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Part 2: Linear regression

Part 2: Linear regression
I Fahrmeir et al (2013): Regression. Chapter 3.1, 3.2, 3.4 and

required parts of 3.5 and Appendix B.
Part 3: Hypothesis testing and analysis of variance

I Fahrmeir et al (2013): Regression. Chapter 3.3 and required
parts of 3.5 and Appendix B.

I Härdle et al (2015): Applied Multivariate Statistical Analysis.
Chapter 8.1.1. (ANOVA).

I A short note on multiple testing (to be written).
File TMA4267Part2and3.pdf available from course www-page.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

B. M. Nes, I. Janszky, U. Wisløff, A. Støylen, T. Karlsen (2012) in
Scandinavian Journal of Medicine and Science in Sports.

I HRmax describes the highest heart rate achieved by a subject
exercising to exhaustion and is verified by a plateau of heart
rate despite increasing workload. In the literature, HRmax
commonly refers to the peak heart rate at termination of a
graded maximal exercise test.

I However, in clinical settings, a maximal exercise test is not
always feasible and there is a need to predict HRmax from age
prior to testing to be able to adequately assess heart rate
response and relative intensity of effort at submaximal levels.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study

I HRmax at a given age is frequently estimated by the "220 -
age" formula.

I The aim of the present study was to develop a new prediction
formula for HRmax through analysis of HRmax measured at
VO2peak in a diverse population of 4635 healthy subjects and
compare this formula with three commonly used prediction
formulas. Furthermore, we wanted to investigate the
relationship between HRmax and gender, physical activity
status, BMI, and objectively measured aerobic fitness.
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Age-predicted maximal heart rate in healthy subjects: The
HUNT Fitness Study - Statistical procedures

I Only subjects that fulfilled the criteria of a maximal test, with
registered maximal heart rate (HRmax), were included in the
analysis (n = 3320).

I General linear modeling was used to determine the effect of
age on HRmax. HRmax was entered as the dependent variable
and age as the independent variable. Nonlinearity of the
relationship between age and HRmax was investigated by
including polynomial terms to the regression model.

I In a subsequent analysis, the effects of gender, BMI, physical
activity status, and maximal oxygen uptake were examined by
entering these factors as independent variables in addition to
age. In further subsequent models, interaction terms were
included as well to assess effect modification.

I The continuous variables were checked for normality,
homogeneity of variances, and heteroscedasticity of the
residuals. 4 / 20

Nes et al (2012): Age-predicted maximal heart rate in healthy
subjects: The HUNT Fitness Study. n = 3320 individuals.
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Munich Rent Index data set
described in Fahrmeir et al (2013) on pages 19-20.

> library("gamlss.data")
> ds=rent99
> dim(ds)
[1] 3082 9
> colnames(ds)
[1] "rent" "rentsqm" "area" "yearc" "location" "bath"
[7] "kitchen" "cheating" "district"

> summary(ds)
rent rentsqm area yearc

Min. : 40.51 Min. : 0.4158 Min. : 20.00 Min. :1918
1st Qu.: 322.03 1st Qu.: 5.2610 1st Qu.: 51.00 1st Qu.:1939
Median : 426.97 Median : 6.9802 Median : 65.00 Median :1959
Mean : 459.44 Mean : 7.1113 Mean : 67.37 Mean :1956
3rd Qu.: 559.36 3rd Qu.: 8.8408 3rd Qu.: 81.00 3rd Qu.:1972
Max. :1843.38 Max. :17.7216 Max. :160.00 Max. :1997
location bath kitchen cheating district
1:1794 0:2891 0:2951 0: 321 Min. : 113
2:1210 1: 191 1: 131 1:2761 1st Qu.: 561
3: 78 Median :1025

Mean :1170
3rd Qu.:1714
Max. :2529
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank, rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
4. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .
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Conditional mean and covariance

If we believe that the vector with elements Y and X are
multivariate normal Nk+1(µ,Σ) we may look at the partition

(
Y
X

)
∼ Nk+1

((
µY
µX

)
,

(
ΣYY ΣYX

ΣXY ΣXX

))

The conditional distributions of the components are (multivariate)
normal, with conditional mean and variance of Y | X = x are

E(Y | X = x) =µY + ΣYXΣ
−1
XX (x − µX )

Var(Y | X = x) =ΣY −ΣYXΣ
−1
XXΣXY

Observe: mean is linear in x and variance independent of x .
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Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.
1. Linearity of covariates: Y = Xβ + ε

2. Homoscedastic error variance: Cov(ε) = σ2I .
3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ+ε

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

I Covariate vs response (for each covariate)
I Covariate vs error (when we have simulated data and know the

truth)
I Covariate vs residual (estimated error),
I Predicted response vs residual (to be popular later).
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Linearity of covariates: Covariate vs. response
Munich Rent Index: area vs rentsqm
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Linearity of covariates: Covariate vs. residual (residual plot)
Munich Rent Index: area vs residual
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Linearity of covariates: Transformed covariate vs. response
Munich Rent Index: 1/area vs rentsqm

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

0.01 0.02 0.03 0.04 0.05

0
5

10
15

1/ds$area

ds
$r

en
ts

qm

12 / 20

Linearity of covariates: Transformed covariate vs. residual
(residual plot)

Munich Rent Index: 1/area vs residual
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94 3 The Classical Linear Model

3.2 Modeling Nonlinear Covariate Effects Through Variable
Transformation

If the continuous covariate z has an approximately nonlinear effect ˇ1f .z/
with known transformation f , then the model

yi D ˇ0 C ˇ1f .zi / C : : : C "i

can be transformed into the linear regression model

yi D ˇ0 C ˇ1xi C : : : C "i ;

where xi D f .zi / ! Nf : By subtracting

Nf D 1

n

nX

iD1

f .zi /;

the estimated effect Ǒ
1x is automatically centered around zero. The estimated

curve is best interpreted by plotting Ǒ
1x against z (instead of x).

nonlinear effect, which becomes nearly constant for large values of the living area. We can
interpret the effect of the year of construction in a similar fashion. Apartments that were
constructed prior to World War II show roughly the same price (for the same living area).
Apartments that were constructed after 1945 show an approximately linear price increase.4

Categorical Covariates
To this point, we have discussed modeling the effect of continuous covariates. In
this section, we will discuss categorical covariates and their characteristics. We
will illustrate the methodology with the help of the Munich rent index data. More
specifically, we will discuss appropriate modeling of the variable location with the
three categories, 1 D average location, 2 D good location, and 3 D top location. In
a first (naive) attempt we treat location as if it were continuous and obtain the model

rentsqmi D ˇ0 C ˇ1 " locationi C "i :

For simplicity, we have omitted all other covariates in this illustrative model. Using
the least squares method, we obtain the fit

2rentsqmi D 6:54 C 0:39 " location:

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.94)
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3.3 Modeling Nonlinear Covariate Effects Through Polynomials

If the continuous covariate z has an approximately polynomial effect ˇ1z C
ˇ2z2 C : : : C ˇl zl of degree l , then the model

yi D ˇ0 C ˇ1zi C ˇ2z2
i C : : : C ˇl zl

i C : : : C "i

can be transformed into the linear regression model

yi D ˇ0 C ˇ1xi1 C ˇ1xi2 C : : : C ˇl xil C : : : C "i ;

where xi1 D zi , xi2 D z2
i , : : :, xil D zl

i .
The centering (and possibly orthogonalization) of the vectors xj D
.x1j ; : : : ; xnj /0, j D 1; : : : ; l , to x1 ! Nx1; : : : ; xl ! Nxl with the mean vector
Nxj D . Nxj ; : : : ; Nxj /0 facilitates interpretation of the estimated effects. A
graphical illustration of the estimated polynomial is a useful way to interpret
the estimated effect of z.

Due to the chosen coding, the effect of a good location would be twice as high as
it would be for an average location (0.39 Euro versus 2 " 0:39 D 0:78 Euro). The
effect for top location would be three times as high (0.39 Euro versus 3 "0:39 D 1:17
Euro). If we coded the location with 2 D average location, 6 D good location, and
8 D top location; apartments in a good location would be three times as expensive as
apartments in an average location; apartments in a top location would be four times
as expensive as apartments in an average location. This shows that the results are
dependent on the arbitrarily chosen coding of the categorical covariate. The problem
is that we cannot interpret the distances between the categories in a reasonable way.
A good location is not twice as good (or three times as good in the second coding)
as an average location. A remedy is to define new covariates, so-called dummy
variables, and estimate a separate effect for each category of the original covariate.
In the case of location, we define the following three dummy variables:

alocation D
!

1 location D 1 (average location),
0 otherwise;

glocation D
!

1 location D 2 (good location),
0 otherwise;

tlocation D
!

1 location D 3 (top location).
0 otherwise;

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.95)
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Homoscedastic errors

n=1000
x=seq(-3,3,length=n)
beta0=-1
beta1=2
xbeta=beta0+beta1*x
sigma=1
e1=rnorm(n,mean=0,sd=sigma)
y1=xbeta+e1
ehat1=residuals(lm(y1~x))
plot(x,y1,pch=20)
abline(beta0,beta1,col=1)
plot(x,e1,pch=20)
abline(h=0,col=2)
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Heteroscedastic errors

sigma=(0.1+0.3*(x+3))^2
e2=rnorm(n,0,sd=sigma)
y2=xbeta+e2
ehat2=residuals(lm(y2~x))
plot(x,y2,pch=20)
abline(beta0,beta1,col=2)
plot(x,e2,pch=20)
abline(h=0,col=2)
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Homo- and heteroscedastic errors
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Top: homoscedastic errors. Bottom: heteroscedastic errors. Right:
x vs y. Left: x vs error. Example from Fahrmeir et al (2013):
Regression. Springer. (p.79). R code from TMA4267 lectures tab.
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Homoscedastic errors?
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Left: area vs rent, right: area vs residuals. Fahrmeir et al (2013):
Regression. Springer. (p.80). R code from TMA4267 lectures tab.
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Today

I Normal linear model: implication for Y .
I Model parameters β, σ2, parameter estimators β̂, σ̂2, residuals
ε̂ = Y − X β̂.

I Model assumptions.
I Next: covariates- how to include in linear regression, and then

parameter estimation.
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
4. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .

1 / 18

Model assumptions for the classical linear model [F:3.1.2]

What are our model assumptions, how can we spot violations and
what can we do to amend the violations.
1. Linearity of covariates: Y = Xβ + ε

2. Homoscedastic error variance: Var(εi ) = σ2.
3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ+ε

We mainly use plots to assess this (more on model fit in F:3.4
Model choice and variable seletion)

I Covariate vs response (for each covariate)
I Covariate vs error (when we have simulated data and know the

truth)
I Covariate vs residual (estimated error),
I Predicted response vs residual.

2 / 18

Uncorrelated errors?
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Top: positively autocorrelated errors. Bottom: negatively correlated
errors. Right: x vs y. Left: x vs error. Example from Fahrmeir et al
(2013): Regression. Springer. (p.81). R code from TMA4267
lectures tab.
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a b

c
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observations and true function
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−.5

0
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residuals

Fig. 3.4 Illustration for correlated residuals when the model is misspecified: Panel (a) displays
(simulated) data based on the function E.yi j xi / D sin.xi / C xi and "i ! N.0; 0:32/.
Panel (b) shows the estimated regression line, i.e., the nonlinear relationship is ignored. The
corresponding residuals can be found in panel (c)

simulated from the model yi D sin.xi / C xi C "i . The conditional mean of yi
is E.yi j xi / D sin.xi / C xi ; which is a nonlinear function of x; see Fig. 3.4a.
In panel (b), a simple linear regression line has been fitted, which means that the
estimated model is misspecified. The corresponding residuals in panel (c) show
positive autocorrelation.

Autocorrelated errors are most often encountered in time series or longitudinal
data. In many cases, relevant covariates cannot be included in the model because
they cannot be observed. If the unobserved but relevant covariates show a temporal
or seasonal trend, correlated errors are induced. We again use simulated data for
illustration. Panels (a) and (b) of Fig. 3.5 show a time series plot of variables x1
and x2. Whereas x1 is apparently subject to a clear temporal trend, x2 fluctuates
randomly around zero. Now consider the regression model yi D !1 C x1 !
0:6 x2 C "i , i D 1; : : : ; 100, with independent and identically distributed normal
errors "i " N.0; 0:52/. This is a classical linear regression model, which complies
with the assumptions stated in Box 3.1 on p. 76. We obtain the estimates Oyi D

Fahrmeir et al (2013): Regression. Springer. (p.82)
4 / 18

Multiplicative errors

x1=runif(n,0,3)
x2=runif(n,0,3)
e=rnorm(n,0,0.4)
y=exp(1+x1-x2+e)
plot(x1,y,pch=20)
plot(x2,y,pch=20)
plot(x1,log(y),pch=20)
plot(x2,log(y),pch=20)
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Multiplicative errors
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Top: x1 and x2 vs y. Bottom: x1 and x2 vs log(y). Example from
Fahrmeir et al (2013): Regression. Springer. (p.85). R code from
TMA4267 lectures tab.

6 / 18

Covariates - how to include in the linear regression?

1. Continuous covariates: as is, transformed or using polynomials.
2. Categorical covariates: dummy variable or effect coding.
3. Interactions between covariates.

7 / 18



Munich rent index data

> colnames(ds)
[1] "rent" "rentsqm" "area" "yearc" "location" "bath"
[7] "kitchen" "cheating" "district"
> apply(ds[,1:4],2,summary)

rent rentsqm area yearc
Min. 40.51 0.4158 20.00 1918
1st Qu. 322.00 5.2610 51.00 1939
Median 427.00 6.9800 65.00 1959
Mean 459.40 7.1110 67.37 1956
3rd Qu. 559.40 8.8410 81.00 1972
Max. 1843.00 17.7200 160.00 1997
> unlist(apply(ds[,5:8],2,table))
location.1 location.2 location.3 bath.0 bath.1 kitchen.0

1794 1210 78 2891 191 2951
kitchen.1 cheating.0 cheating.1

131 321 2761

8 / 18

How to code categorical covariates: rentsqm vs location
with linear coding

I Location average=1, good=2 and top=3, and regression
model

rentsqmi = β0 + β1locationi + εi

I Parameter estimate: β̂1 = 0.39. What does that mean?
I Flat of average location: ̂rentsqm = β̂0 + β̂1 · 1
I Flat of good location: ̂rentsqm = β̂0 + β̂1 · 2
I Flat of top location: ̂rentsqm = β̂0 + β̂1 · 3

I What is the difference in predicted rentsqm between top and
good location, and between good and average location?

I So, the difference between a top and a good location is the
same as the difference between good and average. Is this what
we want?

9 / 18

Linear coding

> fit1=lm(rentsqm~as.numeric(location),data=ds)
> summary(fit1)
Call:
lm(formula = rentsqm ~ as.numeric(location), data = ds)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.54390 0.12368 52.911 < 2e-16 ***
as.numeric(location) 0.39312 0.08016 4.904 9.88e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.427 on 3080 degrees of freedom
Multiple R-squared: 0.007748,Adjusted R-squared: 0.007425
F-statistic: 24.05 on 1 and 3080 DF, p-value: 9.878e-07

10 / 18

rentsqm vs location with dummy variable coding

aloci =
{

0 locationi is not average
1 locationi is average

gloci =
{

0 locationi is not good
1 locationi is good

tloci =
{

0 locationi is not top
1 locationi is top

rentsqmi = β0 + β1aloci + β2gloci + β3tloci + εi

I Write down the design matrix for this regression model, when
we have 1794 flats with average location, 1210 with good and
78 with top location.

I What is the rank of this design matrix?
I Is there a problem, and a solution?

11 / 18



3.1 Model Definition 97

3.4 Dummy Coding for Categorical Covariates

For modeling the effect of a covariate x 2 f1; : : : ; cg with c categories using
dummy coding, we define the c ! 1 dummy variables

xi1 D
!

1 xi D 1;

0 otherwise;
: : : xi;c!1 D

!
1 xi D c ! 1;

0 otherwise;

for i D 1; : : : ; n; and include them as explanatory variables in the regression
model

yi D ˇ0 C ˇ1xi1 C : : : C ˇi;c!1xi;c!1 C : : : C "i :

For reasons of identifiability, we omit one of the dummy variables, in this
case the dummy variable for category c. This category is called reference
category. The estimated effects can be interpreted by direct comparison with
the (omitted) reference category.

In principle, any of the categories of a categorical variable could be chosen as the
reference. In practice, we usually choose the category which makes most sense for
interpretation, for example, the most common category found in the data set. For an
arbitrary categorical covariate x with c categories, dummy coding is summarized in
Box 3.4.

Note that there is more than one coding scheme for categorical covariates.
Another popular scheme is effect coding, which is defined by

xi1 D

8
<

:

1 xi D 1;

!1 xi D c;

0 otherwise;

: : : xi;c!1 D

8
<

:

1 xi D c ! 1;

!1 xi D c;

0 otherwise.

In contrast to dummy coding, effect coding produces new variables that are coded
with !1 for the reference category yielding a sum to zero constraint as explained
in the following example that illustrates the difference between the two coding
schemes, using the Munich rent index data.

Example 3.6 Munich Rent Index—Effect Coding
If we choose an average location as the reference category, we obtain the two variables

glocation D
8
<

:

1 location D 2 (good location);
!1 location D 1 (average location),

0 otherwise,

tlocation D
8
<

:

1 location D 3 (top location),
!1 location D 1 (average location),

0 otherwise,

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.97)
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Dummy coding via contr.treatment

> contrasts(ds$location)=contr.treatment(3)
> fit2=lm(rentsqm~location,data=ds)
> summary(fit2)
Call:
lm(formula = rentsqm ~ location, data = ds)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.95654 0.05728 121.456 < 2e-16 ***
location2 0.31570 0.09025 3.498 0.000475 ***
location3 1.21579 0.28060 4.333 1.52e-05 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.426 on 3079 degrees of freedom
Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06
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Effect coding via contr.sum

> contrasts(ds$location)=contr.sum(3)
> fit3=lm(rentsqm~location,data=ds)
> summary(fit3)
Call:
lm(formula = rentsqm ~ location, data = ds)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.46704 0.09638 77.477 < 2e-16 ***
location1 -0.51050 0.10189 -5.010 5.75e-07 ***
location2 -0.19479 0.10445 -1.865 0.0623 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.426 on 3079 degrees of freedom
Multiple R-squared: 0.008867,Adjusted R-squared: 0.008223
F-statistic: 13.77 on 2 and 3079 DF, p-value: 1.109e-06
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Response: birth weight
Covariates: glucose level of mother and BMI of mother.

Figure from Kathrine Frey Frøslie.
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Response: birth weight
Covariates: glucose level of mother and BMI of mother - with
interaction.

Figure from Kathrine Frey Frøslie.
16 / 18

The classical linear model

Y
(n×1)

= X
(n×p)

β
(p×1)

+ ε
(n×1)

E (ε) = 0
(n×1)

and Cov(ε) = σ2I
(n×n)

where
I β and σ2 are unknown parameters and
I the design matrix X has ith row [xi1xi2 · · · xip].

Next: find the estimator β̂.

17 / 18

Today

I Model assessment: residual plots.
I Covariates: how to include in linear regression?
I Least squares and maximum likelihood estimator for β.

β̂ = (XTX )−1XTY

18 / 18
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The classical linear model

Y
(n×1)

= X
(n×p)

β
(p×1)

+ ε
(n×1)

E (ε) = 0
(n×1)

and Cov(ε) = σ2I
(n×n)

where
I β and σ2 are unknown parameters and
I the design matrix X has full rank, with ith row [xi1xi2 · · · xip].

Today
1. find estimator for β,
2. find estimator for σ2, and
3. look at two idempotent matrices H and I − H to arrive at
4. geometric interpretation.

1 / 22
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Rules for derivatives with respect to a vector

I Let β be a p-dimensional column vector of interest,
I and let ∂

∂β denote the p-dimensional vector with partial
derivatives wrt the p elements of β.

I Let d be a p-dimensional column vector of constants and
I D be a p × p symmetric matrix of constants.

Rule 1:
∂

∂β
(dTβ) =

∂

∂β
(

p∑

j=1

djβj) = d

Rule 2:

∂

∂β
(βTDβ) =

∂

∂β
(

p∑

j=1

p∑

k=1

βjdjkβk) = 2Dβ

See Härdle and Simes (2015), page 65, Equation (2.23) and (2.24).
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Two questions

Have found least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

and we have assumed that the rank(X ) = p for n× p design matrix
(where n > p).

I Q1: What can we say about XTX?
I Q2: Why is the following wrong?

Using (AB)−1 = B−1A−1,

β̂ = (XTX )−1XTY = X−1(XT )−1XTY = X−1Y

4 / 22

The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
4. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .

5 / 22

Acid rain

occurs when emissions of sulfur dioxide (SO2) and oxides of
nitrogen (NOx) react in the atmosphere with water, oxygen, and
oxidants to form various acidic compounds. These compounds then
fall to the earth in either dry form (such as gas and particles) or
wet form (such as rain, snow, and fog).

Source: http://myecoproject.org/get-involved/pollution/acid-rain/
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http://www.eoearth.org/view/article/149814/
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Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

pH is a measure of the acidity of alkalinity of water, expressed in
terms of its concentration of hydrogen ions. The pH scale ranges
from 0 to 14. A pH of 7 is considered to be neutral. Substances
with pH of less that 7 are acidic; substances with pH greater than 7
are basic.
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http://www.eoearth.org/view/article/149814/
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Output from fitting the full model in R

> fit=lm(y~.,data=ds)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 ***
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 ***
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09

Question: explain how to interpret β̂0 and β̂3.
13 / 22
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120 3 The Classical Linear Model

yn D X nˇ C "n; E."n/ D 0; Cov."n/ D !2In:

Similarly, we index the least squares estimator Ǒ
n and the variance estimator O!2

n

with n. To obtain valid asymptotic results, we need to go beyond the assumptions
1–3 stated in Box 3.1 (p. 76). Further assumptions are needed regarding the limiting
behavior of the design matrix Xn and with it the sequence x1; : : : ; xn; : : : of the
design vectors. A standard assumption is that the matrix X 0

nXn averaged over n
converges to a limiting positive definite matrix V , i.e.,

lim
n!1

1

n
X 0

nXn D V ; V positive definite: (3.20)

In this case we have the following asymptotic results:

3.10 Asymptotic Properties of the Least Squares Estimator

1. The least squares estimator Ǒ
n for ˇ and the ML or REML estimator O!2

n

for the variance !2 are consistent.
2. The least squares estimator asymptotically follows a normal distribution,

specifically
p

n. Ǒ
n ! ˇ/

d! N.0; !2V !1/:

That is the difference Ǒ
n !ˇ normalized with

p
n converges in distribution

to the normal distribution on the right-hand side.

We use these asymptotic results for a sufficiently large sample size n as follows.
First, Ǒ

n has an approximately normal distribution

Ǒ
n

a" N.ˇ; !2V !1=n/:

If we replace !2 with the consistent estimator O!2
n and V with the approximation

V
a" 1=nX 0

nXn, we have

Ǒ
n

a" N.ˇ; O!2
n .X 0

nXn/!1/:

This implies that, with sufficiently large sample size and provided that Eq. (3.20)
holds, the least squares estimator has the same approximate normal distribution,
regardless of the normal assumption for ". Assumption (3.20) is particularly ensured
if the observed covariate vectors xi , i D 1; : : : ; n, are independent and identically
distributed realizations of stochastic covariates x D .1; x1; : : : ; xk/0, i.e., if the
observations .yi ; xi / form a random sample from .y; x/. This condition is met for
many empirical studies, e.g., in our applications on the Munich rent index and on
malnutrition in developing countries. In such cases, the law of large numbers implies

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.120)

15 / 22



Projection matrix: definition and properties

I A matrix A is a projection matrix if it is idempotent, A2 = A.

I An idempotent matrix is an orthogonal projection matrix if, in
the decomposition of a vector, v = Av + (v − Av), Av and
v − Av = (I − A)v are always orthogonal, that is,
(Av)T (v − Av) = 0.

I A symmetric projection matrix is orthogonal.
I The eigenvalues of a projection matrix are 0 and 1.
I If a (n × n) symmetric projection matrix A has rank r then r

eigenvalues are 1 and n − r are 0.
I The trace and rank of a symmetric projection matrix are equal:

tr(A) = rank(A).
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Results so far
I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

I Projection matrices: idempotent, symmetric/orthogonal:

H = X (XTX )−1XT

I − H = I − X (XTX )−1XT

with important connection:

Ŷ = HY
ε̂ = I − HY

17 / 22

Results from Mathematics 3

Best approximation theorem
The vector Ŷ in the column space of X that makes || Y − Ŷ || as
small as possible, is the orthogonal projection of Y on the column
space of X .

Orthogonal decomposition
We want β̂ to minimize || Y − Ŷ ||= (Y −X β̂)T (Y −X β̂) (least
squares principle).
The column space of X consists of vectors of the form X β̂, so X β̂
is the orthogonal projection of Y onto the column space of X .
This is equivalent to observing that Y − X β̂ is in the orthogonal
complement of the column space of X .
That is, Y − X β̂ is orthogonal to all columns of X , so
XT (Y − X β̂) = 0 and XTX β̂ = XTY .
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Best approximation theorem
The vector Ŷ in the column space of X that makes || Y − Ŷ || as
small as possible, is the orthogonal projection of Y on the column
space of X .
Orthogonal decomposition
We want β̂ to minimize || Y − Ŷ ||= (Y −X β̂)T (Y −X β̂) (least
squares principle).
The column space of X consists of vectors of the form X β̂, so X β̂
is the orthogonal projection of Y onto the column space of X .
This is equivalent to observing that Y − X β̂ is in the orthogonal
complement of the column space of X .
ε̂ = Y −HY = (I −H)Y , and I −H projects onto the space
orthogonal to the column space of X . Observe: (I -H)X=0
That is, Y − X β̂ is orthogonal to all columns of X , so
XT (Y − X β̂) = 0 and XTX β̂ = XTY .
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8.13 Geometrical Illustrations

This section comprises figures that illustrate the geometrical meanings of
various concepts presented in this chapter. For geometric considerations in
regression, see also Bring (1996), Bryant (1984), and Margolis (1979). For
the history of the use of geometry in the linear model, see Herr (1980).

C (1)

x
—̂1x

y

ŷ = Hy
= —̂01 + —̂1x

¯̄y = Jy = ȳ1 = JHy
—̂01

e = (I ≠ H)y = y ≠ ŷ

–

C (1 : x)

Figure 8.3 Projecting y onto C (1 : x).

C (X)‹

C (1)

x

y

¯̄y = Jy = ȳ1 = JHy

ỹ

ŷ = Hy

e = (I ≠ H)y

SS
T

=
SS

E 0

SSR

SS
E–

–

C (1)‹

C (1 : x)

SST = SSR + SSE

Figure 8.4 Illustration of SST = SSR + SSE.

Putanen, Styan and Isotalo: Matrix Tricks for Linear Statistical
Models: Our Personal Top Twenty, Figure 8.3.
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112 3 The Classical Linear Model

3.7 Geometric Properties of the Least Squares Estimator

The method of least squares has the following geometric properties:
1. The predicted values Oy are orthogonal to the residuals O", i.e., Oy 0 O" D 0.
2. The columns xj of X are orthogonal to the residuals O", i.e., .xj /0 O" D 0 or

X 0 O" D 0.
3. The average of the residuals is zero, i.e.,

nX

iD1

O"i D 0 or
1

n

nX

iD1

O"i D 0:

4. The average of the predicted values Oyi is equal to the average of the
observed response yi , i.e.,

1

n

nX

iD1

Oyi D Ny:

5. The regression hyperplane runs through the average of the data, i.e.,

Ny D Ǒ
0 C Ǒ

1 Nx1 C ! ! ! C Ǒ
k Nxk:

of the residuals, Qxj is orthogonal to the columns of QX j . This implies that Qxj is orthogonal
to all j !1 previously constructed variables Qx1; : : : ; Qxj!1 . Notice that the first transformed
variable Qx1 results from a simple centering around the column mean value of x1. In linear
algebra, this method is also known as Gram–Schmidt orthogonalization. 4

Analysis of Variance and Coefficient of Determination
Using the geometric properties of the least squares estimator, we can derive a
fundamental analysis of variance formula for the empirical variance of observed
responses yi . This allows us to define the coefficient of determination or the propor-
tion of total variance that is explained by the regression model. The coefficient of
determination is closely related to the empirical correlation coefficient and can be
used as a goodness-of-fit measure (among many others).

In Sect. 3.5.2 (p. 169), we prove the following decomposition formula:

nX

iD1

.yi " Ny/2 D
nX

iD1

. Oyi " Ny/2 C
nX

iD1

O"2
i : (3.19)

Division by n (or n " 1) on both sides leads to the analysis of variance formula:

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.112) 20 / 22

Alternative summery of Geometry of Least Squares

I Mean response vector: E (Y ) = Xβ
I As β varies, Xβ spans the model plane of all linear

combinations. I.e. the space spanned by the columns of X :
the column-space of X .

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X .

I LS-estimation chooses β̂ such that X β̂ is the point in the
column-space of X that is closes to Y .

I The residual vector ε̂ = Y − Ŷ = (I − H)Y is perpendicular
to the column-space of X .

I Multiplication by H = X (XTX )−1XT projects a vector onto
the column-space of X .

I Multiplication by I − H = I − X (XTX )−1XT projects a
vector onto the space perpendicular to the column-space of X .
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Today

I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

has mean E(β̂) = β and Cov(β̂) = σ2(XTX )−1.
I For the normal model: β̂ ∼ Np(β, σ

2(XTX )−1).
I Asymptotic properties of the least squares estimator:

normality.
I Orthogonal projection matrices H and I −H with geometric

interpretation.

Next time: properties of residuals and σ̂2, confidence intervals and
hypothesis testing for regression coefficients.

22 / 22

 





TMA4267 Linear Statistical Models V2017 (L10)
Part 2: Linear regression: Parameter estimation [F:3.2],

Properties of residuals and distribution of estimator for error variance
Confidence interval and hypothesis for one regression coefficient

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 17, 2017

1 / 17



Today

1. Properties for residuals (from the hat matrix), leading to
properties for σ̂2,

2. Then, confidence interval and hypothesis test for regression
coefficient.

1 / 17

The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
1. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .

2 / 17

Results so far
I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

with mean E(β̂) = β and Cov(β̂) = σ2(XTX )−1.
I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

I Projection matrices: idempotent, symmetric/orthogonal:

H = X (XTX )−1XT

projects onto column space of X

I − H = I − X (XTX )−1XT

projects onto space orthogonal to column space of X

with important connection: predictions Ŷ = HY and residuals
ε̂ = (I − H)Y

3 / 17
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This section comprises figures that illustrate the geometrical meanings of
various concepts presented in this chapter. For geometric considerations in
regression, see also Bring (1996), Bryant (1984), and Margolis (1979). For
the history of the use of geometry in the linear model, see Herr (1980).
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Quadratic forms [F:B3.3, Theorem B.2]

Random vector X with mean µ and covariance matrix Σ,
symmetric constant matrix A.

I Quadratic form: XTAX .
I The "trace-formula": E(XTAX ) = tr(AΣ) + µTAµ.

Then, let X ∼ Np(0, I ), and R is a symmetric and idempotent
matrix with rank r .

XTRX ∼ χ2
r

Now, also S is a symmetric and idempotent matrix with rank s,
and RS = 0.

sXTRX
rXTSX

∼ Fr ,s

5 / 17

Properties: β̂ and σ̂2

I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

has mean E(β̂) = β and Cov(β̂) = σ2(XTX )−1.
I In addition β̂ is best linear unbiased estimator (BLUE), that is,

among all unbiased estimator it has minimum variance in each
component. (More in TMA4295 Statistical Inference.)

I For the normal model: β̂ ∼ Np(β, σ2(XTX )−1).
I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

I For the normal model

(n − p)σ̂2

σ2 ∼ χ2
n−p

6 / 17

Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

Random sample of n = 26 lakes.
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Output from fitting the full model in R

> fit=lm(y~.,data=ds)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 ***
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 ***
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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W. S. Gosset alias Student

9 / 17

Historisk: Student-t fordelingen
I W.S. Gosset (1876-1937) was employed by the Guinness Brewing

Company of Dublin.

I Sample sizes available for experimentation in brewing were
necessarily small, and Gosset knew that a correct way of dealing
with small samples was needed.

I He consulted Karl Pearson (1857-1936) of Universiy College in
London about the problem. Pearson told him the current state of
knowledge was unsatisfactory.

I The following year Gosset undertook a course of study under
Pearson. An outcome of his study was the publication in 1908 of
Gosset’s paper on "The Probable Error of a Mean," which
introduced a form of what later became known as Student’s
t-distribution.

I Gosset’s paper was published under the pseudonym "Student."

I The modern form of Student’s t-distribution was derived by R.A.
Fisher and first published in 1925.

10 / 17

t-distribution
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t df=19
t df=5
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DEF: t-distribution

Let Z be a standard normal random variable and V a
chi-squared random variable with parameter ν (degrees of
freedom). If Z and V are independent, the distribution of
the random variable T

T =
Z√
V /ν

has probability density function

h(t) =
Γ[(ν + 1)/2]

Γ(ν/2)
√
πν

(1 +
t2

ν
)−(ν+1)/2

for −∞ < t <∞. This distribution is called the
(Student) t−distribution with ν degrees of freedom.

I E(T ) = 0 if ν ≥ 2.

I Var(T ) = ν
ν−2 if ν ≥ 3.
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Are β̂ and SSE are independent?

Independence – from Part 1:
Let X (p×1) be a random vector from Np(µ,Σ). Then AX and BX
are independent iff AΣBT = 0.

We have:
I Y ∼ Nn(Xβ, σ2I )

I AY = β̂ = (XTX )−1XTY , and
I BY = (I −H)Y .
I Now Aσ2IBT = σ2ABT = σ2(XTX )−1XT (I −H) = 0
I since X (I −H) = X −HX = X − X = 0.
I We conclude that β̂ is independent of (I −H)Y ,
I and, since SSE=function of (I −H)Y : SSE=Y T (I −H)Y ,
I then β̂ and SSE are independent.

13 / 17

Quantiles and critical values: N og t: α/2 = 0.025
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Kritiske verdier i t-fordelingen

P (T > tα,ν) = α

ν\α .150 .100 .075 .050 .025 .010 .005 .001 .0005
1 1.963 3.078 4.165 6.314 12.706 31.821 63.657 318.309 636.619
2 1.386 1.886 2.282 2.920 4.303 6.965 9.925 22.327 31.599
3 1.250 1.638 1.924 2.353 3.182 4.541 5.841 10.215 12.924
4 1.190 1.533 1.778 2.132 2.776 3.747 4.604 7.173 8.610
5 1.156 1.476 1.699 2.015 2.571 3.365 4.032 5.893 6.869
6 1.134 1.440 1.650 1.943 2.447 3.143 3.707 5.208 5.959
7 1.119 1.415 1.617 1.895 2.365 2.998 3.499 4.785 5.408
8 1.108 1.397 1.592 1.860 2.306 2.896 3.355 4.501 5.041
9 1.100 1.383 1.574 1.833 2.262 2.821 3.250 4.297 4.781

10 1.093 1.372 1.559 1.812 2.228 2.764 3.169 4.144 4.587
11 1.088 1.363 1.548 1.796 2.201 2.718 3.106 4.025 4.437
12 1.083 1.356 1.538 1.782 2.179 2.681 3.055 3.930 4.318
13 1.079 1.350 1.530 1.771 2.160 2.650 3.012 3.852 4.221
14 1.076 1.345 1.523 1.761 2.145 2.624 2.977 3.787 4.140
15 1.074 1.341 1.517 1.753 2.131 2.602 2.947 3.733 4.073
16 1.071 1.337 1.512 1.746 2.120 2.583 2.921 3.686 4.015
17 1.069 1.333 1.508 1.740 2.110 2.567 2.898 3.646 3.965
18 1.067 1.330 1.504 1.734 2.101 2.552 2.878 3.610 3.922
19 1.066 1.328 1.500 1.729 2.093 2.539 2.861 3.579 3.883
20 1.064 1.325 1.497 1.725 2.086 2.528 2.845 3.552 3.850
21 1.063 1.323 1.494 1.721 2.080 2.518 2.831 3.527 3.819
22 1.061 1.321 1.492 1.717 2.074 2.508 2.819 3.505 3.792
23 1.060 1.319 1.489 1.714 2.069 2.500 2.807 3.485 3.768
24 1.059 1.318 1.487 1.711 2.064 2.492 2.797 3.467 3.745
25 1.058 1.316 1.485 1.708 2.060 2.485 2.787 3.450 3.725
26 1.058 1.315 1.483 1.706 2.056 2.479 2.779 3.435 3.707
27 1.057 1.314 1.482 1.703 2.052 2.473 2.771 3.421 3.690
28 1.056 1.313 1.480 1.701 2.048 2.467 2.763 3.408 3.674
29 1.055 1.311 1.479 1.699 2.045 2.462 2.756 3.396 3.659
30 1.055 1.310 1.477 1.697 2.042 2.457 2.750 3.385 3.646
35 1.052 1.306 1.472 1.690 2.030 2.438 2.724 3.340 3.591
40 1.050 1.303 1.468 1.684 2.021 2.423 2.704 3.307 3.551
50 1.047 1.299 1.462 1.676 2.009 2.403 2.678 3.261 3.496
60 1.045 1.296 1.458 1.671 2.000 2.390 2.660 3.232 3.460
80 1.043 1.292 1.453 1.664 1.990 2.374 2.639 3.195 3.416

100 1.042 1.290 1.451 1.660 1.984 2.364 2.626 3.174 3.390
120 1.041 1.289 1.449 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.036 1.282 1.440 1.645 1.960 2.326 2.576 3.090 3.291

4
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Acid rain in R

ds=read.table("https://www.math.ntnu.no/emner/
TMA4267/2017v/acidrain.txt",header=TRUE)
fit=lm(y~.,data=ds)
> confint(fit)

2.5 % 97.5 %
(Intercept) 5.384581378 5.9682854281
x1 -0.438476153 -0.1916126966
x2 -0.004497716 0.0007911594
x3 0.670735075 1.2796138706
x4 -0.002335625 0.0018820903
x5 -0.080696921 0.0138484550
x6 -0.156117992 0.1482381575
x7 -0.126624544 0.3043688780

P-values: http://www.statistrikk.no/wp-content/uploads/
2017/02/nerdekort.jpg
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Today

I Distribution of SSE/σ2 is chisquared (n − p).
I Independence of β̂ and SSE.
I Inference about β components can be performed using the

t-distribution
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Today

1. Hypothesis testing for βj .
2. Residuals: standardized (or studentized) preferred.
3. Decomposition of variability: SST=SSR+SSE, and

significance of regression.
4. R2 gives the proportion of variability explained by the

regression model. and will never decrease if new covariates are
added to the model.

5. Model choice considerations.
6. SPSE: Expected squared prediction error.
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
1. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .
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Properties for the normal linear model

I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

with β̂ ∼ Np(β, σ
2(XTX )−1).

I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

with (n−p)σ̂2

σ2 ∼ χ2
n−p.

I Statistic for inference about βj , cjj is diagonal element j of
(XTX )−1.

Tj =
β̂j − βj√

cjj σ̂
∼ tn−p

3 / 30

Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

Random sample of n = 26 lakes.
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Output from fitting the full model in R

> fit=lm(y~.,data=ds)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 ***
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 ***
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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Quantiles and critical values: N og t: α/2 = 0.025
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In R: specify area to the left, but our notation gives area to the
right. Fahrmeir et al: notation with area to the left.
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Properties of the residuals

I Residuals (raw): ε̂ = Y − Ŷ .
I with mean E(ε̂) = 0 and covariance matrix

Cov(ε̂) = σ2(I −H) where H = X (XTX )−1XT .
I In the normal model ε ∼ Nn(0, σ2I ) and then also the vector

of residuals are normal, but with heteroscedastic variances and
non-zero covariances.

I Standardized residuals: divide (raw) residuals by estimated
standard deviation.

I Studentized residuals: leave-one-out version.
I Studentized residuals are compared with the normal

distribution to assess normality of the error term.
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126 3 The Classical Linear Model

3.12 Overview of Residuals

Ordinary Residuals

The residuals are given by

O"i D yi ! Oyi D yi ! x0
i
Ǒ i D 1; : : : ; n:

Standardized Residuals

The standardized residuals are defined by

ri D O"i

O!
p

1 ! hii

;

where hii is the i th diagonal element of the hat matrix.

Studentized Residuals

The studentized residuals are defined by

r!
i D O".i/

O!.i /.1 C x0
i .X

0
.i /X .i //"1xi /1=2

D O"i

O!.i /

p
1 ! hii

D ri

!
n ! p ! 1

n ! p ! r2
i

"1=2

:

The studentized residuals are used to verify model assumptions and to
discover outliers (see Sect. 3.4.4).

Partial Residuals

The partial residuals regarding covariate xj are defined by

O"xj ;i D yi ! Ǒ
0 ! : : :! Ǒ

j !1xi;j !1 ! Ǒ
j C1xi;j C1 ! : : :! Ǒ

kxik D O"i C Ǒ
j xij :

In the partial residuals O"xj ;i , all covariate effects with the exception of
the one associated with xj are removed. Hence, they are very useful for
exploring whether the influence of xj is modeled correctly (see Sect. 3.4.4).

Example 3.12 Munich Rent Index—Hypothesis Testing
We revisit the data from the Munich rent index to illustrate hypothesis testing. We use
the data for the 1999 rent index, in combination with the follow-up data from 2001; see
Example 3.7 (p. 100). Consider the regression model

rentsqmi D ˇ0 C ˇ1 areainvci C ˇ2 yearcoi C ˇ3 yearco2i

C ˇ4 yearco3i C ˇ5 nkitchen C ˇ6 pkitchen C ˇ7 year01 C "i ;
(3.25)

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.126)
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Simulating data and checking residuals

n=1000
beta=matrix(c(0,1,1/2,1/3),ncol=1)
set.seed(123)
x1=rnorm(n,0,1); x2=rnorm(n,0,2); x3=rnorm(n,0,3)
X=cbind(rep(1,n),x1,x2,x3)

y=X%*%beta+rnorm(n,0,2)
fit=lm(y~x1+x2+x3)
yhat=predict(fit)
summary(fit)
ehat=residuals(fit); estand=rstandard(fit); estud=rstudent(fit)
plot(yhat,ehat,pch=20)
points(yhat,estand,pch=20,col=2)
#points(yhat,estud,pch=20,col=5)

9 / 30
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Black: raw residuals, red: standardized residuals (identical to
studentized here). 10 / 30



Examination of model assumptions

1. Linearity of covariates: Y = Xβ + ε

2. Homoscedastic error variance: Cov(ε) = σ2I .
3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ+ε
5. Assumption of normality: ε ∼ Nn(0, σ2I )

11 / 30

Plotting residuals
1. Plot the residuals, r∗i against the predicted values, ŷi .

I Dependence of the residuals on the predicted value: wrong
regression model?

I Nonconstant variance: transformation or weighted least
squares is needed?

2. Plot the residuals, r∗i , against predictor variable or functions of
predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, r∗i , versus time or collection order (if
possible). Look for dependence or autocorrelation.

12 / 30

Volume of a tree
Data for 31 trees of a certain kind in a national park in the US are
given below. Three variables are measured for each tree. These are:

I D: The diameter of the tree measured in inches 1.5 m above
ground level

I H: The height of the tree measured in feet.
I V : The volume of the tree measured in cubic feet.

Obs. D H V Obs. D H V
1 8.3 70 10.3 17 12.9 85 33.8
2 8.6 65 10.3 18 13.3 86 27.4
3 8.8 63 10.2 19 13.7 71 25.7
4 10.5 72 16.4 20 13.8 64 24.9
5 10.7 81 18.8 21 14.0 78 34.5
6 10.8 83 19.7 22 14.2 80 31.7
7 11.0 66 15.6 23 14.5 74 36.3
8 11.0 75 18.2 24 16.0 72 38.3
9 11.1 80 22.6 25 16.3 77 42.6

10 11.2 75 19.9 26 17.3 81 55.4
11 11.3 79 24.2 27 17.5 82 55.7
12 11.4 76 21.0 28 17.9 80 58.3
13 11.4 76 21.4 29 18.0 80 51.5
14 11.7 69 21.3 30 18.0 80 51.0
15 12.0 75 19.1 31 20.6 87 77.0
16 12.9 74 22.2

13 / 30

Volume of a tree

I If one wants to measure the volume of a tree the tree has to
be cut down.

I But, height and diameter can be measured without cutting
down the tree.

I Of interest: develop a model that can be used to estimate the
tree volume from the height and diameter.

As an illustration assume we want to fit a linear model with V as
response and D and H as covariates. What is the R2 of this model?

Comment: if we start with the volume of a cylinder (area of circle times
height) we may suggest a different regression model (on the log scale).
Which model?

14 / 30



Volume: height and diameter

fit <- lm(Volume~.,data=ds)
summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948,Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Volume of a tree: IQ of lumberjack added

I We want to add the IQ of the lumberjack that cut down the
tree as a covariate in the model.

I This should for obvious reasons not be a good predictor for the
volume of the tree.

I To mimic this situation we simulate new data to resemble the
IQ of different lumberjacks by drawing data from the normal
distribution with mean 100 and standard deviation 16, and
since we have 31 trees we simulate 31 observations.

I Q: will the R2 of this new model be higher than the R2 of the
previous model?

16 / 30

Volume: height and diameter – and IQ of lumberjack
set.seed(123) # reproducible results
iq <- rnorm(31,100,16)
fit2 <- lm(Volume~Height+Diameter+iq,data=ds)
summary(fit2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -61.03399 10.20868 -5.979 2.24e-06 ***
Height 0.34099 0.13176 2.588 0.0154 *
Diameter 4.72507 0.26906 17.561 2.68e-16 ***
iq 0.02704 0.04678 0.578 0.5681
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.929 on 27 degrees of freedom
Multiple R-squared: 0.9486,Adjusted R-squared: 0.9429
F-statistic: 166.1 on 3 and 27 DF, p-value: < 2.2e-16

17 / 30

Acid rain in Norwegian lakes

Data on n = 26 lakes, with
I y: measured pH in lake,
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

We would like to use a regression model with pH of the lake as the
response. Should we fit a model will all 7 covariates, or choose a
subset?

18 / 30



Simulated data (Fahrmeir et al: Fig 3.17)

True model:

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi

Known that the model is polynomial in nature, but not up to which
degree.
Try to fit polynomial also with higher order terms.

New: in addition to the data set to be used to fit the regression
(called training set) also a data set to assess the model fit is
present (called a validation set).

Mean Squared Error (MSE) is a scaled version of the SSE, that is
1
n

∑n
i=1(Yi − Ŷi )

2.
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Fig. 3.17 Simulated training data yi [panel (a)] and validation data y!
i [panel (b)] based on 50

design points xi , i D 1; : : : ; 50. The true model used for simulation is yi D !1C0:3xi C0:4x2
i !

0:8x3
i C "i with "i " N.0; 0:072/. Panels (c–e) show estimated polynomials of degree l D 1; 2; 5

based on the training set. Panel (f) displays the mean squared error MSE.l/ of the fitted values
in relation to the polynomial degree (solid line). The dashed line shows MSE.l/, if the estimated
polynomials are used to predict the validation data y!

i

Figure from our text book: Fahrmeir et al (2013): Regression. Springer. (p.140) 20 / 30

Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ∼ N(−1+ 0.3x1 + 0.2x3, 0.22)

where also x2 = x1 + u is observed (u ∼ uniform in 0,1). The
variables x1 and x3 are uncorrelated.
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Fig. 3.18 Scatter plot matrix for the variables y, x1, x2, and x3

data well. With polynomial degrees l > 2 onward, a satisfactory fit to the data appears to
be guaranteed. Figure 3.17f additionally displays the mean squared error

MSE.l/ D 1

50

50X

iD1

.yi ! Oyi .l//
2

of the fitted models depending on the order of the polynomial (continuous line). Clearly,
MSE.l/ decreases monotonically with increased l . This suggests that the fit to the data
is better with larger polynomial order. This finding appears to confirm the first strategy
described above, namely to include as many regressors as possible into the model.

In a next step, we investigate how well the fitted models predict new observations
that have been simulated according to the same model. Figure 3.17b shows additionally
simulated observations for every design point xi , i D 1; : : : ; 50. We refer to this data set
as the validation sample, whereas we refer to the first data set (used for estimation) as the
training set. Figure 3.17f shows the mean squared error of Oy!

i for the data y!
i (dashed line)

in the validation set. Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial order l D 3 onward, the
fit is getting worse. We recognize the following: The more complex the model, the better is
the fit to the data that were used for estimation. However, with new data resulting from the
same data generating process, models that are too complex can cause a poorer fit. 4

Example 3.17 Correlated Covariates
Consider the n D 150 observations .yi ; xi1; xi2; xi3/, i D 1; " " " ; 150, in the scatter
plot matrix in Fig. 3.18. The data were generated as follows: The variables x1 and x3 are

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)
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Table 3.3 Results for the model based on covariates x1, x2, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.970 0.047 !20.46 <0.001 !1.064 !0.877
x1 0.146 0.187 0.78 0.436 !0.224 0.516
x2 0.027 0.177 0.15 0.880 !0.323 0.377
x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x1 and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.967 0.039 !24.91 <0.001 !1.042 !0.889
x1 0.173 0.055 3.17 0.002 0.065 0.281
x3 0.226 0.052 4.33 <0.001 0.123 0.330

independent and uniformly distributed on [0,1]. The variable x2 is defined as x2 D x1 C u,
where u is also uniformly distributed on [0,1]. Thus, the variables x1 and x2 are highly
correlated. Finally, the response variable y is simulated according to the model

y j x1; x2; x3 " N.!1 C 0:3x1 C 0:2x3; 0:22/:

The conditional mean of y is thus dependent on x1 and x3, but not on x2. In the following,
we assume, however, that we do not know the true model (as is typically the case in
practice). At first, we estimate a regression model with all available covariates x1, x2, and
x3, and we obtain the results provided in Table 3.3. Clearly, x1 and x2 are nonsignificant. If
we followed strategy 2, i.e., if we eliminate the nonsignificant variables from the model, we
would eliminate not only the nonrelevant covariate x2, but also the relevant variable x1.
If we instead estimate a correctly specified model with true predictor variables x1 and x3,
we obtain the results shown in Table 3.4. When having a correct model specification, not
only is x3 significant but so is the previously insignificant variable x1. We conclude: If we
first consider all variables and then eliminate the insignificant variables from the model,
it is possible that also important variables will be eliminated. The main reason for such
unfortunate model estimation circumstances is the existing correlation among covariates.4

3.4.1 Effect of Model Specification on Bias, Variance,
and Prediction Quality

We now strengthen the new insights of the previous examples with more theoretical
considerations. In particular, we focus on the following questions:
1. Irrelevant Variables: What can be said about the bias and the variance of the least

squares estimator, in the case that we include irrelevant variables in the model?
2. Missing Variables: What can be said about the bias and the variance of the least

squares estimator, if we omit relevant variables in the model?
3. Prediction Quality: What effect does the model specification, more specifically

the selected variables in the model, have on prediction?

Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.
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Two subsets of covariates (Exam V2014 Problem 4b)

Classical linear model with identically normally distributed random
errors, Cov(ε) = σ2I , but now look at misspecification of E(Y ).
Suppose that the true model is

Y = X 1β1 + X 2β2 + ε,

ε ∼ Nn(0, σ2I ),
(1)

where we have partitioned the design matrix into two parts X 1
(n × p1) and X 2 (n × p2) and β1 and β2 are unknown p1- and
p2-dimensional vectors of regression coefficients (p = p1 + p2).

25 / 30

Two subsets of covariates (cont.)

Assume that we ignore the covariates in X 2 and fit the model

Y = X 1α1 + δ,

δ ∼ Nn(0, τ2I ).
(2)

Here α1 is used in place of β1 to emphasize that α1 (and estimates
thereof) will in general be different from β1 in the true model.
The least squares estimator for model (2) is
α̂1 = (XT

1 X 1)
−1XT

1 Y .
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Two subsets of covariates (cont.)

Find the expected value and covariance matrix of α̂1 under the true
model.

E(α̂1) = β1 + (XT
1 X 1)

−1XT
1 X 2β2

We see that the bias term for α̂1 is (XT
1 X 1)

−1XT
1 X 2β2. When is

the bias term equal to zero?

Cov(α̂1) = σ2(XT
1 X 1)

−1

Observe, Cov(α̂1) is not dependent on β2.
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Missing covariates: findings

Bias : The estimator for the (true) covariates (in the
model) is only unbiased if the true and missing
covariates are uncorrelated (orthogonal design) in the
data.

Variance : The variance of the estimator for the true covariates
may be smaller based on the model with the missing
covariates (than for the correctly specified model),
and even the sum of the bias2 and the variance may
better for the model with the missing variables. So
the sparse model may be better on overall (even
though it is biased).

28 / 30

Irrelevant covariates included: findings

Bias : The estimator for the true covariates are unbiased,
also if irrelevant covariates are included.

Variance : The model with the irrelevant covariants have larger
variance for the true covariates, compared with the
model without the irrelevant covariates. So, again
sparse model is the best.
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.

Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
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Law of parsimony

If two models are not very different – then always choose the
simplest one
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Today

I T-test for significance of one regression coefficient.
I Residuals: standardized (or studentized) preferred.
I Significance of regression based on F-test with SSR/(p-1)

divided by SST/(n-1).
I R2 gives the proportion of variability explained by the

regression model.

R2 =
SSR
SST

= 1− SSE
SST

and will never decrease if new covariates are added to the
model.

I Model selection: want to choose the model that minimize the
expected squared prediction error.
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What is the "best" model?

Acid rain in Norwegian lakes, data on n = 26 lakes, with
I y: measured pH in lake,
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),
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Topic: choosing the "best" linear regression model!

I First, debunk popular strategies (based on simulations studies
were we knew the "true" model):

I Popular 1: fit all available covariates.
Problem: overfitting (=fitting trends and noise).

I Popular 2: fit all available covariates, then remove the
insignificant ones (=those βj where H0 : βj = 0 is not
rejected).

2 / 47

Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ∼ N(−1 + 0.3x1 + 0.2x3, 0.22)

where also x2 = x1 + u is observed (u ∼ uniform in 0,1). The
variables x1 and x3 are uncorrelated.
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Fig. 3.18 Scatter plot matrix for the variables y, x1, x2, and x3

data well. With polynomial degrees l > 2 onward, a satisfactory fit to the data appears to
be guaranteed. Figure 3.17f additionally displays the mean squared error

MSE.l/ D 1

50

50X

iD1

.yi ! Oyi .l//
2

of the fitted models depending on the order of the polynomial (continuous line). Clearly,
MSE.l/ decreases monotonically with increased l . This suggests that the fit to the data
is better with larger polynomial order. This finding appears to confirm the first strategy
described above, namely to include as many regressors as possible into the model.

In a next step, we investigate how well the fitted models predict new observations
that have been simulated according to the same model. Figure 3.17b shows additionally
simulated observations for every design point xi , i D 1; : : : ; 50. We refer to this data set
as the validation sample, whereas we refer to the first data set (used for estimation) as the
training set. Figure 3.17f shows the mean squared error of Oy!

i for the data y!
i (dashed line)

in the validation set. Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial order l D 3 onward, the
fit is getting worse. We recognize the following: The more complex the model, the better is
the fit to the data that were used for estimation. However, with new data resulting from the
same data generating process, models that are too complex can cause a poorer fit. 4

Example 3.17 Correlated Covariates
Consider the n D 150 observations .yi ; xi1; xi2; xi3/, i D 1; " " " ; 150, in the scatter
plot matrix in Fig. 3.18. The data were generated as follows: The variables x1 and x3 are

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)

4 / 47

142 3 The Classical Linear Model

Table 3.3 Results for the model based on covariates x1, x2, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.970 0.047 !20.46 <0.001 !1.064 !0.877
x1 0.146 0.187 0.78 0.436 !0.224 0.516
x2 0.027 0.177 0.15 0.880 !0.323 0.377
x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x1 and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.967 0.039 !24.91 <0.001 !1.042 !0.889
x1 0.173 0.055 3.17 0.002 0.065 0.281
x3 0.226 0.052 4.33 <0.001 0.123 0.330

independent and uniformly distributed on [0,1]. The variable x2 is defined as x2 D x1 C u,
where u is also uniformly distributed on [0,1]. Thus, the variables x1 and x2 are highly
correlated. Finally, the response variable y is simulated according to the model

y j x1; x2; x3 " N.!1 C 0:3x1 C 0:2x3; 0:22/:

The conditional mean of y is thus dependent on x1 and x3, but not on x2. In the following,
we assume, however, that we do not know the true model (as is typically the case in
practice). At first, we estimate a regression model with all available covariates x1, x2, and
x3, and we obtain the results provided in Table 3.3. Clearly, x1 and x2 are nonsignificant. If
we followed strategy 2, i.e., if we eliminate the nonsignificant variables from the model, we
would eliminate not only the nonrelevant covariate x2, but also the relevant variable x1.
If we instead estimate a correctly specified model with true predictor variables x1 and x3,
we obtain the results shown in Table 3.4. When having a correct model specification, not
only is x3 significant but so is the previously insignificant variable x1. We conclude: If we
first consider all variables and then eliminate the insignificant variables from the model,
it is possible that also important variables will be eliminated. The main reason for such
unfortunate model estimation circumstances is the existing correlation among covariates.4

3.4.1 Effect of Model Specification on Bias, Variance,
and Prediction Quality

We now strengthen the new insights of the previous examples with more theoretical
considerations. In particular, we focus on the following questions:
1. Irrelevant Variables: What can be said about the bias and the variance of the least

squares estimator, in the case that we include irrelevant variables in the model?
2. Missing Variables: What can be said about the bias and the variance of the least

squares estimator, if we omit relevant variables in the model?
3. Prediction Quality: What effect does the model specification, more specifically

the selected variables in the model, have on prediction?

Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Topic: choosing the "best" linear regression model!
I First, debunk popular strategies (based on simulations studies

were we knew the "true" model):
I Popular 1: fit all available covariates.

Problem: overfitting (=fitting trends and noise).
I Popular 2: fit all available covariates, then remove the

insignificant ones (=those βj where H0 : βj = 0 is rejected).
Problem: may also remove important covariates that are
correlated with unimportant ones - but insignificant because
being masked by the unimportant ones.

I Study of irrelevant and missing covariates:
Irrelevant : variables that are included in the regression but

should not have been (IQ of lumberjack)
missing : variables that are not included, but should have

been (omitting height in the tree volum example)
Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
Take home message is the "Law of parsimony": If two models
are not very different – then always choose the simplest one.
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All models are wrong?

A model is a simplification or approximation of reality and hence
will not reflect all of reality.

George Box noted that "all models are wrong, but some are
useful". While a model can never be "truth"a model might be
ranked from very useful, to useful, to somewhat useful to, finally,
essentially useless.

Burnham, K. P.; Anderson, D. R. (2002), Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach.
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Expected squared prediction error (SPSE)

Possible criterion we want to minimize: SPSE.
Definition (j, M, ... given in classnotes)

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

can be written as:

SPSE =
J∑

j=1

E((Yj − ŶjM)2) = nσ2 + |M|σ2 +
J∑

j=1

(µjM − µj)2

Problem: Not useful on practise since µj and σ2 are unknown.
Plan: Find a way to estimate SPSE and then choose the model M
with the minimum SPSE!

8 / 47

How to estimate SPSE?

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

Assume we have fitted a model M with |M| regression parameters.
1. Use new (independent) data – if available (seldom the case):

ŜPSE =
J∑

j=1

(Yj − ŶjM)2

2. Cross-validation: mimic new data by dividing data into k folds
(popular is k = n and k = 10). In a for-loop let j = 1, . . . , k ,
and use all folds except fold j to estimate regression parameter,
and use the jth fold to calculated the ŜPSE . Sum across folds.

Choose the model M that minimizes the ŜPSE .
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Cross-validation (5-fold)

Will be taught in TMA4300 Computational statistics and will be a
backbone in TMA4268 Statistical Learning.
http://blog-test.goldenhelix.com/wp-content/uploads/2015/
04/B-fig-1.jpg
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How to estimate SPSE?

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

Assume we have fitted a model M with |M| regression parameters.
3. Use existing data (only): It can be shown that

E(ŜPSE ) = SPSE − 2 | M | σ2 when used on the same data
that was used to make the prediction, so a better estimate for
existing data is

ŜPSE =
n∑

i=1

(Yi − ŶiM)2 + 2|M|σ̂2 = SSE + 2|M|σ̂2

where σ̂2 is the same for all models M, and is often estimated
using the most complex model under study.

4. Other criteria: all have the same form; a first term based on
SSE (or R2) for model M, and a second term penalizing the
model complexity.

Choose the model M that minimizes the ŜPSE . 11 / 47

For models with the same model complexity – easy solution:
SSE

Estimators for SPSE to be used on the same data as to be used for
estimating the model parameters have the same form; a first term
based on SSE (or R2) for model M, and a second term penalizing
the model complexity.
If we consider two models with the same model complexity then
SSE can be used to choose between these models.
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Acid rain (1). Best subset
For 1, . . . , 7 covariates: fit all possible models, and report the
model with the smallest SSE (given below) for each value for the
model complexity. Explain what you see! How many models have
been searched for each model complexity?
regfit.full=regsubsets(y~.,data=ds)
sumreg <- summary(regfit.full)
Subset selection object
Call: regsubsets.formula(y ~ ., data = ds)
Selection Algorithm: exhaustive

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

Names: x1: SO4, x2: N03, x3: Ca, x4: latent Al , x5: organic substance,
x6: area of lake, x7: position of lake (Telemark or Trøndelag).
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Popular model choice criteria

R2 adjusted (corrected)
Mallows’ Cp

Akaike Information Criterion (AIC)
Bayesian Information Criterion (BIC)

NB: there is no overall best choice for criterion - all of these are
used.
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R2 adjusted (corrected)
Ŷi is from fitting the regression model M.
Remember, for a regression model (with intercept) we have the
SST=SSR+SSE.

SST =
n∑

i=1

(Yi − Ȳ )2

SSE =
n∑

i=1

(Yi − Ŷi )
2

R2 = 1− SSE

SST

R2
adj = 1−

SSE
n−p
SST
n−1

= 1− n − 1
n − p

(1− R2)

Choose the model with the largest R2
adj.

"All" statistical software outputs this automatically! However,
Fahrmeir et al (2013) believes that the penalty n − p is too small.
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Happiness (n = 39)

Are love and work the important factors determining happiness?

I y , happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

I x1, money. Annual family income in thousands of dollars.

I x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

I x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

I x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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Happy

> allreg=regsubsets(happy~.,data=happy)
> sumreg <- summary(allreg)
> sumreg
Subset selection object
Call: regsubsets.formula(happy ~ ., data = happy)
1 subsets of each size up to 4
Selection Algorithm: exhaustive

money sex love work
1 ( 1 ) " " " " "*" " "
2 ( 1 ) " " " " "*" "*"
3 ( 1 ) "*" " " "*" "*"
4 ( 1 ) "*" "*" "*" "*"
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money sex love work N p R2 R2
adj

1 0.014 1 0.000747 7.3 4.8
2 −0.130 1 1 0.1 −2.6
3 2.270 1 8.35e-24 61.5 60.5
4 0.990 1 1.36e-13 29.1 27.2
5 0.016 −0.508 2 0.0504 8.8 3.8
6 0.009 2.206 2 8.77e-19 64.5 62.5
7 0.012 0.961 2 3.68e-10 34.6 31.0
8 −0.277 2.279 2 5.55e-18 62.0 59.9
9 0.610 1.079 2 3.48e-09 31.2 27.4
10 1.959 0.511 2 5.75e-20 68.1 66.3
11 0.011 −0.536 2.209 3 9.49e-16 66.2 63.3
12 0.011 0.305 1.009 3 1.84e-07 35.1 29.5
13 0.009 1.902 0.504 3 2.63e-17 70.9 68.4
14 0.108 1.944 0.530 3 2.22e-16 68.1 65.4
15 0.010 −0.149 1.919 0.476 4 9.89e-15 71.0 67.6

Intercept included, N = p − 1, p-value for significance of regression.

R2 = 1− SSE
SST , R2

adj = 1−
SSE
n−p
SST
n−1

. Which model to prefer?
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Mallows’ Cp

Ŷi is from fitting regression model M.
Mallows is the name of a person.

Cp =

∑n
i=1(Yi − Ŷi )

2

σ̂2 − n + 2|M|

Minimizing Cp gives the same optimal model as minimizing ŜPSE .

See Exam V2015 Problem 3 for an in depth explanation of the
theory behind Mallow’s Cp.
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AIC

Akaike information criterion – one of the most widely used.
Designed for likelihood-based inference.

For a normal regression model:

AIC = n ln(σ̂2) + 2(|M|+ 1)

Choose the model with the minimum AIC.

20 / 47

BIC

Bayesian information criterion.

For a normal regression model:

BIC = n ln(σ̂2) + ln(n)(|M|+ 1)

Choose the model with the minimum BIC.

AIC and BIC are motivated in very different ways, but the final
result for the normal regression model is very similar.

BIC has a larger penalty than AIC (log(n)vs.2), and will often give
a smaller model (=more parsimonious models) than AIC.
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Happy: Mallows’ Cp
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Happy: BIC
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Acid rain (2)

Call: regsubsets.formula(y ~ ., data = ds)
1 subsets of each size up to 7
Selection Algorithm: exhaustive

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
# to mimic test set:
which.max(sumreg$adjr2) #5
which.min(sumreg$cp) #3
which.min(sumreg$bic) #3
# so, model 3 or 5 is suggested for us
# model 3: x1+x2+x3
# model 5: x1+x2+x3+x5+x7
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Acid rain, BIC,
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Practical use of the model criteria

I All subset selection: use smart "leaps and bounds" algorithm,
works fine for number of covariates in the order of 40.

I Forward selection: choose starting model (only intercept), then
add one new variable at each step - selected to make the best
improvement in the model selection criteria. End when no
improvement is made.

I Backward elimination: : choose starting model (full model),
then remove one new variable at each step - selected to make
the best improvement in the model selection criteria. End
when no improvement is made.

I Stepwise selection: combine forward and backward.
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Acid rain (3): stepAIC

> all=lm(happy~.,data=happy)
> stepAIC(all)
Start: AIC=9.08
happy ~ money + sex + love + work

Df Sum of Sq RSS AIC
- sex 1 0.142 38.229 7.221
<none> 38.087 9.076
- money 1 3.782 41.869 10.768
- work 1 6.386 44.473 13.122
- love 1 47.272 85.359 38.549

Step: AIC=7.22
happy ~ money + love + work

Df Sum of Sq RSS AIC
<none> 38.229 7.221
- money 1 3.723 41.952 8.846
- work 1 8.410 46.639 12.976
- love 1 47.742 85.971 36.828

Call:
lm(formula = happy ~ money + love + work, data = happy)

Coefficients:
(Intercept) money love work

-0.185936 0.008959 1.901709 0.503602
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Acid rain (4): Forward

regfitF=regsubsets(y~.,data=ds,method="forward")
sumregF <- summary(regfitF)
Selection Algorithm: forward

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) " " " " "*" "*" " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" "*" "*" "*" "*" " " " "
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
which.max(sumregF$adjr2)#5
which.min(sumregF$cp) #3
which.min(sumregF$bic) #3
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Acid rain (5): Backward

regfitB=regsubsets(y~.,data=ds,method="backward")
sumregB <- summary(regfitB)
Selection Algorithm: backward

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " "*" " " " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
which.max(sumregB$adjr)#5
# backward finds same as best subset
which.min(sumregB$cp) #3
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Model diagnosis

I Influential observations and outliers: impact of specific
observations on model fit.

I Collinearity analysis: Highly correlated variables cause
imprecise estimation of the regression parameters. (Why?
Look at diagonal elements of Cov(β̂) = σ2(XTX )−1, and
look back to Problem 2 in the start of this lecture.)

I Examination of model assumptions: residual plots!
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Influential observations– and outliers

I Observations that significantly affect inferences drawn from
the data are said to be influential.

I The leverage, hii , associated with the ith datapoint measures
“how far the ith observation is from the other n − 1
observations”.

I Methods for assessing influential observations may be be based
on change in β estimate when observations are deleted.

I Always investigate possible causes of an influential observation
(if possible).

I Cook’s distance can be used to identify influential observations.
I Robust methods (median,quantile regression) can be useful.

Want to understand more? Read for yourself in Fahrmeir et al
(2013): p 160-166.
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Transformations

I Multiplicative or additive model?
I Box–Cox transform with profile likelihood.
I Stabilizing the variance.
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Galapagos islands, Model A, Exam V2014 Problem 2
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Box–Cox plot
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Box–Cox transformation plot based on Model A for the Galapagos data
set, RecEx4. Line at x = 1/3.
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Galapagos islands, Model B, Exam V2014 Problem 2
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Approximation of E and Var
for nonlinear functions

I Have RV X , with mean E(X ) = µ and some variance Var(X ).
I Want to look at a nonlinear function of X , called g(X ).
I Aim: find an approximation to E(g(X )) and Var(g(X )).
I And, the same for two RVs X1 and X2 with g(X1,X2).
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Example ln of BMI

Looking at residual plots from a regression model the conclusion
was to analyse data of BMI on the natural logarithmic scale.
After a regression model was fitted the predicted value for the
ln(BMI) for a specific combination of the covariates was found to
be 3.2151 with an estimated standard deviation of 0.1656.
Use approximate methods to arrive at an estimate of the predicted
value and estimated standard deviation on the original scale,
kg/m2, and not on the logarithmic scale.
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E(g(X ) and Var(g(X ))

I Let g(X ) be a general function. When is
E(g(X )) = g(E(X ))?

I When g(X ) is a linear function of X .
I What can we do if this is not the case?

I We can calculate E(g(X )) =
∫∞
−∞ g(x)f (x)dx when X is

continuous, or a version thereof in the discrete case,
I or if g is monotone we can use the transformations formula to

find the distribution of Y = g(X ) and then calculate E(Y )
and Var(Y ), if possible.

I What if we only know E(X ) = µ and Var(X ) = σ2 and not
f (x)?

I Use a Taylor series approximation of g(X ) around g(µ). g
need to be differentiable.
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Univariate function

First order Taylor approximation of g(X ) around µ.

g(X ) ≈ g(µ) + g ′(µ)(X − µ)

This leads to the following approximations:

E(g(X )) ≈ g(µ)

Var(g(X )) ≈ [g ′(µ)]2Var(X )
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Treatment of tennis elbow
(exam TMA4255 V2012, 3b)

The term tennis elbow is used to describe a state of inflammation
in the elbow, causing pain. This injury is common in people who
play racquet sports, however, any activity that involves repetitive
twisting of the wrist (like using a screwdriver) can lead to this
condition. The condition may also be due to constant computer
keyboard and mouse use.
In a randomized clinical study the aim was to compare three
different methods for treatment of tennis elbow,

I A: physiotherapy intervention,
I B: corticosteroid injections and
I C: wait-and-see (the patients in the wait-and-see group did not

get any treatment but was told to use the elbow as little as
possible).
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Treatment of tennis elbow (cont.)

We will look at the short-term effect of treatment by studying
measurements at 6 weeks. All patients participating in the study
only had one affected arm.
We will look at the outcome measure called pain-free grip force.
This was measured by a digital grip dynamometer and normalized
to the grip force of the unaffected arm. A pain-free grip force of
100 would mean that the affected and the unaffected arm
performed equally good.
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Summary statistics for each of the treatment groups.

Treatment Sample size Average Standard deviation
A (physiotherapy) 63 70.2 25.4
B (injection) 65 83.6 22.9
C (wait-and-see) 60 51.8 23.0
Total 188 69.0
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Example 2: Exam TMA4255 V2012 3d (fraction)

Let µA be the expected pain-free grip force for a population where
the physiotherapy intervention treatment is used to treat tennis
elbow, and µC be the expected pain-free grip force for a population
where the wait-and-see treatment is used. Define the relative
difference between these two expected values as

γ =
µA − µC
µC

.

This can be interpreted as the expected relative gain by using
physiotherapy instead of wait-and-see. Based on two independent
random samples of size nA and nC from the physiotherapy and
wait-and-see treatment groups, respectively, suggest an estimator,
γ̂, for γ.
Use approximate methods to find the expected value and variance
of this estimator, that is, E(γ̂) and Var(γ̂).
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Bivariate function: first order Taylor

X1 is a RV with µ = E(X2) and X2 is a RV with µ2 = E(X2).
Let g be a bivariate function of X1 and X2, and define

g ′1(µ1, µ2) =
∂g(x1, x2)

∂x1
|x1=µ1,x2=µ2

g ′2(µ1, µ2) =
∂g(x1, x2)

∂x2
|x1=µ1,x2=µ2

First order Taylor approximation:

g(X1,X2) ≈ g(µ1, µ2) + g ′1(µ1, µ2)(X1−µ1) + g ′2(µ1, µ2)(X2−µ2)
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Bivariate function: first order Taylor

E(g(X1,X2)) ≈ g(µ1, µ2)

Var(g(X1,X2)) ≈ [g ′1(µ1, µ2)]2Var(X1) + [g ′2(µ1, µ2)]2Var(X2)+

2 · g ′1(µ1, µ2) · g ′2(µ1, µ2)Cov(X1,X2)
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Multivariate version

From Tabeller og formler i statistikk.
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Today

I Choosing between models of equal model complexity: choose
the model with the minimum SSE.

I Choosing between models of different model complexity:
Model selection based on penalized criteria (Mallows Cp,
R2

adj,AIC and BIC). Try out on RecEx4 and Compulsory
Exercise 2.

I BoxCox transformation: see RecEx4.
I Work for for yourself: Taylor solution to E and Var of nonlinear

function, useful when you want to look at transformations of
the data or functions of parameter estimates.

Summary of Part 2 in Kahoot!
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Part 2: Linear regression
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Normal equations

Y = Xβ+ε where E (ε) = 0 and Cov(ε) = σ2I

Which of the following are the normal equations?

A Xβ̂ = HY

B β̂ = X(XT X)−1XT Y

C (XT X)β̂ = XT Y

D (XT X)Y = XT β̂

The hat matrix

Design matrix X has n rows and p linearly
independent columns. H = X(XT X)−1XT

is called the hat-matrix.

Which of the following statements are NOT
true?

A H = HT = H2 B rank(H) = p

C HY = Y D H(I − H) = 0

Estimator for σ2

Y = Xβ+ ε where E (ε) = 0 and Cov(ε) = σ2I
H = X(XT X)−1XT

An unbiased estimator for σ2 is:

A SSE/n B Y T (I−H)Y/(n−p)

C (XT X)−1Y/(n − p) D (XT X)−1SSE/n

Inference about β

Y = Xβ+ ε where ε ∼ Nn(0,σ2I)
and β̂ = (XT X)−1XT Y .

What are the properties of β̂?

A Chi-squared dis-
tributed with n − p
degrees of freedom.

B Chi-squared dis-
tributed with p de-
grees of freedom.

C Multivariate normal
with covariance ma-
trix (I − H)σ2.

D Multivariate normal
with covariance ma-
trix (XT X)−1σ2.



Happiness=money+sex+love+work

Estimate Std. Error t value Pr(>|t|)
money 0.009578 0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279 0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

Which of the regression coefficient estimates has
the largest estimated variance?

A money B sex

C love D work

Happiness=money+sex+love+work

The R2 for the happiness-regression model is
71%. What does that mean?

A The regression is significant for signifi-
cance level 71%

B The regression explains 71% of the vari-
ability in the data

C The estimate for the variance σ2 is 0.71

D The covariates have a correlation of 0.71

Happiness

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072081 0.852543 -0.085 0.9331
money 0.009578 0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279 0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

For which βj would we reject the null hy-
pothesis βj = 0 at significance level 1%?

A money B sex

C love D work

Best model
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Which model does the BIC criterion report to be
the best?
A love+work B love

C money+love+work D money+sex+love+work



What is this plot used for?
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A Check residuals B Assess normality of
residuals

C Assess linearity D Find transform of
response

Correct?
Are you sure you want to read the correct answers?
Maybe try first? The answers are explained on the
next two slides.

Answers

1. C: The normal equation (XT X)β̂ = XT Y is
before you solve for β̂.

2. C: The hat matrix is symmetric and idempotent
(so A is ok), and has rank p, but the reason for
the name of the hat matrix is that is puts the
hat on the Y so HY = Ŷ . We know that for
symmetric projection matrices the two matrices
H and (I − H) are orthogonal so the product
must be zero.

Answers

3. B: Since SSE has mean (n − p)σ2, then
SSE/(n-p) must be an unbiased estimator for
σ2. We know that (I − H) projects onto the
space othogonal to the column space of the
designmatrix, so that must have to do with
SSE.

4. D: We know that linear combinations of
multivariate normal random vectors are also
multivariate normal (so the chisquare is not
suitable). The residuals have (I − H) as part of
their covariance matrix, but β̂ has not.



Answers

5. B: Sex has the largest estimated variance for
regression estimate.

6. B: R2 gives the percent of variability explained.
7. C: only love is significant on level 1%, since this

is the only p-value below 0.01 (last column).
8. A: love+work has smallest BIC.
9. D: Box-Cox plot used to find transformation of

response.


