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Today

I The scientific process.
I The basics of hypothesis testing and interpretation of p-value.
I The reproduciability "crisis".
I Properties of p-values.
I Linear hypotheses in regression vs. nested models.
I The universal F-test for linear hypotheses (nested models)
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Basal metabolic rate and the FTO-gene

I The gene called FTO is known to be related to obesity
I The basal metabolic rate says how many calories you burn

when you rest (hvilemetabolisme).
I Data has been collected for 101 patient from the obesity clinic

at St. Olavs Hospital.
I Research question: is there an association between the variant

of the FTO gene of the patient and the basal metabolic rate?
I Regression setting, other covariates include age, sex, weight,

height, BMI, diet, exercise level, smoking, etc.
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The scientific process

[1] well defined research question(s)

[2] design study - collect data

[3] model–estimate–evaluate–test–predict

[4] interpret

[5] insight and new knowledge
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Hypothesis testing example
I It is known that in a population of

women of age 20-29 years the systolic
blood pressure is normally distributed
with mean µ = 120 mmHg.

I We study a population of women of age
20-29 that have a specific disease (blue
population), and also here we assume
that the systolic blood pressure is
normally distributed (with standard
deviation 10 mmHg), but here we don’t
know the mean in the population.

I In addition to estimating this unknown mean we want to
investigate if the mean blood pressure of the blue population is
larger than 120 mmHg (because if it is, we need to start more
investigations into the cause of this).

I H0 : µ = 120 vs. H1 : µ > 120.
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Hypothesis testing example (cont.)
I We draw a random sample of size n = 100 from

the blue population and measure systolic blood
pressure: X1,X2, . . . ,Xn.

I Test statistic: X̄ ∼ N(120, 1) when H0 is true.
I We find that x̄ = 122 mmHg.
I Data: n = 100, x̄ = 122, gives a p-verdi=0.02.

Questions:
I How have I calculated this p-value?
I Should I conclude that µ > 120?
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Q and A

I How have I calculated this p-value?
P(X̄ > 122 | H0 true).

I Should I conclude that µ > 120?
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for µ:
Here [120.04, 123.96].
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Hypothesis testing example (end)

I The p-value is often based on a test
statistic, and can be found in many ways
(known distribution, enumerations,
asymptotic).

I Significance level: highest probability of miscarriage of justice
that we would tolerate.

I We reject the null hypothesis - and say that we have a
significant finding at significance level α if a/the p-value for
the hypothesis test is below α.
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What is a p-value

From The research handbook of Carlsen & Staff (2014)
. . . the p-value, the probability that the result could have occurred
randomly, p=probability.

This is common, but not the correct definition of the p-value.
What is wrong? Discuss!

Slide reconstructed from talk by Kristoffer H. Hellton, NR
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What is a p-value

A more correct definition so that:
the p-value is the probability of your result or a more extreme
result, given that H0 is true.

or

the probability of your result or a more extreme result, given that it
occurred randomly.

This is different from: the probability of your result occurring
randomly.

Slide reconstructed from talk by Kristoffer H. Hellton, NR
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A simple example
I Null hypothesis: It is sunny outside.
I Data: I enter the room soaking wet.
I Wrong p-value: the probability that it is sunny outside.
I Impossible to calculate.
I Right p-value: the probability that I’m wet, given that it is

sunny.
I Should be small.

Important! From Bayes theorem:
P(observation | hypothesis) 6= P(hypothesis|observation)
The probability of observing a result given some hypothesis is true
not equivalent to the probability that the hypothesis is true given
that some result has be observed.
To be able to calculate the right hand side, we need P(hypothesis),
the probability of the hypothesis. This is exactly what is introduced
in Bayesian statistics through the so-called prior, and some see the
Bayes factor as the replacement for p-values.
Slide reconstructed from talk by Kristoffer H. Hellton, NR
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Statistical significance and p-values

On March 7, 2016, the American Statistical Association posted a
statement on statistical significance and p-values - "clarifying
several widely agreed upon principles underlying the proper use and
interpretation of the p-value".
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Statement on proper use and interpretation of the p-value

Why is this needed: (1)
American Statistical Association discussion forum, 2014.

I Q: Why do so many colleges and grad schools teach p = 0.05?
I A: Because that’s still what the scientific community and

journal editors use.
I Q: Why do so many people still use p = 0.05?
I A: Because that’s what they were taught in college or grad

school.
Problem?
Urban knowledge: Unless an hypothesis test results in a p-value
below 0.05 there is no finding. So, in some journals a researcher
will not be able to publish his paper unless the test performed has a
p-value below 0.05.
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Statement on proper use and interpretation of the p-value

Why is this needed: (2)

Hack your way to scientific glory

Ioannidis (2005): How many nonsignificant results have been
studied before one research group has published its first significant
finding?
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Statement on proper use and interpretation of the p-value

Why is this needed: (3)

The journal Basic and Applied Social Psychology (editors Trafimow
and Marks, 2015) put a ban on null hypothesis significance testing.
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ASA Statement on Statistical Significance and P-values,
March 2016

The ASA’s statement on p-values: context, process, and purpose, Ronald
L. Wasserstein & Nicole A. Lazar, The American Statistician,
DOI:10.1080/00031305.2016.1154108.

I While the p-value can be a useful statistical measure, it is
commonly misused and misinterpreted.

I Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

I P1: P-values can indicate how incompatible the data are with
a specified statistical model.

I P2: P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

I P3: Scientific conclusions and business or policy decisions
should not be based only on whether at p-value passes a
specific threshold.
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ASA Statement on Statistical Significance and P-values

I P4: Proper inference requires full reporting and transparency.
I P5: A p-value, or statistical significance, does not measure the

size of an effect or the importance of a result.
I P6: By itself, a p-value does not provide a good measure of

evidence regarding a model or hypothesis.

Take home message: the p-value is a very risky tool ...
(Benjamini, 2016): but, replacing the p-value with other tools may
lead to many of the same indeficiencies - so it would be better to
instead focus on the appropriate use of statistical tools for
addressing the crisis of reproducibility and replicability in science.
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The scientific process

[1] well defined research question(s)

[2] design study - collect data

[3] model–estimate–evaluate–test–predict

[4] interpret

[5] insight and new understanding
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Scenario: finding only for p ≤ 0.05

[1] well defined research question(s)

[2] design study - collect data

[3] model–estimate–evaluate–test–predict

[4] interpret finding if p ≤ .05

[5] still insight and understanding?
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Scenario: Cherry-picking aka Selective Inference aka
p-hacking

[2] design study - collect data

[1] well defined research question(s)

[3] model–estimate–evaluate–test–predict

[4] interpret finding (p <= .05)

[5] insight&understanding non-replicable and non-reproducible findings
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http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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What is the proportion of fake news?

True=true H1 (100 hypotheses) and False=false H1 (900 hypotheses).
http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-
degree-it-not-trouble 23 / 36



What is the proportion of fake news?
Color-coding for the far left figure:

I Yellow: all the hypotheses where H0 is true (and H1 is false),
and H0 is not rejected. All is good here, but this interesting(?)
findings are very seldom published.

I Light green: all the hypotheses where H0 is false (and H1 is
true) and the research reject the H0 and make a correct
discovery. This are our true news!

I Dark green: all the hypothesis where H0 are true (and H1 are
false) but the researcher wrongly reject H0. These are our fake
news!

I Red: all the hypotheses where H0 are false (and H1 is true)
but where the researcher fail to reject H0 - let guilty criminal
go free. These are called false negatives and are usually not
reported (unless the researcher is report a negative finding).

So, not 5% of published results are false positives (fake news), but
rather at substantially larger number - 40-90% has be hinted to in
different publications.
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Single hypothesis testing set-up

H0 true H0 false
Not reject H0 Correct Type II error
Reject H0 Type I error Correct

Two types of errors:
I False positives = type I error =miscarriage of justice.

These are our fake news.
I False negatives = type II error= guilty criminal go free.

The significance level of the test is α.

We say that : Type I error is "controlled" at significance level α.

The probability of miscarriage of justice (Type I error) does not
exceed α.
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So far

I We (statisticians and other scientists) must focus on sound
scientific process - and step away from cherry-picking and the
"finding=p-value ≤ 0.05" urban truth.

I We must always report effect size.
I We must be aware that these two effects (selective inference

and practical vs. statistical significance) are especially
important for large than small data sets (both many samples
and variables).

I Now, we move to hypothesis testing in linear regression and
look at one unifying F-test can be used for all linear
hypotheses.
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Happiness (n = 39)

Are love and work the important factors determining happiness?

I y , happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

I x1, money. Annual family income in thousands of dollars.

I x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

I x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

I x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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What is C and d?

Use the happiness data, with the four covariates x1=money,
x2=sex, x3=love, x4=work, to construct the C and d to test
H0 : Cβ = d .
There is a linear effect in money? H0 : β1 = 0

C =
[
0 1 0 0 0

]
,d = 0

Is the regression significant?H0 : β1 = β2 = β3 = β4 = 0

C =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,d =




0
0
0
0




Is there a linear effect of money and/or sex? H0 : β1 = β2 = 0

C =

[
0 1 0 0 0
0 0 1 0 0

]
,d =

[
0
0

]
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The Fisher distribution [F: B.1 Def 8.14 ], Exercise 2
Problem 5

“Tabeller og formeler i statistikk”:
If Z1 and Z2 are independent and χ2-distributed with ν1 and ν2
degrees of freedom, then

F =
Z1/ν1

Z2/ν2

is F(isher)-distributed with ν1 and ν2 degrees of freedom.
I The expected value of F is E(F ) = ν2

ν2−2 .

I The mode is at ν1−2
ν1

ν2
ν2+2 .

I Identity:

f1−α,ν1,ν2 =
1

fα,ν2,ν1
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The Fisher distribution with different degrees of freedom ν1 and ν2
(given in the legend).
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Unrestricted (Model A): all 4 covariates present

fitA <- lm(happy~.,data=happy)
summary(fitA)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.072081 0.852543 -0.085 0.9331
money 0.009578 0.005213 1.837 0.0749 .
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279 0.295451 6.496 1.97e-07 ***
work 0.476079 0.199389 2.388 0.0227 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.058 on 34 degrees of freedom
Multiple R-squared: 0.7102,Adjusted R-squared: 0.6761
F-statistic: 20.83 on 4 and 34 DF, p-value: 9.364e-09
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Restricted (Model B): only love and work
The estimate β̂3 (love) is 1.919 for model A and 1.959 for model
B. Explain why these two estimates differ.

fitB <- lm(happy~love+work,data=happy)
summary(fitB)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2057 0.7757 0.265 0.79241
love 1.9592 0.2954 6.633 9.99e-08 ***
work 0.5106 0.1874 2.725 0.00987 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.08 on 36 degrees of freedom
Multiple R-squared: 0.6808,Adjusted R-squared: 0.6631
F-statistic: 38.39 on 2 and 36 DF, p-value: 1.182e-09
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Model A vs model B

> anova(fitA,fitB)
Analysis of Variance Table

Model 1: happy ~ money + sex + love + work
Model 2: happy ~ love + work

Res.Df RSS Df Sum of Sq F Pr(>F)
1 34 38.087
2 36 41.952 -2 -3.8651 1.7252 0.1934
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3.3 Hypothesis Testing and Confidence Intervals 135

3.13 Testing Linear Hypotheses

Hypotheses

1. General linear hypothesis:

H0 W C ˇ D d against H0 W C ˇ ¤ d

where C is a r ! p-matrix with rk.C / D r " p (r linear independent
restrictions).

2. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0

3. Composite test of a subvector:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0

4. Test for significance of regression:

H0 W ˇ1 D ˇ2 D # # # D ˇk D 0 against

H1 W ˇj ¤ 0 for at least one j 2 f1; : : : ; kg

Test Statistics

Assuming normal errors we obtain under H0:
1. F D 1=r .C Ǒ $ d/0 ! O!2C .X 0X/!1C 0"!1

.C Ǒ $ d/ % Fr;n!p

2. tj D
Ǒ
j

sej
% tn!p

3. F D 1
r
. Ǒ

1/
0 dCov. Ǒ

1/
!1. Ǒ

1/ % Fr;n!p

4. F D n $ p

k

R2

1 $ R2
% Fk;n!p

Critical Values

Reject H0 in the case of:

1. F > Fr;n!p.1 $ ˛/
2. jt j > tn!p.1 $ ˛=2/

3. F > Fr;n!p.1 $ ˛/
4. F > Fk;n!p.1 $ ˛/

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Today

I Reproduciable research and the scientific method.
I Hypothesis testing and p-values in general.
I Type I errors=false positives=fake news.
I Linear hypotheses, and the Fobs test statistic.
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Today

I Linear hypotheses in regression vs. nested models.
I The universal F-test for linear hypotheses: two formulas.
I The two formulas: one easy to use, one easy for proving

F-distribution.
I Special cases of the universal F-test.
I New problem: categorical covariate with effect coding (for

interpretation)
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Happiness (n = 39)

Are love and work the important factors determining happiness?

I y , happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

I x1, money. Annual family income in thousands of dollars.

I x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

I x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

I x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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3.13 Testing Linear Hypotheses

Hypotheses

1. General linear hypothesis:

H0 W C ˇ D d against H0 W C ˇ ¤ d

where C is a r ! p-matrix with rk.C / D r " p (r linear independent
restrictions).

2. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0

3. Composite test of a subvector:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0

4. Test for significance of regression:

H0 W ˇ1 D ˇ2 D # # # D ˇk D 0 against

H1 W ˇj ¤ 0 for at least one j 2 f1; : : : ; kg

Test Statistics

Assuming normal errors we obtain under H0:
1. F D 1=r .C Ǒ $ d/0 ! O!2C .X 0X/!1C 0"!1

.C Ǒ $ d/ % Fr;n!p

2. tj D
Ǒ
j

sej
% tn!p

3. F D 1
r
. Ǒ

1/
0 dCov. Ǒ

1/
!1. Ǒ

1/ % Fr;n!p

4. F D n $ p

k

R2

1 $ R2
% Fk;n!p

Critical Values

Reject H0 in the case of:

1. F > Fr;n!p.1 $ ˛/
2. jt j > tn!p.1 $ ˛=2/

3. F > Fr;n!p.1 $ ˛/
4. F > Fk;n!p.1 $ ˛/

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Constrained and unconstrained estimate
3.3 Hypothesis Testing and Confidence Intervals 129
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Fig. 3.15 Illustration of the difference in goodness of fit between the unconstrained least squares
estimator and the estimator under the constraint 0 ! ˇ ! 1. The (unconstrained) least squares
estimator is labeled as Ǒ. For the constrained solution, we have Ǒ D 1

space, the residual sum of squares reaches its minimum for Ǒ D 1. In summary, the
difference SSEH0 ! SSE is always greater or equal to zero, since the fit to the data
under the restriction C ˇ D d can be, at best, as good as with the unconstrained
least squares estimator. A formal proof for !SSE " 0 will be given in the appendix
of this chapter on p. 172.

The above illustration also shows the main idea behind the statistic (3.27). The
smaller the difference between SSEH0 and SSE, the closer the two minima are,
shown in Fig. 3.15, and the more likely it is that we will retain the null hypothesis.
On the other hand, the larger the difference, the more likely it is that we will reject
the null hypotheses. The test statistic actually used is

F D
1
r
!SSE
1

n"p
SSE

D n ! p

r

!SSE
SSE

; (3.28)

where r represents the number of (linear independent) restrictions, or the number of
rows in C . The additional constant factor n"p

r
is not important for interpretation. It

ensures that the distribution of the test statistic under the null hypothesis is a known
distribution.

In order to derive the distribution of the test statistic under H0, we proceed as
follows:
1. Determine the least squares estimator under H0

In Sect. 3.5.2 (p. 172), we derive the least squares estimator ǑR under H0, i.e.,
under the restriction C ˇ D d . We obtain

ǑR D Ǒ ! .X 0X/"1C 0.C .X 0X/"1C 0 /"1.C Ǒ ! d/:

2. Determine the difference in residual sum of squares
In Sect. 3.5.2, we derive the difference !SSE in the residual sum of squares,

given by

Figure 3.15 from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.1329)
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sej
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3. F D 1
r
. Ǒ

1/
0 dCov. Ǒ
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1/ % Fr;n!p

4. F D n $ p

k
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1 $ R2
% Fk;n!p

Critical Values

Reject H0 in the case of:

1. F > Fr;n!p.1 $ ˛/
2. jt j > tn!p.1 $ ˛=2/

3. F > Fr;n!p.1 $ ˛/
4. F > Fk;n!p.1 $ ˛/

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)

5 / 12

3.3 Hypothesis Testing and Confidence Intervals 135

3.13 Testing Linear Hypotheses

Hypotheses

1. General linear hypothesis:

H0 W C ˇ D d against H0 W C ˇ ¤ d

where C is a r ! p-matrix with rk.C / D r " p (r linear independent
restrictions).

2. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0

3. Composite test of a subvector:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0

4. Test for significance of regression:

H0 W ˇ1 D ˇ2 D # # # D ˇk D 0 against

H1 W ˇj ¤ 0 for at least one j 2 f1; : : : ; kg

Test Statistics

Assuming normal errors we obtain under H0:
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In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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3.3 Hypothesis Testing and Confidence Intervals 137

3.14 Confidence Regions and Prediction Intervals

Provided that we have (at least approximately) normally distributed errors
or a large sample size, we obtain the following confidence intervals or
regions and prediction intervals:

Confidence Interval for ˇj

A confidence interval for ˇj with level 1 ! ˛ is given by

Œ Ǒ
j ! tn!p.1 ! ˛=2/ " sej ; Ǒ

j C tn!p.1 ! ˛=2/ " sej !:

Confidence Ellipsoid for Subvector ˇ1

A confidence ellipsoid for ˇ1 D .ˇ1; : : : ; ˇr /
0 with level 1 ! ˛ is given by

!
ˇ1 W 1

r
. Ǒ

1 ! ˇ1/
0 dCov. Ǒ

1/
!1. Ǒ

1 ! ˇ1/ # Fr;n!p.1 ! ˛/

"
:

Confidence Interval for "0

A confidence interval for "0 D E.y0/ of a future observation y0 at location
x0 with level 1 ! ˛ is given by

x0
0

Ǒ ˙ tn!p.1 ! ˛=2/ O#.x0
0.X

0X/!1x0/
1=2:

Prediction Interval

A prediction interval for a future observation y0 at location x0 with level
1 ! ˛ is given by

x0
0

Ǒ ˙ tn!p.1 ! ˛=2/ O#.1 C x0
0.X

0X/!1x0/1=2:

x0
0

Ǒ $ N.x0
0ˇ; #2x0

0.X
0X/!1x0/:

Standardizing yields

x0
0

Ǒ ! "0

#.x0
0.X 0X/!1x0/1=2

$ N.0; 1/:

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.137)
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Concrete aggregates data

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists – our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Today

I Linear hypotheses in regression vs. nested models.
I The universal F-test for linear hypotheses: two formulas.
I The two formulas: one easy to use, one easy for proving

F-distribution.
I Special cases of the universal F-test.
I Next time: categorical covariate with effect coding (for

interpretation)
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Today: Analysis of variance (ANOVA) and analysis of
covariance (ANCOVA)

I Good news: really nothing new, just linear regression where we
have one or more categorical covariates.

I Bad news: a bit technical with respect to coding the
covariates in the design matrix.

I Bad or good news: also tell the story of ANOVA without linear
regression since that is the classical way to do things - so you
will be able to recognize that this is a problem that you can
solve.

I Good news: we are taking one step toward the last topic Part
4: Design of experiments.

1 / 47

Rothamsted Experimental Station

• founded in 1843 by John Bennet
Lawes on his inherited 16t 
century estate, Rothamsted
Manor, 
– wanted to investigate the impact 

of inorganic and organic 
fertilizers on crop yield 

– had founded a fertilizer 
manufacturing company in 1842

• Lawes appointed the chemist 
Joseph Henry Gilbert to the 
directorship of the chemical 
laboratory 

• the two began a series of field 
experiments to examine the 
effects of inorganic fertilizers and 
organic manures on the nutrition 
and yield of a number of 
important crops 

http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf
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The Broadbalk Field Trial at Rothamsted

• this was the first field trial 
started by Lawes and Gilbert 

• began in 1843 
• purpose was to investigate the 

relative importance of different 
plant nutrients (N, P, K, Na, 
Mg) on grain yield of winter 
wheat

• weeds were controlled by hand 
hoeing and fallowing 
– now some herbicides are used

• The experiment continues to 
this day

http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf
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Concrete aggregates example

I Aggregates are inert granular materials
such as sand, gravel, or crushed stone
that, along with water and portland
cement, are an essential ingredient in
concrete.

I For a good concrete mix, aggregates need to be clean, hard,
strong particles free of absorbed chemicals or coatings of clay
and other fine materials that could cause the deterioration of
concrete.

I We could like to examine 5 different aggregates, and measure
the absorption of moisture after 48hrs exposure (to moisture).

I A total of 6 samples are tested for each aggregate.
I Research question: Is there a difference between the

aggregates with respect to absorption of moisture?
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Concrete aggregates data

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists – our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Concrete aggregates example
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One-way Analysis of Variance (ANOVA)

Model

Yij = µi + εij for i = 1, 2, ..., p and j = 1, 2, ..., ni

alternative parameterization

Yij = µ+ αi + εij

The sample sizes for each group, ni may vary. εij ∼ N(0, σ2). Let
n =

∑p
i=1 ni be the total number of observations.

Aim: look at parameter estimates and test if there is any difference
between the groups.
How can that be done using our linear regression model?
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Concrete aggregates data

# means for each recipe
> means=

aggregate(ds,by=list(ds$aggregate),FUN=mean)$moisture
> grandmean=mean(ds$moisture)
> grandmean
[1] 561.8
> alphas=means-grandmean
> alphas
[1] -8.466667 7.533333 48.700000 -96.633333 48.866667
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Concrete aggregates data

# the same with regression
> options(contrasts=c("contr.sum","contr.sum"))
> obj <-lm(moisture~as.factor(aggregate),data=ds)
> summary(obj)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 561.800 12.859 43.688 < 2e-16 ***
as.factor(aggregate)1 -8.467 25.719 -0.329 0.744743
as.factor(aggregate)2 7.533 25.719 0.293 0.772005
as.factor(aggregate)3 48.700 25.719 1.894 0.069910 .
as.factor(aggregate)4 -96.633 25.719 -3.757 0.000921 ***

9 / 47

Concrete aggregates data

#comparing means and regression estimates
>cbind(c(grandmean,alphas),

c(obj$coefficients,-sum(obj$coefficients[2:5])))
[,1] [,2]

(Intercept) 561.800000 561.800000
as.factor(aggregate)1 -8.466667 -8.466667
as.factor(aggregate)2 7.533333 7.533333
as.factor(aggregate)3 48.700000 48.700000
as.factor(aggregate)4 -96.633333 -96.633333

48.866667 48.866667

Run R code from course lectures tab for model matrix.
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Concrete aggregates data (1)

# checking manually with linear hypotheses
r=4
C=cbind(rep(0,r),diag(r))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(obj$coefficients,ncol=1)
sigma2hat=summary(obj)$sigma^2
Fobs=(t(C%*%betahat-d)%*%
solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)
> Fobs

[,1]
[1,] 4.301536
> 1-pf(Fobs,r,n-r-1)

[,1]
[1,] 0.008751641
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Concrete aggregates data (2)

> fitA=obj
> fitB=lm(moisture~1,data=aggregates)
> anova(fitA,fitB)
Analysis of Variance Table

Model 1: moisture ~ as.factor(aggregate)
Model 2: moisture ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 124020
2 29 209377 -4 -85356 4.3015 0.008752 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Concrete aggregates data (3)

# performing ANOVA using method anova -
> anova(obj)
Analysis of Variance Table

Response: moisture
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(aggregate) 4 85356 21339.1 4.3015 0.008752 **
Residuals 25 124020 4960.8

13 / 47

One factor: unequal sample sizes

Classical formulation with ANOVA decomposition

Yij − Y.. = (Yij − Yi .) + (Yi . − Y..)
p∑

i=1

ni∑

j=1

(Yij − Y..)
2 =

p∑

i=1

ni∑

j=1

(Yij − Yi .)
2 +

p∑

i=1

ni∑

j=1

(Yi . − Y..)
2

p∑

i=1

ni∑

j=1

(Yij − Y..)
2 =

p∑

i=1

ni∑

j=1

(Yij − Yi .)
2 +

p∑

i=1

ni (Yi . − Y..)
2

SST = SSE+ SSA
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One factor: unequal sample sizes

ANOVA decomposition: what happened to the cross-term?

2
p∑

i=1

ni∑

j=1

(Yij − Yi .)(Yi . − Y..) = 2
p∑

i=1

(Yi . − Y..)

ni∑

j=1

(Yij − Yi .) = 0

ni∑

j=1

(Yij − Yi .) =

ni∑

j=1

Yij −
ni∑

j=1

Yi . = niYi . − niYi . = 0
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One factor: unequal sample sizes

H0 : µ1 = µ2 = · · · = µp = 0 vs. H1 : At least one pair of µi different

is then tested based on

F =

SSA
p−1
SSE
n−p

Where H0 is rejected if fobs > fα, (p − 1), (n − p).

16 / 47

Machine example

I Response: time (s) spent to assemble a product.
I Factor: this is done by four different machines;

M1,M2,M3,M4.
I Question: Do the machines perform at the same mean rate of

speed?

Data from Walepole, Myers, Myers, Ye: "Statistics for Engineers
and Scientists", Example 13.6= our TMA4245/40 textbook.
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One factor ANOVA
> options(contrasts=c("contr.sum","contr.sum"))
> fit <- lm(time~as.factor(machine),data=dsmat)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.1208 0.3706 113.647 <2e-16 ***
as.factor(machine)1 -0.8208 0.6419 -1.279 0.216
as.factor(machine)2 -0.7375 0.6419 -1.149 0.264
as.factor(machine)3 0.4458 0.6419 0.695 0.495

Residual standard error: 1.816 on 20 degrees of freedom
Multiple R-squared: 0.1945,Adjusted R-squared: 0.07372
F-statistic: 1.61 on 3 and 20 DF, p-value: 0.2186

> anova(fit)
Response: time

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(machine) 3 15.925 5.3082 1.6101 0.2186
Residuals 20 65.935 3.2968
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Residuals
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Machine example: operators

I The 6 repeated measurements for each machine was in fact
made by 6 different operators.

I The operation of the machines requires physical dexterity and
differences among the operators in the speed with which they
operate the machines is anticipated.

I All of the 6 operators have operated all the 4 machines, and
the machines were assigned in random order to the operators=
randomized complete block design.

I By including a blocking factor called Operator, we will reduce
the variation in the experiment that is du to random error.
Thus, we reduce variation due to anticipated factors.

I By randomizing the order the machines were assigned to the
operators we aim to reduce the variation due to unanticipated
factors.
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Model and Sums of squares

Model

Yij = µ+ αi + γj + εij for i = 1, 2, ..., r and j = 1, 2, ..., s

Sums of Squares Identity

Yij = Y.. + (Yi. − Y..) + (Y.j − Y..) + (Yij − Yi. − Y.j + Y..)
r∑

i=1

s∑

j=1

(Yij − Y..)
2 = s

r∑

i=1

(Yi. − Y..)
2 + r

s∑

j=1

(Y.j − Y..)
2

+
r∑

i=1

s∑

j=1

(Yij − Yi. − Y.j + Y..)
2

SST = SSA+ SSB+ SSE
r · s − 1 = (r − 1) + (s − 1) + (r − 1)(s − 1)
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Effect of factor A:

H0 : α1 = α2 = · · · = αr = 0 vs. H1 : At least one αi different from 0

is then tested based on

F1 =
SSA
r−1
SSE

(r−1)(s−1)

Where H0 is rejected if f1 > fα, (r − 1), (r − 1)(s − 1).
Block effect present?

H0 : γ1 = γ2 = · · · = γs = 0 vs. H1 : At least one γj different from 0

is then tested based on

F2 =
SSB
s−1
SSE

(r−1)(s−1)

Where H0 is rejected if f2 > fα, (s − 1), (r − 1)(s − 1).
24 / 47

RCBD ANOVA

> fit2 <- lm(time~as.factor(machine)+as.factor(operator),
data=dsmat)

> anova(fit2)
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(machine) 3 15.925 5.3082 3.3388 0.047904 *
as.factor(operator) 5 42.087 8.4174 5.2944 0.005328 **
Residuals 15 23.848 1.5899
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Effect of operator with linear hypotheses

fit2 <- lm(time~as.factor(machine)+as.factor(operator),
data=dsmat)
r=5
C=cbind(rep(0,5),rep(0,5),rep(0,5),rep(0,5),diag(5))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(fit2$coefficients,ncol=1)
X=model.matrix(fit2)
sigma2hat=summary(fit2)$sigma^2
Fobs=(t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))
%*%(C%*%betahat-d))/(r*sigma2hat)
> Fobs

[,1]
[1,] 5.294435
> 1-pf(Fobs,r,n-dim(C)[2])

[,1]
[1,] 0.005327541
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Residuals
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A second look at the RCBD: additive effects

Previously, randomized complete block design (RCBD) with the
machine example:

Yij = µ+ αi + γj + εij

where
∑r

i=1 αi = 0 and
∑s

j=0 γj = 0.
This is called additive effects of treatment and blocks.

I This means that if we compare two operators there is a
constant difference in time to assemble the product,

I or, if we compare machines, these are ranked in the same order
of (wrt time) for each operator.
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Estimates

µ̂ = 42.1208
α̂1 = −0.8208
α̂2 = −0.7375
α̂3 = 0.4458
α̂4 = 1.1125
γ̂1 = −1.1708
γ̂2 = −1.5958
γ̂3 = −0.8958
γ̂4 = 0.3292
γ̂5 = 1.9292
γ̂6 = 1.404167
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Estimates

µ̂ = 42.1208
α̂1 = −0.8208
α̂2 = −0.7375
α̂3 = 0.4458
α̂4 = 1.1125
γ̂1 = −1.1708
γ̂2 = −1.5958
γ̂3 = −0.8958
γ̂4 = 0.3292
γ̂5 = 1.9292
γ̂6 = 1.404167
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Interaction effect?

But, it could be interactions present. What if one of the operators
really could not manage one of the machines?
Model with interaction between treatment and block:

Yij = µ+ αi + γj + (αγ)ij + εij

where
∑r

i=1(αγ)ij =
∑s

j=1(αγ)ij = 0 (for all i and j) in addition to∑r
i=1 αi = 0 and

∑s
j=1 γj = 0.

But, since we only have one observation for each combination of i
and j , we can not separate (αγ)ij and εij .
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Interaction effect?

SSE =
r∑

i=1

s∑

j=1

(Yij − Y·i − Yj · + Y··)2

E (
SSE

(r − 1)(s − 1)
) = σ2 +

∑r
i=1

∑s
j=1(αγ)

2
ij

(s − 1)(r − 1)

A large value of SSE will either mean that we have an interaction
term present, or that σ2 is large. We can not assess interaction in a
RCBD. We need more than one observation for each observation to
distinguish between (αγ)ij and εij .

33 / 47

Age and memory

I Why do older people often seem not to remember things as
well as younger people? Do they not pay attention? Do they
just not process the material as thoroughly?

I One theory regarding memory is that verbal material is
remembered as a function of the degree to which is was
processed when it was initially presented.

I Eysenck (1974) randomly assigned 50 younger subjects and 50
older (between 55 and 65 years old) to one of five learning
groups.

I After the subjects had gone through a list of 27 items three
times they were asked to write down all the words they could
remember.

Eysenck study of recall of older and younger subjects under conditions of
differential processing, Eysenck (1974) and presented in Howell (1999).
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The Age and Memory data set

I Number of words recalled: After the subjects had gone
through the list of 27 items three times they were asked to
write down all the words they could remember.

I Age: Younger (18-30) and Older (55-65).
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The Age and Memory data set: Process

I The Counting group was asked to read through a list of words
and count the number of letters in each word. This involved
the lowest level of processing.

I The Rhyming group was asked to read each word and think of
a word that rhymed with it.

I The Adjective group was asked to give an adjective that could
reasonably be used to modify each word in the list.

I The Imagery group was instructed to form vivid images of
each word, and this was assumed to require the deepest level
of processing.
None of these four groups was told they would later be asked
to recall the items.

I Finally, the Intentional group was asked to memorize the words
for later recall.

Data taken from: http://www.statsci.org/data/general/eysenck.html
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●

●

OA YA OC YC OIm YIm OIn YIn OR YR

5
10

15
20

Y=younger (blue), O=older (red), A=adjective, C=counting,
Im=Imagery, In=intentional, R=rythming.
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> summary(res)
Call:
lm(formula = Words ~ Age * Process)

Residuals:
Min 1Q Median 3Q Max

-7.0 -1.6 -0.5 2.0 9.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6100 0.2833 40.982 < 2e-16 ***
Age1 -1.5500 0.2833 -5.471 3.98e-07 ***
Process1 1.2900 0.5666 2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 ***
Process3 3.8900 0.5666 6.866 8.24e-10 ***
Process4 4.0400 0.5666 7.130 2.43e-10 ***
Age1:Process1 -0.3500 0.5666 -0.618 0.538312
Age1:Process2 1.8000 0.5666 3.177 0.002040 **
Age1:Process3 -0.5500 0.5666 -0.971 0.334288
Age1:Process4 -2.1000 0.5666 -3.706 0.000363 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Eysenck model matrix

> X=model.matrix(res)
> X[c(1,11,21,31,41,51,61,71,81,91),]

(Intercept) Age1 Process1 Process2 Process3 Process4 Age1:Process1
1 1 -1 0 1 0 0 0
11 1 -1 -1 -1 -1 -1 1
21 1 -1 1 0 0 0 -1
31 1 -1 0 0 1 0 0
41 1 -1 0 0 0 1 0
51 1 1 0 1 0 0 0
61 1 1 -1 -1 -1 -1 -1
71 1 1 1 0 0 0 1
81 1 1 0 0 1 0 0
91 1 1 0 0 0 1 0

Age1:Process2 Age1:Process3 Age1:Process4
1 -1 0 0
11 1 1 1
21 0 0 0
31 0 -1 0
41 0 0 -1
51 1 0 0
61 -1 -1 -1
71 0 0 0
81 0 1 0
91 0 0 1
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Model and Sums of Squares

Model:

Yijk = µ+ αi + γj + (αγ)ij + εijk

for i = 1, 2, ..., r and j = 1, 2, ..., s and k = 1, ...,m

εijk ∼ N(0, σ2)
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Two-way ANOVA questions

There are three main questions that we might ask in two-way
ANOVA:

I Does the response variable depend on Factor A?
I Does the response variable depend on Factor B?
I Does the response variable depend on Factor A differently for

different values of Factor B, and vice versa?
All of these questions can be answered using hypothesis tests, first
we test the interaction.
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Effect of interaction AB

HA
0 :(αγ)11 = (αγ)12 = · · · = (αγ)rs = 0 vs.
H1 : At least one (αγ)ij different from 0

is then tested based on

F3 =

SS(AB)
(r−1)(s−1)

SSE
rs(m−1)

Where H0 is rejected if f3 > fα, (r − 1)(s − 1), rs(m − 1).
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What do we do after testing for interaction?

I If the interaction is significant (we reject HAB
0 ).

I Then it is not recommended to test for main effects (that is,
the marginal contributions of the two factors A and B
separately). This is since the interpretation of the marginal
“main effect” is unclear in the presence of interaction. How can
we “separate out” the effect of A from the interaction?

I Instead, it is usually preferable to examine contrasts in the
treatment combinations.

I If the interaction is not found to be significant (do not reject
HAB

0 ).
I We are then interested in the main effects. These can now be

tested within the complete model.
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Effect of factor A:

HA
0 : α1 = α2 = · · · = αr = 0 vs. H1 : At least one αi different from 0

is then tested based on

F1 =
SSA
r−1
SSE

rs(m−1)

Where HA
0 is rejected if f1 > fα, (r − 1), rs(m − 1).

Effect of factor B:

HB
0 : γ1 = γ2 = · · · = γs = 0 vs. H1 : At least one γi different from 0

is then tested based on

F2 =
SSB
s−1
SSE

rs(m−1)

Where HB
0 is rejected if f2 > fα, (s − 1), sn(m − 1).
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> summary(res)
Call:
lm(formula = Words ~ Age * Process)

Residuals:
Min 1Q Median 3Q Max

-7.0 -1.6 -0.5 2.0 9.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6100 0.2833 40.982 < 2e-16 ***
Age1 -1.5500 0.2833 -5.471 3.98e-07 ***
Process1 1.2900 0.5666 2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 ***
Process3 3.8900 0.5666 6.866 8.24e-10 ***
Process4 4.0400 0.5666 7.130 2.43e-10 ***
Age1:Process1 -0.3500 0.5666 -0.618 0.538312
Age1:Process2 1.8000 0.5666 3.177 0.002040 **
Age1:Process3 -0.5500 0.5666 -0.971 0.334288
Age1:Process4 -2.1000 0.5666 -3.706 0.000363 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> anova(res)
Analysis of Variance Table

Response: Words
Df Sum Sq Mean Sq F value Pr(>F)

Age 1 240.25 240.25 29.9356 3.981e-07 ***
Process 4 1514.94 378.74 47.1911 < 2.2e-16 ***
Age:Process 4 190.30 47.58 5.9279 0.0002793 ***
Residuals 90 722.30 8.03
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Next: maybe want to compare different combinations of age and
process? Then, easiest to just combine the two factors into a new joint
factor and skip the intercept.
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Summing up

Topic today: the one-way and two-way ANOVA models.
I Classical formulation has focus on comparing sums of squares.
I We don’t have to prove the classical results because we

instead fit the ANOVA model using linear regression with
effect coding of covariates.

I It is important to plot results and to understand when an
interaction term is needed.

I To test ANOVA hypotheses we use linear hypotheses in the
regression – where we automatically have theoretical results for
F-distributions.

I We will meet linear regression models with k factors with two
levels each in Part 4: Design of Experiments (DOE).
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Today: Multiple testing

I Single hypothesis testing: H0 and H1, test statistic and
p-value.

I Controlling Type I error (false positive findings) by selecting a
significance level.

I Properties of p-values from true and false null hypotheses.
I Testing many hypotheses: why?
I Generalizing the type I error from single to multiple hypothesis

testing: FWER and FDR.
I Two methods (Bonferroni and Šidák) that control the FWER
I Summarizing Part 3 with a quiz.
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Basal metabolic rate and the FTO-gene

I The gene called FTO is known to be related to obesity
I The basal metabolic rate says how many calories you burn

when you rest (hvilemetabolisme).
I Data has been collected for 101 patient from the obesity clinic

at St. Olavs Hospital.
I Research question: is there an association between the variant

of the FTO gene of the patient and the basal metabolic rate?
I Regression setting, other covariates include age, sex, weight,

height, BMI, diet, exercise level, smoking, etc.
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The scientific process

[1] well defined research question(s)

[2] design study - collect data

[3] model–estimate–evaluate–TEST–predict

[4] interpret

[5] insight and new knowledge

3 / 33

Hypothesis testing example (from L13)

I We draw a random sample of size n = 100 from the
blue population and measure systolic blood pressure:
X1,X2, . . . ,Xn.

I Test statistic: X̄ ∼ N(120, 1) when H0 is true.

I We find that x̄ = 122 mmHg.

I Data: n = 100, x̄ = 122, gives a p-verdi=0.02.
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Hypothesis testing example (from L13)
Questions:

I How have I calculated this p-value?
P(X̄ > 122 | H0 true).

I How can I interpret this p-value?
Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

I Should I conclude that µ > 120?
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for µ:
Here [120.04, 123.96].

5 / 33

Hypothesis testing example (from L13)
Questions:

I How have I calculated this p-value?
P(X̄ > 122 | H0 true).

I How can I interpret this p-value?
Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

I Should I conclude that µ > 120?
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for µ:
Here [120.04, 123.96].

5 / 33

Hypothesis testing example (from L13)
Questions:

I How have I calculated this p-value?
P(X̄ > 122 | H0 true).

I How can I interpret this p-value?
Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

I Should I conclude that µ > 120?
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for µ:
Here [120.04, 123.96].

5 / 33



Single hypothesis testing set-up

H0 true H0 false
Not reject H0 Correct Type II error
Reject H0 Type I error Correct

Two types of errors:
I False positives = type I error =miscarriage of justice.
I False negatives = type II error= guilty criminal go free.

The significance level of the test is α.

We reject the null hypothesis when the p-value is below α.

We say that : Type I error is "controlled" at significance level α.

The probability of miscarriage of justice (Type I error) does not
exceed α.
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Repeating the blood pressure experiment

x̄=120.9 x̄ =118.9 · · · x̄ = 121.2
p-value=0.18 p-value=0.86 · · · p-value=0.12
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More about the p-value

I The p-value is just a function of the random sample and can
be regarded as a random variable.
We had: P(X̄ > observed mean | H0 true).

I But, isn’t the p-value a probability? A number?
I A random variable (like the p-value) has a probability

distribution.
I What is the distribution of a p-value?
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Probability distribution for random variable Y

I Continuous random variable Y (could be the p-value).
I Probability distribution function (pdf): f (y).
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Distribution of p-values for false hypothesis?

Blood pressure example:
Assume that µ = 122 so
that H0 is false, and that
we collect a random
sample of size 100. What
is then the distribution of
the p-value?
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False null: µ = 121 left, and µ = 122 right, when
H0 : µ = 120
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Distribution of p-values for true hypothesis?

Blood pressure example:
Assume that µ = 120 so
that H0 is true, and that
we collect a random
sample of size 100. What
is then the distribution of
the p-value?
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Urban myth: A p-value for a true null hypothesis is close to
1. No, all intervals of equal length are equally probable!
=uniform distribution
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p-values from true null hypothesis is uniformly distributed
Why is this important:

I so you don’t believe the urban myth, and
I it might be useful to understand plots (pdf or cdf) of p-values,

and these are often used for quality control of statistical
models.

Assume that large values of the test statistic T leads to rejection of
the null hypothesis, and that a value t of the test statistic T
corresponds to a value w of the p-value W . This means that
P(T ≥ t) = P(W ≤ w). On the other hand the p-value is
P(W ≤ w) = P(T ≥ t) = w when H0 is true.
This means that P(W ≤ w) = w when H0 is true. If W is a
continuous random variable taking values from 0 to 1, the the
p-value W must be uniformly distributed over the interval from 0
to 1.
This is true when the p-value is continuous and exact.
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Exact p-value

If P(p(Y ) ≤ α) = α for all α, 0 ≤ α ≤ 1, the p-value is called an
exact p-value.
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Valid p-value

A p-value p(Y ) is valid if

P(p(Y ) ≤ α) ≤ α

for all α, 0 ≤ α ≤ 1, whenever H0 is true, that is, if the p-value is
valid, rejection on the basis of the p-value ensures that the
probability of type I error does not exceed α.
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From single to multiple hypothesis testing
In many situations we are not interested in testing only one
hypothesis, but instead m hypotheses.

I In a regression setting m might be the number of covariates in
the regression model, and we would test H0 : βj = 0 vs
H1 : βj 6= 0 for all j = 1, . . . ,m.

I If we have a linear regression with one categorical covariate
with k levels, called a one-way analysis of variance model, we
might first want to test H0 : µ1 = µ2 = . . . = µk against the
alternative hypothesis, H1, that the means of at least two of
the k levels are different from each other. If the null hypothesis
is rejected we might want to continue to test which of all
possible pairs of the means that are different – giving m =

(k
2

)

hypothesis tests, or compare the mean of all levels to a
common reference level µ1, giving m = k − 1 hypothesis tests.

But, can’t we still use cut-off α on the p-values to detect
significant findings?
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Westfall & Young (1993):
Multicenter Oat Bran Study

I At each of ten study centers a control vs treated experiment is
performed with 20 subjects per group.

I It is common to analyze the data for each center separately, as
well as to combine over center.

I T -statistics are computed for each center as

ȳT − ȳC√
(s2

T + s2
C )/20

with p-values calculated as lower tail probabilities from the
t-distribution with 38 degrees of freedom.
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FIRST Oat Bran Study
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FIRST Oat Bran Study

I Centres 2 and 3 show significant reduction in blood cholestreol
for the treatment group.

I Centre 5 happens to show a significant increase, but that is
not “noticed” since one-sided tests are performed.

I If the studies were run as uncoordinated trials, it is likely that
the two significant studies would be reported and perhaps
published in reputable journals.

I The eight nonsignificant studies would go to the file drawer
and a “true, confirmed” effect would be established for the two
sites where significance is found.

I The centres with insignificant results may decide to collect
fresh data, and analyse only the new data.
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SECOND Oat Bran Study
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Oat bran study: lessons to be learned

I These are SIMULATED data with equal means of the control
and the treatment group, i.e. the truth is that there are no
biological effects of the treatment.

I With simulated data: simple to point to the multiplicity issue
as the cause for the small p-values for some centres.

I Real studies: not easy to determine if a seen effect is real or
not.
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Oat bran study: lessons to be learned

I Real studies: not easy to determine if a seen effect is real or
not.

I At a particular centre showing significance: scientists would
believe that the effect is real, because why should the
existence of other centres in the study affect the outcome at
the given centre?

I How should one verify that an unusual event is real or
artificial?

I The possibility of false positive results is very real, and can lead
to serious misinterpretation by analysts: it is human nature to
rationalize any dramatic- statistically significant - change.
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From single to multiple hypothesis testing

Set-up
I Let us assume that we perform m hypothesis tests,
I giving m p-values and then
I choose a cut-off on the p-values at some value αloc (called a

local significance level) to decide if we want to reject each null
hypothesis.

I We then reject the null hypotheses where the p-value is
smaller than αloc, and this leads to rejection of R hypotheses.

24 / 33

Multiple hypothesis testing set-up
One hypothesis:

Not reject H0 Reject H0

H0 true Correct Type I error
H0 false Type II error Correct

m hypotheses:

Not reject H0 Reject H0 Total
H0 true U V m0
H0 false T S m −m0
Total m − R R m

I R rejected null hypotheses
I V false positives (type I errors)
I T false negatives (type II errors)

Only m and R are observed. What should we now control?
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Overall Type I error control (1)

I In some situation one expects that just a few null hypothesis
are false,

I therefore a strict criterion for controlling an overall version of
the Type I error is chosen.

I Family-Wise Error Rate (FWER) is controlled at level α.

FWER = P(V ≥ 1) = P(the number of false positives is ≥ 1)

(remark: V is not observed)
I The FWER can be controlled by defining a local significance

level αLOC for each test and reject the H0 of that test if the
p-value of the test is less than the αLOC.
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Basal metabolic rate and the FTO-gene: revisited

I The gene called FTO is known to be related to obesity
I The basal metabolic rate says how many calories you burn

when you rest (hvilemetabolisme).
I Data has been collected for 101 patient from the obesity clinic

at St. Olavs Hospital.
I Research question: is there an association between the variant

of the FTO gene of the patient and the basal metabolic rate?
I Regression setting, other covariates include age, sex, weight,

height, BMI, diet, exercise level, smoking, etc.

If we had not only collected data on this one gene, but instead for
many (e.g. m = 100000) genetic markers positioned along the
chromosome, and then wanted to test m hypotheses, we would not
expect to find many true associations. This strategy is called a
genome-wide association analysis and for this purpose FWER is
usually controlled.
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Overall Type I error control for GWA data: FWER control

I GWAS often use αLOC = 5 · 10−8.

I The most popular method controlling the FWER is the
Bonferroni method, which can always be used.

I The Bonferroni method might be slightly conservative (too low
αLOC), since it is constructed to control FWER for all types of
dependency structures between the test statistics for the
different hypotheses- including independence.

I https://arxiv.org/abs/1603.05938: Efficient and
powerful familywise error control in genome-wide association
studies using generalized linear models, K. K. Halle, Ø. Bakke,
S. Djurovic, A. Bye, E. Ryeng, U. Wisløff, O. A. Andreassen,
M. Langaas.
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Overall Type I error control (2)

I For other types of data one expects that many null hypotheses
are false,

I and therefore a less strict criterion for controlling an overall
version of the Type I error is chosen.

I The False Discovery Rate (FDR) by Benjamini & Hochberg
(1995) is controlled at level α.

I Informally, the FDR is the expected proportion of Type I errors
among the rejected hypotheses.

FDR = E (Q) where by definition

Q =

{
V /R if R > 0, or
0 if R = 0
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Hedenfalk et al (2001) gene expression dataset

Available from library(qvalue) from Bioconductor
I The data from the breast cancer gene expression study of

Hedenfalk et al. (2001) were obtained and analyzed.
I A comparison was made between 3,226 genes of two mutation

types, BRCA1 (7 arrays) and BRCA2 (8 arrays).
I The data included here are p-values, test-statistics, and

permutation null test-statistics obtained from a two-sample
t-test analysis on a set of 3170 genes, as described in Storey
and Tibshirani (2003).

For such gene expression data researchers expect to find may genes
that are differently expressed between conditions and therefore the
false discovery rate (FDR) is usually controlled. Hedenfalk I et al. (2001).
Gene expression profiles in hereditary breast cancer. New England Journal of Medicine, 344: 539-548.
Storey JD and Tibshirani R. (2003). Statistical significance for genome-wide studies. Proceedings of the
National Academy of Sciences, 100: 9440-9445. http://www.pnas.org/content/100/16/9440.full
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Overall Type I error control for gene expression data

I Popular algorithm for controlling the FDR: the
Benjamini-Hochberg step-up procedure.

I Focus on minimal interesting biological effect: is possible that
you don’t want to test difference between treatments=0, but
instead ≥ minimal biological interesting effect.
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Multiple testing

I Note from course www-page.
I RecEx5.Problem 2.
I CompulsoryPart3 Problem 2.
I This topic is new on the reading list in 2017.
I It replaces the topics of regularization with the lasso and ridge

regression, which will be covered in TMA4268 Statistical
Learning.
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Summarizing Part 3

with quiz in Kahoot!
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TMA4267 Linear statistical models

Part 3: Hypothesis testing and ANOVA

March 14, 2017

Happiness

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072081 0.852543 -0.085 0.9331
money 0.009578 0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279 0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

For which covariates would we reject the null hy-
pothesis β = 0 at significance level 1%?

A money B sex

C love D work

Type I errors

What is a commonly used name for the type
I errors?

A true positives B false positives

C false negatives D true negatives

Linear hypotheses
H0 : Cβ = d in a regression model Y = Xβ + ε.
n=number of observations,
p = number of estimated regression coefficients
r=number of linear hypotheses (rank of C).

What is the distribution of Fobs
=1

r (Cβ̂− d)T (σ̂2C(XT X)−1CT )−1(Cβ̂− d)?

A Fr ,n−p B Fp,n−r

C N(β,σ2(XT X)−1) D N(0,σ2I)



ANOVA
Which type of covariate coding is used in the one-
way ANOVA model with design matrix given as:

1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1
1 -1 -1 -1 -1
1 -1 -1 -1 -1

A Continuous B Effect coding

C Dummy variable
coding

D Categorical

ANOVA
Is the interaction term significant at significance
level 0.01?

> res <- lm(Words~Age*Process)
> anova(res)

Df Sum Sq Mean Sq F value Pr(>F)
Age 1 240.25 240.25 29.9356 3.981e-07 ***
Process 4 1514.94 378.74 47.1911 < 2.2e-16 ***
Age:Process 4 190.30 47.58 5.9279 0.0002793 ***
Residuals 90 722.30 8.03

A Yes B Not enough informa-
tion to decide

C No

p-value from true null hypothesis

For a continuous test statistic that gives an
exact p-value, what is the distribution the p-
value when the null hypothesis is true?

A Normal B Chisquared

C Exponential D Uniform

FWER

V=number of false positives and
R=number of rejections.
The familywise error rate FWER is

A E (V /R) B E (V )

C P(V /R > 0.05) D P(V > 0)



Bonferroni

α=level for control of FWER.
αloc=cut-off on p-value
m =number of tests.
What is the Bonferroni rule?

A αloc = mα B αloc =
α
m

C αloc = α
m D αloc = (1− α)1/m

Correct?

Are you sure you want to read the correct
answers? Maybe try first? The answers are
explained on the next two slides.

Answers

1. C: only love is significant on level 1%,
since this is the only p-value below 0.01
(last column).

2. B: type I errors are called false positive
findings

3. A: linear hypotheses with
Fr ,n−p-distributed statistic.

4. B: Effect coding is used in ANOVA.

Answers

5. A: Interaction term has p-value below
0.01.

6. D: p-values from true nulls are uniform.
7. D: FWER is the probability of one or

more false positives.
8. B: Bonferroni rule is α/m.


