew the "true" model):

» Popular 1: fit all available covariates.

Problem: overfitting (=fitting trends and noise).

» Popular 2: fit all available covariates, then remove the
insignificant ones (=those f; where Hp : §; = 0 is rejected).
Problem: may also remove important covariates that are
correlated with unimportant ones - but insignificant because
being masked by the unimportant ones.

» Study of irrelevant and missing covariates:
Irrelevant : variables that are included in the regression but
should not have been (1Q of lumberjack)
missing : variables that are not included, but should have
been (omitting height in the tree volum example)
Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
Take home message is the "Law of parsimony": If two models
are not very different — then always choose the simplest one.
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Expected squared prediction error (SPSE)

Possible criterion we want to minimize: SPSE.
Definition (j, M, ... given in classnotes)

J
SPSE =Y E((Y; — Vim)?)
j=1

can be written as:

J J
SPSE =Y E((Y) — Yim)?) = no® + [M|o® + > (ujm — 117)°
=1 j=1

Problem: Not useful on practise since y1; and o2 are unknown.
Plan: Find a way to estimate SPSE and then choose the model M
with the minimum SPSE!
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All models are wrong?

A model is a simplification or approximation of reality and hence
will not reflect all of reality.

George Box noted that "all models are wrong, but some are
useful”. While a model can never be "truth"a model might be
ranked from very useful, to useful, to somewhat useful to, finally,
essentially useless.

Burnham, K. P.; Anderson, D. R. (2002), Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach.

7/47
How to estimate SPSE?
J
SPSE =Y E((Y; — Yim))
j=1
Assume we have fitted a model M with | M| regression parameters.
1. Use new (independent) data — if available (seldom the case):
o
SPSE = 3_(¥; — Yu)?
j=1
2. Cross-validation: mimic new data by dividing data into k folds
(popular is k = n and k = 10). In a for-loop let j = 1,...k,
and use all folds except fold j to estimate regression parameter,
and use the jth fold to calculated the SPSE. Sum across folds.
Choose the model M that minimizes the SPSE.
9/47




Cross-validation (5-fold)

[ restz | [ romz | [ remz | [ rema | [ rews
9 - Training Training Training Training
9 Training . Test Training Training Training

Training Training - Training Training
9 Training Training Training Training
9 Training Training Training Training Test
Will be taught in TMA4300 Computational statistics and will be a
backbone in TMA4268 Statistical Learning.

http://blog-test.goldenhelix.com/wp-content/uploads/2015/
04/B-fig-1.jpg
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For models with the same model complexity — easy solution:
SSE

Estimators for SPSE to be used on the same data as to be used for
estimating the model parameters have the same form; a first term
based on SSE (or R?) for model M, and a second term penalizing
the model complexity.

If we consider two models with the same model complexity then
SSE can be used to choose between these models.

12 /47

How to estimate SPSE?

J
SPSE =Y E((Y; — Yim)?)
j=1

Assume we have fitted a model M with | M| regression parameters.
3. Use existing data (only): It can be shown that
E(@) = SPSE — 2| M | 6% when used on the same data
that was used to make the prediction, so a better estimate for
existing data is

SPSE = Y _(¥; — Yim)* +2|M|5? = SSE +2|M|5
i=1

where §2 is the same for all models M, and is often estimated
using the most complex model under study.
4. Other criteria: all have the same form; a first term based on
SSE (or R?) for model M, and a second term penalizing the
model complexity.
Choose the model M that minimizes the SPSE. 1147

Acid rain (1). Best subset

For 1,...,7 covariates: fit all possible models, and report the
model with the smallest SSE (given below) for each value for the
model complexity. Explain what you seel How many models have
been searched for each model complexity?

regfit.full=regsubsets(y~.,data=ds)
sumreg <- summary(regfit.full)
Subset selection object
Call: regsubsets.formula(y ~ ., data = ds)
Selection Algorithm: exhaustive
x1 x2 x3 x4 x5 x6 X7

1 ( 1 ) "nounonononon ll*ll nononononon
2 (1) maM oo omnomown
3 ( 1 ) ||*ll II*" II*I| LU L [ L LN LB L [}
4 (1) mEM men omgnowow g wonw
5 (1) MM MM Moo g o yen
6 (1) MM MM MM Myl Mg e
T (1) MM MM MM Ml Wl M e

Names: x1: SOy, x2: NO3z, x3: Ca, x4: latent A/, x5: organic substance,

x6: area of lake, x7: position of lake (Telemark or Trgndelag).
13 /47




Popular model choice criteria

R? adjusted (corrected)
Mallows" C,
Akaike Information Criterion (AIC)

Bayesian Information Criterion (BIC)

NB: there is no overall best choice for criterion - all of these are
used.
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Happiness (n = 39)

Are love and work the important factors determining happiness?

> y, happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

> xi, money. Annual family income in thousands of dollars.

> xp, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

> x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

> x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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R? adjusted (corrected)

Y; is from fitting the regression model M.
Remember, for a regression model (with intercept) we have the

SST=SSR+SSE.

SST=> (Yi-Y)
i=1

SSE=) (Yi— V)
i=1

f2_q_ SSE

~ SST

SSE

2 n—
Rg=1- g7 =1-

n—1

Choose the model with the largest R2;.

"AII" statistical software outputs this automatically! However,
Fahrmeir et al (2013) believes that the penalty n — p is too small.

15 /47

Happy

> allreg=regsubsets (happy~.,data=happy)
> sumreg <- summary(allreg)
> sumreg
Subset selection object
Call: regsubsets.formula(happy ~ ., data = happy)
1 subsets of each size up to 4
Selection Algorithm: exhaustive
money sex love work

1 ( 1 ) non nonongn non
2 ( 1 ) non nonongn Ny
3 ( 1 ) Nyt nonongn Nyt
4 ( 1 ) gt Wt Ngen gt

17 /47




money sex love work N p R Ry

1 0.014 1 0.000747 7.3 4.8
2 —0.130 1 1 0.1 -26
3 2.270 1 835e-24 615 605
4 0990 1 1.36e-13 29.1 27.2
5 0.016 —0.508 2 0.0504 838 3.8
6 0.009 2.206 2 8.77e-19 645 625
7 0.012 0961 2 3.68e-10 346 31.0
8 -0.277  2.279 2 55be-18 62.0 59.9
9 0.610 1.079 2 3.48e-09 312 274
10 1.959 0511 2 57520 68.1 66.3
11 0.011 —-0.536 2.209 3 949%-16 66.2 633
12 0.011 0.305 1.009 3 1.84e-07 351 295
13 0.009 1.902 0.504 3 2.63e-17 709 68.4
14 0.108 1.944 0530 3 22216 68.1 654
15  0.010 -0.149 1919 0476 4 9.8%-15 71.0 67.6

Intercept included, N = p — 1, p-value for significance of regression.
SSE

R2—1_ SSE p2

%7+ Riy; =1 — 4. Which model to prefer?

n—1
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Mallows" C,

Y; is from fitting regression model M.
Mallows is the name of a person.

Sia(Yi— Vi)

C, =
P 52

—n+2|M|
Minimizing Cp gives the same optimal model as minimizing SPSE.

See Exam V2015 Problem 3 for an in depth explanation of the
theory behind Mallow's Cp.
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AIC

Akaike information criterion — one of the most widely used.

Designed for likelihood-based inference.

For a normal regression model:

AIC = nln(6%) +2(|M| + 1)

Choose the model with the minimum AIC.

20/47

BIC

Bayesian information criterion.

For a normal regression model:

BIC = nIn(5?) + In(n)(|M| + 1)

Choose the model with the minimum BIC.

AIC and BIC are motivated in very different ways, but the final
result for the normal regression model is very similar.

BIC has a larger penalty than AIC (log(n)vs.2), and will often give
a smaller model (=more parsimonious models) than AIC.
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Happy: Mallows’ C,

10

sex

Happy: BIC

bic

(Intercept) —
money
sex —

love —

work —

T T T T
5 g
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Acid rain (2)
Call: regsubsets.formula(y ~ ., data = ds)
1 subsets of each size up to 7
Selection Algorithm: exhaustive
x1 x2 x3 x4 x5 x6 xT7

1 ( 1 ) n n n n n n n * n n n n n n n
2 ( 1 ) ll*ll n n I|*ll n n n n n n n n
3 ( 1 ) ll*ll |l*ll ll*ll n n n n n n n n
4 ( 1 ) ll*ll |l*ll I|*ll n n ll*ll n n n n
5 ( 1 ) ll*ll |'*ll I|*" non ll*ll non II*"
6 ( 1 ) ll*ll |l*ll Il*ll Il*l| ll*ll n n Il*"
7 ( 1 ) ll*ll |l*ll I|*ll l|*|| ll*ll ||*ll Il*|l

# to mimic test set:
which.max(sumreg$adjr2) #5
which.min(sumreg$cp) #3

which.min(sumreg$bic) #3

# so, model 3 or 5 is suggested for us
# model 3: x1+x2+x3

# model 5:

x1+x2+x3+x5+x7

24 /47
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Acid rain, BIC,
T T T T T T T T
= ke o~ (v} < wn © ~
8
51
E
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Practical use of the model criteria Acid rain (3): stepAlC

> all=lm(happy". ,data=happy)
> stepAIC(all)

» All subset selection: use smart "leaps and bounds" algorithm, Start: AIC=9.08

. . 3 happy ~ money + sex + love + work
works fine for number of covariates in the order of 40.
Df Sum of Sq RSS AIC

N . H H - 1 0.142 38.229 7.221

> Forward selection: choose starting model (only intercept), then P podrodll

N - money 1 3.782 41.869 10.768

add one new variable at each step - selected to make the best ey T el

improvement in the model selection criteria. End when no - love 1 47.272 85.359 36.549
improvement is made. Step:  AIG-7.22

appy ~ momey + love + work

» Backward elimination: : choose starting model (full model), Df Sumof Sq  RSS  AIC

. <none> 38.229 7.221

then remove one new variable at each step - selected to make Cmomey 1 3.723 41,952 8.846

the best improvement in the model selection criteria. End el e e

when no improvement is made. cat1:

1m(formula = happy ~ money + love + work, data = happy)

» Stepwise selection: combine forward and backward.

Coefficients:
(Intercept) money love work
-0.185936 0.008959 1.901709 0.503602
26 /47 27 /47
Acid rain (4): Forward Acid rain (5): Backward
regfitF=regsubsets(y~.,data=ds,method="forward") regfitB=regsubsets(y~.,data=ds,method="backward")
sumregF <- summary(regfitF) sumregB <- summary(regfitB)
Selection Algorithm: forward Selection Algorithm: backward
x1 x2 x3 x4 x5 x6 X7 x1 x2 x3 x4 xb x6 X7
1 (1 ) "o 1 (1 ) oo
O B T L L 20 (1) Ao
3 (L) MmN mnowowow 3 (L) MM mnowomn
4 (1) MK MM MM dynowowowowoww 4 (1) MEM MK Moo wgenowowww
B (1) MM MU Ml My wynowowoww B (1) MM MU MM g e
6 (1) MM MU MM M Wy nn e 6 (L) MM MU M My g e
T L) N NN Ml M W Wt T L) TN N M M gt e
which.max (sumregF$adjr2) #5 which.max (sumregB$adjr)#5
which.min(sumregF$cp) #3 # backward finds same as best subset
which.min(sumregF$bic) #3 which.min(sumregB$cp) #3
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Model diagnosis

» Influential observations and outliers: impact of specific
observations on model fit.

> Collinearity analysis: Highly correlated variables cause
imprecise estimation of the regression parameters. (Why?
Look at diagonal elements of Cov(3) = 02(X T X)™!, and
look back to Problem 2 in the start of this lecture.)

» Examination of model assumptions: residual plots!
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Influential observations— and outliers

» Observations that significantly affect inferences drawn from
the data are said to be influential.

» The leverage, hj;, associated with the ith datapoint measures
“how far the ith observation is from the other n — 1
observations”.

» Methods for assessing influential observations may be be based
on change in 3 estimate when observations are deleted.

» Always investigate possible causes of an influential observation
(if possible).

» Cook’s distance can be used to identify influential observations.

» Robust methods (median,quantile regression) can be useful.

Want to understand more? Read for yourself in Fahrmeir et al
(2013): p 160-166.
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Transformations

» Multiplicative or additive model?
» Box—Cox transform with profile likelihood.

» Stabilizing the variance.
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Galapagos islands, Model A, Exam V2014 Problem 2

Normal Q-Q Plot

studen(fit1)
Py
‘Sample Quanties

T T T T T T T T T T
0 100 200 300 400 -2 -1 0 1 2

ft1siited Theoretical Quanties
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Box—Cox plot

95%

log-Likelihood
-100 -80 -60
Il Il

-120

-140
I

-160
I

-2 -1 0 1 2
A

Box—Cox transformation plot based on Model A for the Galapagos data
set, RecEx4. Line at x = 1/3.
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Galapagos islands, Model B, Exam V2014 Problem 2

Normal Q-Q Plot

student(ft2)

Sample Quanties

fitzsiited Theoretical Quantiles
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Approximation of E and Var
for nonlinear functions

v

Have RV X, with mean E(X) = u and some variance Var(X).
» Want to look at a nonlinear function of X, called g(X).

» Aim: find an approximation to E(g(X)) and Var(g(X)).

And, the same for two RVs Xi and Xz with g(Xi, X2).

v
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Example In of BMI

Looking at residual plots from a regression model the conclusion
was to analyse data of BM/ on the natural logarithmic scale.
After a regression model was fitted the predicted value for the
In(BMI) for a specific combination of the covariates was found to
be 3.2151 with an estimated standard deviation of 0.1656.

Use approximate methods to arrive at an estimate of the predicted
value and estimated standard deviation on the original scale,
kg/m?, and not on the logarithmic scale.
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E(g(X) and Var(g(X))

> Let g(X) be a general function. When is
E(g(X)) = g(E(X))?
» When g(X) is a linear function of X.
» What can we do if this is not the case?
» We can calculate E(g(X)) = [~ g(x)f(x)dx when X is
continuous, or a version thereof in the discrete case,
» or if g is monotone we can use the transformations formula to
find the distribution of Y = g(X) and then calculate E(Y)
and Var(Y), if possible.
» What if we only know E(X) = p and Var(X) = ¢? and not
f(x)?
> Use a Taylor series approximation of g(X) around g(u). g
need to be differentiable.
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Treatment of tennis elbow
(exam TMA4255 V2012, 3b)

The term tennis elbow is used to describe a state of inflammation
in the elbow, causing pain. This injury is common in people who
play racquet sports, however, any activity that involves repetitive
twisting of the wrist (like using a screwdriver) can lead to this
condition. The condition may also be due to constant computer
keyboard and mouse use.

In a randomized clinical study the aim was to compare three
different methods for treatment of tennis elbow,

» A: physiotherapy intervention,
» B: corticosteroid injections and

» C: wait-and-see (the patients in the wait-and-see group did not
get any treatment but was told to use the elbow as little as
possible).

40/ 47

Univariate function

First order Taylor approximation of g(X) around p.

g(X) ~ g(p) + &' (n)(X — 1)

This leads to the following approximations:

E(g(X)) ~ g(n)
Var(g(X)) = [g'(1)]*Var(X)
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Treatment of tennis elbow (cont.)

We will look at the short-term effect of treatment by studying
measurements at 6 weeks. All patients participating in the study
only had one affected arm.

We will look at the outcome measure called pain-free grip force.
This was measured by a digital grip dynamometer and normalized
to the grip force of the unaffected arm. A pain-free grip force of
100 would mean that the affected and the unaffected arm
performed equally good.

41/47




Summary statistics for each of the treatment groups.

Treatment Sample size Average Standard deviation
A (physiotherapy) 63 70.2 25.4
B (injection) 65 83.6 22.9
C (wait-and-see) 60 51.8 23.0
Total 188 69.0
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Example 2: Exam TMA4255 V2012 3d (fraction)

Let pua be the expected pain-free grip force for a population where
the physiotherapy intervention treatment is used to treat tennis
elbow, and p¢ be the expected pain-free grip force for a population
where the wait-and-see treatment is used. Define the relative
difference between these two expected values as

HA — pic
Y=
pc

This can be interpreted as the expected relative gain by using
physiotherapy instead of wait-and-see. Based on two independent
random samples of size ns and n¢ from the physiotherapy and
wait-and-see treatment groups, respectively, suggest an estimator,
4, for .

Use approximate methods to find the expected value and variance
of this estimator, that is, E(%) and Var(%).

Bivariate function: first order Taylor

X1 is a RV with n= E(X2) and X5 is a RV with M2 = E(Xz)
Let g be a bivariate function of X; and X5, and define

0g(x1, x2)

S R -
0g(x1,x2)
gé(,ulle) = TX; |X1=M1,X2=#2

First order Taylor approximation:

g(X1, Xz) = g(p1, p2) + g1 (1, p2) (X1 — 1) + &5 (pa, p2)(Xo — p12)
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Bivariate function: first order Taylor
E(g(X1, X2)) ~ g(pa1, p12)
Var(g(X1, X2)) ~ [g1 (1, p2)]*Var(Xa) + [g5(p1, 1)} Var(Xz)+
2 g1(p1, 12) - go (11, p2)Cov (X, Xo)
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Multivariate version

From Tabeller og formler i statistikk.

Rekkeutvikling
En forste ordens Taylortvikling av funksjonen g(X. .... X,,) omkring (s, . ... fin). der E(X;) =
Ji i =1,..., n, girapproksimasjonene
E[g( X1, Xa)] = gl - i)
" [ g(p TS dg Ay
Var[g(X,,.... X,)] = CAPL Pl ) (X, ) 4 2 2 2 CoviX,, X,).
lg(x, nl] Z( B (X.) Zi]u,r)w, (X X5)

i=1 i>§
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Today

» Choosing between models of equal model complexity: choose
the model with the minimum SSE.

» Choosing between models of different model complexity:
Model selection based on penalized criteria (Mallows Cp,
Rfdj,AIC and BIC). Try out on RecEx4 and Compulsory
Exercise 2.

» BoxCox transformation: see RecEx4.

» Work for for yourself: Taylor solution to E and Var of nonlinear
function, useful when you want to look at transformations of
the data or functions of parameter estimates.

Summary of Part 2 in Kahoot!
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Normal equations

Y = XPB+¢ where E(¢) =0 and Cov(e) = o°/

Which of the following are the normal equations?

The hat matrix

Design matrix X has n rows and p linearly
independent columns. H = X(X™X)1xT
is called the hat-matrix.

Which of the following statements are NOT
true?

A H=H"=H> B rank(H)=p
HY =Y D HI—H) =0

Estimator for o2

Y = XB + ¢ where E(¢) =0 and Cov(e) = 6°1
H = X(X"X)'x"

An unbiased estimator for 02 is:

A SSE/n B Y '(I-H)Y/(n—p)
(X"X)'Y/(n—p) D (X"X)SSE/n

Inference about 3

Y = XB + € where £ ~ N,(0, 6°I)
and B = (X"X)1XTY.

What are the properties of [AS?

A Chi-squared dis- B Chi-squared dis-
tributed with n — p tributed with p de-
degrees of freedom. grees of freedom.

Multivariate normal D Multivariate normal
with covariance ma- with covariance ma-
trix (I — H)o?. trix (X7 X)1o2.




Happiness=money-+sex+love+work

Estimate Std. Error t value Pr(>|t])

money 0.009578 0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356  0.7240
love 1.919279  0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

Which of the regression coefficient estimates has
the largest estimated variance?

Happiness=money+sex+love+work

The R? for the happiness-regression model is
71%. What does that mean?

A The regression is significant for signifi-
cance level 71%

B The regression explains 71% of the vari-
ability in the data

The estimate for the variance 02 is 0.71

D The covariates have a correlation of 0.71

A  money B sex
love D work
Happiness

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072081 0.852543 -0.085 0.9331

money 0.009578  0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279  0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

For which 3; would we reject the null hy-
pothesis 3; = 0 at significance level 1%?

A money B sex

love D work

Best model

bic

-30

(Intercept)
money
sex |

love -

work

Which model does the BIC criterion report to be
the best?

A love+work B love

money+love-+work D money+sex+love+work




What is this plot used for?

Correct?

Are you sure you want to read the correct answers?
Maybe try first? The answers are explained on the
next two slides.

A Check residuals B Assess normality of
residuals
Assess linearity D Find transform of
response
Answers Answers

3. B: Since SSE has mean (n — p)o?, then

. : Tyv\s _ viv:
1. C: The normal equation (X' X)p = X" Y is SSE/(n-p) must be an unbiased estimator for

before you solve for 3. 02. We know that (/ — H) projects onto the
2. C: The hat matrix is symmetric and idempotent space othogonal to the column space of the
(so A is ok), and has rank p, but the reason for designmatrix, so that must have to do with
the name of the hat matrix is that is puts the >SE. _ o
hat on the Y so HY = Y. We know that for 4. D: We k.now that linear combinations of
) o ) ) multivariate normal random vectors are also
symmetric projection matrices the two matrices multivariate normal (so the chisquare is not

H and (I — H) are orthogonal so the product suitable). The residuals have (I — H) as part of
must be zero. their covariance matrix, but 3 has not.




Answers

5. B: Sex has the largest estimated variance for
regression estimate.

6. B: R? gives the percent of variability explained.

7. C: only love is significant on level 1%, since this
is the only p-value below 0.01 (last column).

8. A: love+work has smallest BIC.

9. D: Box-Cox plot used to find transformation of
response.




