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Part 3: Hypothesis testing and analysis of variance
Hypothesis testing: why, how and be aware
Reproduciability
The universal F-test [F:3.3]
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Basal metabolic rate and the FTO-gene

» The gene called FTO is known to be related to obesity

» The basal metabolic rate says how many calories you burn
when you rest (hvilemetabolisme).

» Data has been collected for 101 patient from the obesity clinic
at St. Olavs Hospital.

» Research question: is there an association between the variant
of the FTO gene of the patient and the basal metabolic rate?

> Regression setting, other covariates include age, sex, weight,
height, BMI, diet, exercise level, smoking, etc.
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Today

v

The scientific process.

v

The basics of hypothesis testing and interpretation of p-value.

v

The reproduciability "crisis".

v

Properties of p-values.

v

Linear hypotheses in regression vs. nested models.

v

The universal F-test for linear hypotheses (nested models)

1/36

The scientific process

[[1] well defined research question(s)}

|

[[2] design study - collect data

|

‘ [3] model-estimate—evaluate—test—predict

|

[4] interpret

‘ [5] insight and new knowledge
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Hypothesis testing example (cont.)
» We draw a random sample of size n = 100 from

/’g ! the blue population and measure systolic blood
‘2\ : pressure: X1, Xz, ..., Xn.
it x. » Test statistic: X ~ N(120,1) when Hj is true.

A » We find that X = 122 mmHg.

* » Data: n =100, x = 122, gives a p-verdi=0.02.
Questions:

24 A

» How have | calculated this p-value?
» Should | conclude that p > 1207
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Hypothesis testing example
» It is known that in a population of

women of age 20-29 years the systolic
blood pressure is normally distributed
with mean g = 120 mmHg.

2 X

&

» We study a population of women of age
20-29 that have a specific disease (blue
population), and also here we assume
that the systolic blood pressure is
normally distributed (with standard

F deviation 10 mmHg), but here we don't

know the mean in the population.

» In addition to estimating this unknown mean we want to
investigate if the mean blood pressure of the blue population is
larger than 120 mmHg (because if it is, we need to start more
investigations into the cause of this).

> Ho:p =120 vs. Hy : u > 120.
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Q and A

» How have | calculated this p-value?
P(X > 122 | Hy true).

» Should | conclude that p > 1207
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for u:
Here [120.04, 123.96].
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Hypothesis testing example (end)

X-&mZ.X. » The p-value is often based on a test

. statistic, and can be found in many ways
(known distribution, enumerations,
asymptotic).

X~ N(2s)\)

» Significance level: highest probability of miscarriage of justice
that we would tolerate.

» We reject the null hypothesis - and say that we have a
significant finding at significance level « if a/the p-value for
the hypothesis test is below a.
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What is a p-value

From The research handbook of Carlsen & Staff (2014)
... the p-value, the probability that the result could have occurred
randomly, p=probability.

This is common, but not the correct definition of the p-value.
What is wrong? Discuss!

Slide reconstructed from talk by Kristoffer H. Hellton, NR
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What is a p-value

A more correct definition so that:
the p-value is the probability of your result or a more extreme
result, given that Hy is true.

or

the probability of your result or a more extreme result, given that it
occurred randomly.

This is different from: the probability of your result occurring
randomly.

Slide reconstructed from talk by Kristoffer H. Hellton, NR

10/36

A simple example

» Null hypothesis: It is sunny outside.

» Data: | enter the room soaking wet.

» Wrong p-value: the probability that it is sunny outside.

» Impossible to calculate.

» Right p-value: the probability that I'm wet, given that it is
sunny.

» Should be small.

Important! From Bayes theorem:

P(observation | hypothesis) # P(hypothesis|observation)

The probability of observing a result given some hypothesis is true
not equivalent to the probability that the hypothesis is true given
that some result has be observed.

To be able to calculate the right hand side, we need P(hypothesis),
the probability of the hypothesis. This is exactly what is introduced
in Bayesian statistics through the so-called prior, and some see the
Bayes factor as the replacement for p-values.

Slide reconstructed from talk by Kristoffer H. Hellton, NR
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Statistical significance and p-values

On March 7, 2016, the American Statistical Association posted a
statement on statistical significance and p-values - "clarifying
several widely agreed upon principles underlying the proper use and
interpretation of the p-value".
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Statement on proper use and interpretation of the p-value

Why is this needed: (2)
Hack your way to scientific glory

loannidis (2005): How many nonsignificant results have been
studied before one research group has published its first significant
finding?
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Statement on proper use and interpretation of the p-value

Why is this needed: (1)
American Statistical Association discussion forum, 2014.

» Q: Why do so many colleges and grad schools teach p = 0.057

» A: Because that's still what the scientific community and
journal editors use.
» Q: Why do so many people still use p = 0.057
» A: Because that's what they were taught in college or grad
school.
Problem?
Urban knowledge: Unless an hypothesis test results in a p-value
below 0.05 there is no finding. So, in some journals a researcher
will not be able to publish his paper unless the test performed has a
p-value below 0.05.
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Statement on proper use and interpretation of the p-value

Why is this needed: (3)

The journal Basic and Applied Social Psychology (editors Trafimow
and Marks, 2015) put a ban on null hypothesis significance testing.
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ASA Statement on Statistical Significance and P-values,
March 2016

The ASA’s statement on p-values: context, process, and purpose, Ronald
L. Wasserstein & Nicole A. Lazar, The American Statistician,
DOI:10.1080/00031305.2016.1154108.

» While the p-value can be a useful statistical measure, it is
commonly misused and misinterpreted.

» Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

» P1: P-values can indicate how incompatible the data are with
a specified statistical model.

» P2: P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

» P3: Scientific conclusions and business or policy decisions
should not be based only on whether at p-value passes a
specific threshold.
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The scientific process
L[l] well defined research question(s)}
|
‘ [2] design study - collect data}
|
‘ [3] model-estimate—evaluate—test—predict
|
[4] interpret
[[5] insight and new understanding}
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ASA Statement on Statistical Significance and P-values

» P4: Proper inference requires full reporting and transparency.

» P5: A p-value, or statistical significance, does not measure the
size of an effect or the importance of a result.

» P6: By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.

Take home message: the p-value is a very risky tool ...

(Benjamini, 2016): but, replacing the p-value with other tools may
lead to many of the same indeficiencies - so it would be better to
instead focus on the appropriate use of statistical tools for
addressing the crisis of reproducibility and replicability in science.
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Scenario: finding only for p < 0.05

L[l] well defined research question(s)]

|

[[2] design study - collect data

|

‘ [3] model-estimate—evaluate—test—predict

|

[[4] nterpret finding if p < .05}

|

[[5] still insight and understanding?}

19/36




Scenario: Cherry-picking aka Selective Inference aka
p-hacking

‘ [2] design study - collect data

|
‘ [1] weH-defined research question(s)

l

[3] model-estimate—evaluate—test—predict

|
‘ [4] interpret finding (p <= .05) ’

|

[5] insight&understanding non-replicable and non-reproducible findings
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IS THERE A REPRODUCIBILITY CRISIS?

7% 52%
Don't know Yes, a significant crisis
3% |
No, there is no
crisis —

1,976

researchers
surveyed

389, -
Yes, a slight
crisis
endture

http://www.nature.com/news/1-500-scientists-1lift-the-1lid-on-reproducibility-1.19970

21/36

WHAT FACTORS COULD BOOST
REPRODUCIBILITY?

Respondents were positive about most proposed improvements
but emphasized training in particular.

® Very likely Likely

Better understanding
of statistics

Better mentoring/supervision
More robust design

Better teaching

More within-lab validationr

Incentives for better practice

Incentives for formal
reproduction

More external-lab validation
More time for mentoring

Journals enforcing standards

More time checking
notebooks

onature 0 20 40 60 80 100%

http://www.nature.com/news/1-500-scientists-1ift-the-1lid-on-reproducibility-1.19970
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What is the proportion of fake news?

Unlikely results
How a small proportion of false positives can prove very misleading
False M True [ False negatives [ False positives

1. Of hypotheses 2.Thetests havea 3. Not knowing
interesting false positive rate what s false and
enough to test, of 5%. That means whatis not, the
perhaps onein they produce 45 researcher sees
ten will be true. false positives (5% 125 hypotheses as
Soimagine tests 0f 900). They have true, 45 of which
on 1,000 a power of 0.8, so are not.
hypotheses, they confirm only The negative
100 of which 80 of the true results are much
are true. hypotheses, more reliable—but
producing 20 false unlikely to be
negatives. published.

Source: The Economist

True=true H; (100 hypotheses) and False=false H; (900 hypotheses).

http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming- 23/36
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What is the proportion of fake news?
Color-coding for the far left figure:

> Yellow: all the hypotheses where Hy is true (and Hj is false),
and Hp is not rejected. All is good here, but this interesting(?)
findings are very seldom published.

> Light green: all the hypotheses where Hy is false (and Hj is
true) and the research reject the Hy and make a correct
discovery. This are our true news!

» Dark green: all the hypothesis where Hy are true (and H; are
false) but the researcher wrongly reject Hy. These are our fake
news!

» Red: all the hypotheses where Hy are false (and Hj is true)
but where the researcher fail to reject Hy - let guilty criminal
go free. These are called false negatives and are usually not
reported (unless the researcher is report a negative finding).

So, not 5% of published results are false positives (fake news), but
rather at substantially larger number - 40-90% has be hinted to in

different publications.
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So far

» We (statisticians and other scientists) must focus on sound
scientific process - and step away from cherry-picking and the
"finding=p-value < 0.05" urban truth.

» We must always report effect size.

» We must be aware that these two effects (selective inference
and practical vs. statistical significance) are especially
important for large than small data sets (both many samples
and variables).

» Now, we move to hypothesis testing in linear regression and
look at one unifying F-test can be used for all linear
hypotheses.
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Single hypothesis testing set-up

Hp true Hy false
Not reject Hyp Correct Type Il error
Reject Hy Type | error Correct

Two types of errors:

» False positives = type | error =miscarriage of justice.
These are our fake news.

» False negatives = type Il error= guilty criminal go free.
The significance level of the test is a.

We say that : Type | error is "controlled" at significance level .

The probability of miscarriage of justice (Type | error) does not
exceed a.
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Happiness (n = 39)
Are love and work the important factors determining happiness?

> y, happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

> xq, money. Annual family income in thousands of dollars.

> xp, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

> x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

> x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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What is C and d?

Use the happiness data, with the four covariates x1=money,
x2=sex, x3=love, x4=work, to construct the C and d to test
Ho : Cﬁ =d.
There is a linear effect in money? Hy: B =0

C:[O 100 O],d:O

Is the regression sigrjificant?Ho BL=Pa=p3=034=0

The Fisher distribution [F: B.1 Def 8.14 |, Exercise 2
Problem 5

“Tabeller og formeler i statistikk™:
If Z; and Z, are independent and x2-distributed with vy and v»
degrees of freedom, then

F— Zl/Vl
Zg/Vz

is F(isher)-distributed with v; and v, degrees of freedom.
> The expected value of F is E(F) = ;225.

H 1/172 V2
» The mode is at Tt
> |dentity:
1
fi*aal/l,lfz = f
Q,V2,V1

01 000 0
00100 0
¢= 00010 d = 0
L0 0 001 0
Is there a linear effect of money and/or sex? Hy: 51 = 2 =0
(01 000 0
C__O 010 0]’d_[0}
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The Fisher distribution with different degrees of freedom v and 1,
(given in the legend).

30/36

20 /36
Unrestricted (Model A): all 4 covariates present

fitA <- 1lm(happy~.,data=happy)
summary (fitA)
Coefficients:

Estimate Std. Error t value Pr(>[tl|)
(Intercept) -0.072081 0.852543 -0.085 0.9331
money 0.009578  0.005213 1.837 0.0749 .
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279  0.295451 6.496 1.97e-07 *x*x*
work 0.476079  0.199389 2.388 0.0227 *
Signif. codes: O ’*¥x’ 0.001 ’%x’ 0.01 ’x%’> 0.05 .’ 0.1’

Residual standard error: 1.058 on 34 degrees of freedom
Multiple R-squared: 0.7102,Adjusted R-squared: 0.6761
F-statistic: 20.83 on 4 and 34 DF, p-value: 9.364e-09
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Restricted (Model B): only love and work

The estimate /33 (1ove) is 1.919 for model A and 1.959 for model
B. Explain why these two estimates differ.

fitB <- 1lm(happy~love+work,data=happy)

summary (£fitB)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2057 0.7757 0.265 0.79241
love 1.9592 0.2954 6.633 9.99e-08 **x*
work 0.5106 0.1874 2.725 0.00987 *x*

Signif. codes: O 7*xx’ 0.001 ’*x> 0.01 ’%’ 0.05 *.” 0.1’

Residual standard error: 1.08 on 36 degrees of freedom
Multiple R-squared: 0.6808,Adjusted R-squared: 0.6631
F-statistic: 38.39 on 2 and 36 DF, p-value: 1.182e-09
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3.13 Testing Linear Hypotheses
Hypotheses
1. General linear hypothesis:
Hy:Cp=d against Hy:CB #d
where C is a r x p-matrix with rk(C) = r < p (r linear independent
restrictions).
2. Test of significance (7-test):
Hy:B; =0 against Hy:B; #0
3. Composite test of a subvector:
Hy:B1=0 against H B #0
4. Test for significance of regression:
Hy: By = B2 =--+ = Br = 0 against
H, : Bj # 0foratleastone j €{l,..., k}
Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Model A vs model B

> anova(fitA,fitB)
Analysis of Variance Table

Model 1: happy ~ money + sex + love + work
Model 2: happy ~ love + work

Res.Df RSS Df Sum of Sq F Pr(oF)
1 34 38.087
2 36 41.952 -2 -3.8651 1.7252 0.1934
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Test Statistics

Assuming normal errors we obtain under Hy:
1. F=1/r(Cp—dy (6°C(X’X)"'C")"" (CA—d) ~F,.—)

B
2. tp = =L ~t—p

S€;
3. F =1(BCov(B)™'(B) ~ Frueyp
2

n—p R
4. F = ~ Fj -
kK i-r

Critical Values
Reject Hy in the case of:

I F> Fp(l—a) 3. F> Foup(l—0)
2.1t > ty—p(1 — /2) 4 F > Fyp(l—a)

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Today

v

v

v

v

Reproduciable research and the scientific method.
Hypothesis testing and p-values in general.

Type | errors=false positives=fake news.

Linear hypotheses, and the F,ps test statistic.

36/36

Hoo gy=@c=0 w o gpesO

A f thane sthiediond Con ko walkn as o
o‘)u\./ad\ WWhear Yugypothesis

- C'pco\\ o e G

x|
Nedkor
Cxp mareix of casteo wncesicled, tadeh
C e a«lq Oypndak a@ngranks model. A
-V N

reak(Cy=r s p Hodal & ©

Subosad ay otk A
et ched maddl
~oded &

Ex: H“’\PP\WS) E\r\d C:

A) Tsthee alhesr effect of moran @ P REEH
He: ?/\CO w oy a0

C-= EO 40 001 d=0

y \

xS

Axt
=4 "

Cg:=d & =0

THAYLD L2
3.3 28 F

PART 2 HYPSTHESIS
TBSTIN G AND  ANALYSIS oF
VARIA-NCE  (ANOVA)

A lechwes + 4 RacEr + ’\Ccmslsc%ax

Hypsthe 56 teshne in linaer cegromion TR

N=Tpte , €~Ny(0,eT)
S for we have losled ok €we tpees of hypthoses -

4) Teot -gw qg\\[ﬁcanu. ag on ?\) Lix FMQM:)_B
appiasss

Ho: g=0 w. i gyz0
= Stwowey (ln- cwdsl) Oubsemalicelly odard.
2) Ts tha cegramion soguficant

He: = fan “=fu=0 Vs Wyt ak heone
+0

W addion we Ml"‘)H'\ verd

) Tep of equatiy (Ex Manch renk: ;cn‘; :):/lncz\‘u\)

,X

.Q.) Ts the regcersion ‘B\f)v\.VcaAk"’
s PF&"S’:F“‘:O w  He N,(_%D_,;,QN\

o4 00O g

- |oo 4006 .

4% oo o 40 Ctg
oo oo A

=4

3>B thee a Lineer affect of asnay =nd/ov
sex ?

o @120 > Hy ok e o

#o
c=818%%2) 4=}
oL
=




Procedure. Clor Feshosy lincac hypothuse)

Urestrcked oodok v Resincled swdal
Y:?@{-a)mw,\(o’s) /qs:d

Ex: “;»>4—-0" Monay Rxenpla.

(€
Uﬂ(bmd(\d\t Gt all cwvenstes - %%, ¥a )
Ked N oty Yoy ¥g, Xy

i-) Bt the mnreSacked awde (K) end
Comguke BSE = 878 . Pscuo P rexy. gerem.
fhtied.,

W) Fk the cesticked moauk (®) =nd
compue. SSEy = E'I\,Jém

NB: b redricked wodel aseds to be visged,
wthaa the wn cestcled.

m.) Caleulate e tet srlislic : s
Qo »_tAagse (858, -5
n—_\a sSse V\J—\—p SsE
L!
Ho: <
Ex. “{rzp\mm: BP0 &= :%F

A Bl meaak b X, % X Xy

s = 8% (a-p) = (Loss) % = 35, ox%
B Rastdoed coddds  xq xy

38g, > (Lovf de- dias2

Fime & [ Aas2- 2500

= L3sa
.;’:‘("ss.a:r

pvaie = P Fyaq > Las2) = au@ay

= do not rejgd-i{o: we prefer tha smalud tnaed
“Xsr \H‘A .

H“l”‘:h"f’ K ok (@edeonsd

Q: Whet 55 the cdabionyp behwean |Ew, =nd|
2BE ?
S = S,
T

wnreskncled
=larg owdal

W) Wndw Ho = Fes v £y np

Reyeck o whan -S-\m > fx,cnp
-

?&3 0<
'E o-p

| : IiL/
'?M) Cin-y

prvalua: F(‘Fr) e-p & gsa.s}

How to uae thus Kr-ce.dkmj How to fad, Gue 2

@) atln *oamlvs{;- Fone b2red on X, S,
=ed ﬁg)sa from tna mncesirieled medal ()

~ TS t
b) 1:& ress\\dLou gtt Uareslicted f\ed.qcn )

2nd cesliicd ook @nd cead off I to ok
[E1N S

TMAA4267 Linear Statistical Models V2017 (L14)

Part 3: Hypothesis testing and analysis of variance
The universal F-test [F:3.3]
One-way ANOVA [H:8.1.1]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 7, 2017
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Today

» Linear hypotheses in regression vs. nested models.
» The universal F-test for linear hypotheses: two formulas.

» The two formulas: one easy to use, one easy for proving
F-distribution.

» Special cases of the universal F-test.

» New problem: categorical covariate with effect coding (for
interpretation)

Happiness (n = 39)

Are love and work the important factors determining happiness?
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3.13 Testing Linear Hypotheses
Hypotheses
1. General linear hypothesis:
Hy:Cp=d against Hy:CB #d
where C is a r x p-matrix with k(C) = r < p (r linear independent
restrictions).
2. Test of significance (7-test):
Hy:B; =0 against Hy:B; #0
3. Composite test of a subvector:
Hy:B,=0 against H :B,#0
4. Test for significance of regression:
Hy: By = B2 =--+ = Br = 0 against
H, : B; # 0foratleastone j €{l,..., k}
Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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>

y, happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

x1, money. Annual family income in thousands of dollars.

X», sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

X4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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Constrained and unconstrained estimate

120 A

100

80 4

60

40

20 A

[ 1

Fig. 3.15 Illustration of the difference in goodness of fit between the unconstrained least squares
estimator and the estimator under the constraint 0 < f < 1. The (unconstrained) least squares
estimator is labeled as . For the constrained solution, we have f = 1

Figure 3.15 from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.1329)
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3.13 Testing Linear Hypotheses

Hypotheses
1. General linear hypothesis:
Hy:CB=d against Hy:CB #d
where C is a r x p-matrix with tk(C) = r < p (r linear independent

restrictions).
. Test of significance (z-test):

S}

Hy:Bj =0 against Hy:B; #0
3. Composite test of a subvector:

Hy:B1=0 against H B #0

~

. Test for significance of regression:

Hy: 1 = pr=---= Pr = 0 against
H, :Bj # 0foratleastone j € {1,..., k}

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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3.14 Confi Regions and iction Intervals

Provided that we have (at least approximately) normally distributed errors

or a large sample size, we obtain the following confidence intervals or

regions and prediction intervals:
Confidence Interval for g,

A confidence interval for f; with level 1 — a is given by

1B) = ta=p(l = a/2) =58 B + by (1 = /2) - s,].

Confi i id for B

A confidence ellipsoid for 1 = (B1..... B,)’ with level 1 —  is given by

1. — s
{ﬂx B = BYCov(B) (Bi = B1) = Framp(I =) -

Confidence Interval for ;.

A confidence interval for 1o = E(y) of a future observation y, at location

xo with level 1 —a is given by

x0B £ 1 p(1 — /25 (x (X' X) " x) 2.

Prediction Interval

A prediction interval for a future observation y at location xo with level

1 — a is given by

xpB £ 1, p(1—a/2)5(1 + x((X'X) " xg) /2
Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.137)
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Test Statistics

Assuming normal errors we obtain under Hy:
1. F=1/r(CB—d) (6°C(X'X)"'C")"' (CA—d) ~Fp._)

2. tp = & ~ti—p

S€;

3. F = L(B)Cov(B) ' (B1) ~ Fruep
_n—p R?

4 F=—— 1 ~ P

Critical Values

Reject H in the case of:

1. F> Frpp(1—0)
2. 1t] > taep(l — /2)

3. F> Foup(l—0)
4 F > Fyep(l—a)

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Concrete aggregates data

Aggregate: 1 2 3 4 5

551 595 639 417 563
457 580 615 449 631
450 508 511 517 522
731 583 573 438 613
499 633 648 415 656
632 517 677 555 679

Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists — our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Today

Linear hypotheses in regression vs. nested models.
The universal F-test for linear hypotheses: two formulas.

The two formulas: one easy to use, one easy for proving

F-distribution.

Special cases of the universal F-test.

Next time: categorical covariate with effect coding (for

interpretation)

9/12

Fas = ¥ Cssgy ~s3e)

TR i
i 8se

Fon-p
wlhatt Ro (¢ Yrua
foo

tnduelandeg © when ts Fabs lage > wlan B, s

haye o mused™ snnn.tmj»u\

Tm«wwgo quJr Ko for

onuch lergp ghan 88 \ reanon Yo aalioe thets we

Now : —why 15 Fos~ R, a-p wader Yo
-8 & gosmbla to weke Fory usasy
X, C_,o\/?‘ea?

We sterk with ol azw veston 0-8 Covs e

@
Fw = v (cg-a)[&camayrar) (g

TUATGY- LIY

T‘a:‘ﬂr\\g lineec \nﬁ(a‘k\'\zm |X3X3A\ &) .0 et

@ Qo;dress'loq ool Ex:\‘fz‘z(hmw)
/\(= Lo+ o, e~hioeD) Ky XayKay Xy
LI S Y Sse
unreghced codsf @)
NS Wenk s tod~
)y, ERN-Y=N-Fp
FL;S . P1=B=0 ®
Sse- &% Wi ok ek e 2 S
SSC
-,
" @ easccie
C? / rt?fe,mol‘l acdal (3)
(\Z‘ Po P P2 Pr Here “Tp=a
A ~al i
I‘ 2 1&:3 ld—.{ﬂ mrgjsl-dcké\ Al s &
spad) wne e
ty: Cped U rtebed feduk
Cranted\ mﬁxh)
Xat %y G» — L g, :é,*: EA‘,“‘
covenahs A %
Bt | RS

\Mu:) sotes @ Fjap - dubruion 1

A) R~ Ne (g, (xmxyer)
= ch ~ N.(<g, C e
OF f o Nr(sﬁ , s e@mErar)
3 whan o bros
2 (Cﬁ - d)r e ccxmgyer | C (] -d}
~ e (P t)

)

@

A SS
3) o" s Unlne WAy Yk Gl g

By

Snd we o thak  BE _ ap) &2
o o a-p

Q';r} 2)

‘k> And § ond $ME ere ndugendek —
Wiewnt fom €ar2.

S) So) &H\QU.&: Alintion
LV
Iy -

Kot /0 '




+ Cog-ay Tshe comy 7Y (G-d)

Q’bs =
L p)
e § Cavlzdn’

= TCcpay [ Ccmzra T Capay

wh:j is Fets = i

j\,) For taa. unrevicled moal é= CX“‘Z\"‘Z"‘{
{m«d oy mamcziag L8(p)= (N-%p)T ((-Xg) .

9.) For tne cedhiched meddd we wiimize
LS swoyech ¥ 'Cp-:du) oy mnmeiny
Lsee) + 24% C Cp-d) = LR(p)

e {; — (x*x)" 7 Le e A Cy-d)

»e0 F:p BL-03

4
MHow cen we wae Foms for hyporhests Yooy
Peeblem: Y= Kpce 5 e~ Na(o,6T)
Ho: Cp= o o Yy Cefad
N~
%;T wnrerrcle ok modtak )
135
modal_ (6)
Fal: Lt the cegremion srob'\nbigw""{l\m maglae Grpec
g‘«M 2nd redmced todsl C Car\o.‘&x‘b,\ﬂ/\) o tw)
8"
easn ﬁ-o )
Sslukon A
- "h;fp\lum

&) Fit wieestackd soduk ond qek SSE. [Cap)

b) Rt cestncled mode ond xRk €, (& x.g\c\{)

9 Fas: + ASSE
Sse

[
A) Celeuteke pvaes ) P(Frpep > Slm))e'\d\
@ jeck av not fo.

A A MoA
{—}) ASSE = E4 gy — '€

= (%) ((FR) — CE-RRYTCERR)
= - = Q-7 Ue caxmayier I Cog o)

[ ? ns-12Y
4) 858 = &% (np)

s)

A

s

S
i 33E

<

® | (-7 ey’ vV 'Cep )

SoluRon 2

a) T warerkacked awout > g,
5) Wwakis Cand 4

S) Rws = @ Calinka e Fary
] Galesdate e puaes. -

= Hends~on : Cgmp'c'k%‘ PesblomA.

Q: Wehad v g=0 vs Hu: £)F O 2nd
Used & t-ter A
= B-0
P ~ kg
1y
Qo not an Bk, T 1k ot semt Yok aa

Unng o ¢ é\E\n

A o fgaz [ oty B*O
whee  C2T0-04G- 00 end K20 =)
Anp >

3
F:j‘(eram,ws = Wlyapt +(@-1) crvanals,
W= # by an ot *




ot - f A

_ -l 4 -
R
oy 4
\oN—
AN
v (T Tarac grey' a1 (i)
(PN — a
. @-°
1 B0 A
8
= (é)' QSL a
&'z < = Tl < FA) n-9
) 1T
(Y
%
From Pt A: N Z o\ 2"/ 1
(B 5 o
v v

= Al on | dus s oan O fen!

TMA4267 Linear Statistical Models V2017 (L15)

Part 3: Hypothesis testing and analysis of variance
One- and two-way ANOVA [H:8.1.1]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 10, 2017
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Today: Analysis of variance (ANOVA) and analysis of
covariance (ANCOVA)

Good news: really nothing new, just linear regression where we
have one or more categorical covariates.

Bad news: a bit technical with respect to coding the
covariates in the design matrix.

Bad or good news: also tell the story of ANOVA without linear
regression since that is the classical way to do things - so you
will be able to recognize that this is a problem that you can
solve.

Good news: we are taking one step toward the last topic Part
4: Design of experiments.
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Rothamsted Experimental Station

» founded in 1843 by John Bennet
Lawes on his inherited 16t
century estate, Rothamsted
Manor,

— wanted to investigate the impact
of inorganic and organic
fertilizers on crop yield

— had founded a fertilizer
manufacturing company in 1842

» Lawes appointed the chemist
Joseph Henry Gilbert to the
directorship of the chemical
laboratory

» the two began a series of field
experiments to examine the
effects of inorganic fertilizers and
organic manures on the nutrition
and yield of a number of
important crops

http://www stats.uwo.ca/faculty/bellhouse/stat499lecturel3.pdf
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The Broadbalk Field Trial at Rothamsted

+ this was the first field trial
started by Lawes and Gilbert

* beganin 1843

* purpose was to investigate the
relative importance of different
plant nutrients (N, P, K, Na,
Mg) on grain yield of winter
wheat

* weeds were controlled by hand
hoeing and fallowing

— now some herbicides are used

* The experiment continues to

this day

http: //www.stats.uwo.ca/faculty /bellhouse/stat499lecturel3.pdf
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Concrete aggregates data

Aggregate: 1 2 3 4 5

551 595 639 417 563
457 580 615 449 631
450 508 511 517 522
731 583 573 438 613
499 633 648 415 656
632 517 677 555 679

Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists — our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Concrete aggregates example

» Aggregates are inert granular materials
such as sand, gravel, or crushed stone
that, along with water and portland
cement, are an essential ingredient in
concrete.

» For a good concrete mix, aggregates need to be clean, hard,
strong particles free of absorbed chemicals or coatings of clay
and other fine materials that could cause the deterioration of
concrete.

» We could like to examine 5 different aggregates, and measure

the absorption of moisture after 48hrs exposure (to moisture).

» A total of 6 samples are tested for each aggregate.

» Research question: Is there a difference between the
aggregates with respect to absorption of moisture?

4/47
Concrete aggregates exam p|e
Individual Value Plot of moisture vs aggregate Boxplot of moisture
70 75
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N
650 . . s : 650
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One-way Analysis of Variance (ANOVA)

Model
Yi=pi+ejfori=12..,pandj=1,2,..,n;
alternative parameterization
Yi=p+ai+ej

The sample sizes for each group, n; may vary. ¢ ~ N(0,02). Let
n= P, nj be the total number of observations.

Aim: look at parameter estimates and test if there is any difference
between the groups.

How can that be done using our linear regression model?

7/47
Concrete aggregates data
# the same with regression
> options(contrasts=c("contr.sum","contr.sum"))
> obj <-lm(moisture~as.factor(aggregate),data=ds)
> summary (obj)
Estimate Std. Error t value Pr(>|tl)
(Intercept) 561.800 12.859 43.688 < 2e-16 **x*
as.factor(aggregate)l  -8.467 25.719 -0.329 0.744743
as.factor(aggregate)?2 7.533 25.719  0.293 0.772005
as.factor(aggregate)3  48.700 25.719 1.894 0.069910 .
as.factor(aggregate)4 -96.633 25.719 -3.757 0.000921 **x*
9/47

Concrete aggregates data

# means for each recipe

> means=
aggregate(ds,by=list (ds$aggregate) ,FUN=mean) $moisture

> grandmean=mean(ds$moisture)

> grandmean

[1] 561.8

> alphas=means-grandmean

> alphas

[1] -8.466667 7.533333 48.700000 -96.633333 48.866667

8/47

Concrete aggregates data

#comparing means and regression estimates
>cbind(c(grandmean,alphas),
c(obj$coefficients,-sum(obj$coefficients[2:5])))
[,1] [,2]
(Intercept) 561.800000 561.800000
as.factor(aggregate)l -8.466667 -8.466667
as.factor(aggregate)2  7.533333  7.533333
as.factor(aggregate)3 48.700000 48.700000
as.factor(aggregate)4 -96.633333 -96.633333
48.866667 48.866667

Run R code from course lectures tab for model matrix.
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Concrete aggregates data (1)

# checking manually with linear hypotheses
r=4
C=cbind(rep(0,r) ,diag(r))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(obj$coefficients,ncol=1)
sigma2hat=summary (obj)$sigma~2
Fobs=(t (C/x%betahat-d) %%
solve (Chx%solve (t (X) %x%X) %%t (C)) %%
(Ch*%betahat-d))/(r+sigma2hat)
> Fobs

[,1]
[1,] 4.301536
> 1-pf (Fobs,r,n-r-1)

[,1]

[1,] 0.008751641
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Concrete aggregates data (3)

# performing ANOVA using method anova -
> anova(obj)
Analysis of Variance Table

Response: moisture

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(aggregate) 4 85356 21339.1 4.3015 0.008752 *x
Residuals 25 124020 4960.8

13 /47

Concrete aggregates data (2)

> fitA=obj

> fitB=lm(moisture~1,data=aggregates)
> anova(fitA,fitB)

Analysis of Variance Table

Model 1: moisture ~ as.factor(aggregate)
Model 2: moisture ~ 1

Res.Df RSS Df Sum of Sq F  Pr(>F)
1 25 124020
2 29 209377 -4 -85356 4.3015 0.008752 *x*

Signif. codes: O ’#*¥x> 0.001 ’*x> 0.01 ’x’> 0.05 ’.” 0.1’

12/47

One factor: unequal sample sizes

Classical formulation with ANOVA decomposition

Yi—-Y. =(Y;-Y)+Yi-Y)

P n; p N P N

DD =YP=D D (Y- YiP D D (V- V)
i=1 j=1 i=1 j=1 i=1 j=1

P N p n; P

SN Y=Y =D (Y= Y+ D ni(Yi = Y.)
i=1 j=1 i=1 j=1 i=1

SST = SSE + SSA
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One factor: unequal sample sizes

ANOVA decomposition: what happened to the cross-term?

222'(%,-— Yi)(Yi—Y)=2> (Y- Y..)Z'(Y,-jf Yi)=0
i=1 j=1 i=1 j=1

nj

n; nj
DY) =YY= Yi=mYi-nYi =0
j=t j

j=1 Jj=1

15/ 47

One factor: unequal sample sizes

Ho:pa=po=---=pp=0vs. Hp: At least one pair of y; different

is then tested based on

SSA

_ p-1
F=ss&

n—p

Where Hy is rejected if fops > o, (p — 1), (7 — p).
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Machine example

> Response: time (s) spent to assemble a product.

» Factor: this is done by four different machines;
My, My, M3, My.

» Question: Do the machines perform at the same mean rate of
speed?

TABLE 13.12 Time, in Seconds, to Assemble Product

Machine  Operator: 1 2 3 4 5 6 Total
1 42.5 39.3 39.6 39.9 429 43.6 2478

2 39.8 40.1 40.5 423 425 43.1 2483

3 40.2 40.5 41.3 434 44.9 451 2554

4 41.3 422 435 - 442 45.9 423 2594
Total 163.8  162.1 1649 1698 1762 1741 1010.9

Data from Walepole, Myers, Myers, Ye: "Statistics for Engineers
and Scientists", Example 13.6= our TMA4245/40 textbook.
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One factor ANOVA

> options(contrasts=c("contr.sum","contr.sum"))
> fit <- 1lm(time~as.factor (machine) ,data=dsmat)
> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.1208 0.3706 113.647 <2e-16 **x*
as.factor (machine)1l -0.8208 0.6419 -1.279 0.216
as.factor (machine)2 -0.7375 0.6419 -1.149 0.264
as.factor (machine)3  0.4458 0.6419 0.695 0.495

Residual standard error: 1.816 on 20 degrees of freedom
Multiple R-squared: 0.1945,Adjusted R-squared: 0.07372
F-statistic: 1.61 on 3 and 20 DF, p-value: 0.2186

> anova(fit)
Response: time

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(machine) 3 15.925 5.3082 1.6101 0.2186
Residuals 20 65.935 3.2968

19/ 47

Residuals

Sample Quantiles

Normal Q-Q Plot

rstudent(ft)

Theoretical Quantiles
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Machine example: operators

» The 6 repeated measurements for each machine was in fact
made by 6 different operators.

» The operation of the machines requires physical dexterity and
differences among the operators in the speed with which they
operate the machines is anticipated.

» All of the 6 operators have operated all the 4 machines, and
the machines were assigned in random order to the operators=
randomized complete block design.

» By including a blocking factor called Operator, we will reduce
the variation in the experiment that is du to random error.
Thus, we reduce variation due to anticipated factors.

» By randomizing the order the machines were assigned to the
operators we aim to reduce the variation due to unanticipated
factors.

21/47

time
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Model and Sums of squares

Model
Yi=p+aj+y+ejfori=12,..,randj=12 .5
Sums of Squares Identity

Vi=Y .+ (Vi =Y)+ (Y, =Y )+ (V=Y. =Y,;+Y)

ii(\’u —Y )= si(Y;. - Y.+ ri(yj —-Y.)?

i=1 j=1
r S
Y D (Y=Y =Y+ Y)?

i=1 j=1
SST = SSA + SSB + SSE
r-s—1=(r—-1)+(s—-1)+(r—1)(s—1)

23 /47

Effect of factor A:
Hy:a1r=as=---=a, =0vs. H: At least one «; different from 0

is then tested based on
SS?
Fi=—ss
(r—D)(s-1)
Where Hy is rejected if 1 > £y, (r —1),(r — 1)(s — 1).
Block effect present?

Ho:mvi =7 =---=7s=0vs. Hy: At least one ~; different from 0

is then tested based on

ssB

_ s—1

Fa=—5
(r—1)(s-1)

Where Hy is rejected if f, > f,,(s — 1), (r — 1)(s — 1).

RCBD ANOVA

> fit2 <- lm(time~as.factor (machine)+as.factor(operator),
data=dsmat)

> anova(fit2)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(machine) 3 15.9256 5.3082 3.3388 0.047904 *
as.factor(operator) 5 42.087 8.4174 5.2944 0.005328 *x
Residuals 15 23.848 1.5899

25 /47
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Effect of operator with linear hypotheses
fit2 <- Im(time~as.factor(machine)+as.factor(operator),
data=dsmat)
r=5
C=cbind(rep(0,5) ,rep(0,5) ,rep(0,5) ,rep(0,5) ,diag(5))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(fit2$coefficients,ncol=1)
X=model .matrix(fit2)
sigma2hat=summary(£it2) $sigma~2
Fobs=(t (C)*%betahat-d) }*%solve (Ch*%solve (t (X)%*%X) %*%t (C))
%x% (Chx%betahat-d))/(r*sigma2hat)
> Fobs
[,1]
[1,] 5.294435
> 1-pf(Fobs,r,n-dim(C) [2])
[,1]
[1,]1 0.005327541
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A second look at the RCBD: additive effects

Previously, randomized complete block design (RCBD) with the
machine example:

Yij=n+ait+y+ej

where 3°/_;a;=0and 37 ;v = 0.
This is called additive effects of treatment and blocks.

» This means that if we compare two operators there is a
constant difference in time to assemble the product,

» or, if we compare machines, these are ranked in the same order
of (wrt time) for each operator.

Residuals

g 7 H ' : : g | . . .

% i . ] ° % ) - s
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Estimates

p=421208 °

& = —0.8208 %1 :

Gp = —0.7375 4 | .

3 = 0.4458 _ ‘ . . :

64 =11125 & . s —

A =-1.1708 ¥

A9 =—15958 | ‘ *

43 = —0.8958 . .

A4 = 0.3292 e °

45 = 1.9292 ’ 1' 2 3 s

machine

46 = 1.404167
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Estimates
[=42.1208 .
&1 = —0.8208 %9 .
d = —0.7375 . | .«
&3 = 0.4458 i . . .
Gp=11125 & | :
. . . .
41 = —1.1708 N
Ay = —1.5958 5 N —
43 = —0.8958  _ | . T
A4 = 0.3292 ) L, el
A5 = 1.9292 o 1 2 s a4 5 s 1
36 = 1.404167 cqerser
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Interaction effect?

SSE=Y "> (Y- Yi=Yi+Y.)
i=1 j=1
Y1 i (0)f
(s—1)(r—1)

A large value of SSE will either mean that we have an interaction
term present, or that o2 is large. We can not assess interaction in a
RCBD. We need more than one observation for each observation to
distinguish between (avy);; and €.

SSE

e =

33/47

Interaction effect?

But, it could be interactions present. What if one of the operators
really could not manage one of the machines?
Model with interaction between treatment and block:

Yij = p+ai+ 7+ (@) + €
where 377, (ay)j = > 7_1(ay); = 0 (for all i and j) in addition to
>li—1oi=0and 377,79 =0.

But, since we only have one observation for each combination of |
and j, we can not separate (ay); and €.

32/47

Age and memory

» Why do older people often seem not to remember things as
well as younger people? Do they not pay attention? Do they
just not process the material as thoroughly?

» One theory regarding memory is that verbal material is
remembered as a function of the degree to which is was
processed when it was initially presented.

» Eysenck (1974) randomly assigned 50 younger subjects and 50
older (between 55 and 65 years old) to one of five learning
groups.

» After the subjects had gone through a list of 27 items three
times they were asked to write down all the words they could
remember.

Eysenck study of recall of older and younger subjects under conditions of
differential processing, Eysenck (1974) and presented in Howell (1999).

34 /47




The Age and Memory data set

» Number of words recalled: After the subjects had gone

through the list of 27 items three times they were asked to

write down all the words they could remember.
» Age: Younger (18-30) and Older (55-65).

35 /47
O‘A Y‘A O‘C Y‘C Ol‘m Yl‘m O‘In Y‘In dR Y‘R
Y=younger (blue), O=older (red), A=adjective, C=counting,
Im=Imagery, In=intentional, R=rythming.
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The Age and Memory data set: Process

» The Counting group was asked to read through a list of words
and count the number of letters in each word. This involved
the lowest level of processing.

» The Rhyming group was asked to read each word and think of
a word that rhymed with it.

» The Adjective group was asked to give an adjective that could
reasonably be used to modify each word in the list.

» The Imagery group was instructed to form vivid images of
each word, and this was assumed to require the deepest level
of processing.

None of these four groups was told they would later be asked
to recall the items.

» Finally, the Intentional group was asked to memorize the words
for later recall.

Data taken from: http://www.statsci.org/data/general/eysenck.html
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Eysenck ANOVA

> res <- lm(Words~Age*Process)

> summary(res)

Call:

Im(formula = Words ~ Age * Process)

Residuals:
Min 1Q Median 3Q Max
-7.0 -1.6 -0.5 2.0 9.6

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 11.6100 0.2833 40.982 < 2e-16 *x*
Agel -1.5500 0.2833 -5.471 3.98e-07 *xx
Process1 1.2900 0.5666  2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 *xx
Process3 3.8900 0.5666  6.866 8.24e-10 *xx
Process4 4.0400 0.5666  7.130 2.43e-10 **xx
Agel:Processl -0.3500 0.5666 -0.618 0.538312
Agel:Process2 1.8000 0.5666  3.177 0.002040 *x*
Agel:Process3 -0.5500 0.5666 -0.971 0.334288
Agel:Process4 -2.1000 0.5666 -3.706 0.000363 **x*
Signif. codes: 0 ’*%%’ 0.001 ’%*> 0.01 ’%> 0.05 >.” 0.1 > > 1

Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Eysenck model matrix

> X=model.matrix(res)
> X[c(1,11,21,31,41,51,61,71,81,91),]

(Intercept) Agel Processl Process2 Process3 Process4 Agel:Processl

1 1 -1 0 1 [ 0

11 1 -1 -1 -1 -1 -1

21 1 -1 1 0 0 [¢]

31 1 -1 0 0 1 0

41 1 -1 0 [ [ 1

51 1 1 [¢] 1 0 [¢]

61 1 1 -1 -1 -1 -1

71 1 1 1 [ [ 0

81 1 1 [¢] 0 1 [¢]

91 1 1 [¢] 0 0 1
Agel:Process2 Agel:Process3 Agel:Process4

1 -1 [¢] 0

11 1 1 1

21 [ 0 0

31 [ -1 0

41 [ [¢] -1

51 1 [¢] 0

61 -1 -1 -1

71 [ [¢] 0

81 [ 1 0

91 [ 0 1

0
1
-1
0
0

corro
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Two-way ANOVA questions

There are three main questions that we might ask in two-way

ANOVA:

» Does the response variable depend on Factor A7

» Does the response variable depend on Factor B?

» Does the response variable depend on Factor A differently for
different values of Factor B, and vice versa?

All of these questions can be answered using hypothesis tests, first

we test the interaction.

41 /47

Model and Sums of Squares

Model:

Vi = p+ai+ 7+ ()i + i

fori=1,2,..,randj=1,2,..,sand k=1, ...

Eijk ~ N(0,02)

40/ 47

Effect of interaction AB

HE (0711 = ()12 =+ = (a})rs =0 vs.
Hy : At least one (ay);; different from 0
is then tested based on
SS(AB)
F3 _ (r—1)(s—-1)

SSE
rs(m—1)

Where Hy is rejected if 3 > fo, (r —1)(s — 1), rs(m — 1).
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What do we do after testing for interaction?

> If the interaction is significant (we reject Hj'E).

» Then it is not recommended to test for main effects (that is,
the marginal contributions of the two factors A and B
separately). This is since the interpretation of the marginal
“main effect” is unclear in the presence of interaction. How can
we “separate out” the effect of A from the interaction?

> Instead, it is usually preferable to examine contrasts in the
treatment combinations.

> If the interaction is not found to be significant (do not reject
HAB).
» We are then interested in the main effects. These can now be
tested within the complete model.
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> summary (res)
Call:
Im(formula = Words ~ Age * Process)
Residuals:

Min 1Q Median 3Q Max

-7.0 -1.6 -0.5 2.0 9.6
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.6100 0.2833 40.982 < 2e-16 **x
Agel -1.5500 0.2833 -5.471 3.98e-07 **x*
Processl 1.2900 0.5666  2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 **x*
Process3 3.8900 0.5666 6.866 8.24e-10 **x*
Process4 4.0400 0.5666  7.130 2.43e-10 **x*
Agel:Processl -0.3500 0.5666 -0.618 0.538312
Agel:Process2 1.8000 0.5666 3.177 0.002040 *x*
Agel:Process3 -0.5500 0.5666 -0.971 0.334288
Agel:Process4 -2.1000 0.5666 -3.706 0.000363 *k*
Signif. codes: 0 ’*xx’ 0.001 ’*%’> 0.01 ’*’> 0.05 >.” 0.1 > > 1
Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Effect of factor A:
HS‘ a1 =ap =---=a, =0vs. H; : At least one «; different from 0

is then tested based on

SSA
A=t
rs(m—1)
Where HS' is rejected if f; > £, (r — 1), rs(m — 1).
Effect of factor B:

HOB im =72 =---=19s=0vs. Hy: At least one ; different from 0

is then tested based on

SSB

_ s—1

Fa=—o
rs(m—1)

Where HE is rejected if f» > f,, (s — 1), sn(m — 1).
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> anova(res)
Analysis of Variance Table

Response: Words

Df Sum Sq Mean Sq F value Pr(>F)
Age 1 240.25 240.25 29.9356 3.981e-07 *xx
Process 4 1514.94 378.74 47.1911 < 2.2e-16 *xx
Age:Process 4 190.30 47.58 5.9279 0.0002793 **x*
Residuals 90 722.30 8.03

Signif. codes: O ’*¥x> 0.001 ’*x’ 0.01 ’x> 0.05 .7 0.1 * > 1

Next: maybe want to compare different combinations of age and
process? Then, easiest to just combine the two factors into a new joint
factor and skip the intercept.
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Summing up

Topic today: the one-way and two-way ANOVA models.
» Classical formulation has focus on comparing sums of squares.

» We don't have to prove the classical results because we
instead fit the ANOVA model using linear regression with

effect coding of covariates.

» It is important to plot results and to understand when an

interaction term is needed.

» To test ANOVA hypotheses we use linear hypotheses in the
regression — where we automatically have theoretical results for

F-distributions.

» We will meet linear regression models with k factors with two
levels each in Part 4: Design of Experiments (DOE).
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Part 3: Hypothesis testing and analysis of variance
Multiple testing [note]

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 14, 2017
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Today: Multiple testing Today: Multiple testing

» Single hypothesis testing: Hy and Hji, test statistic and » Single hypothesis testing: Hp and Hj, test statistic and
p-value. p-value.

» Controlling Type | error (false positive findings) by selecting a
significance level.
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» Summarizing Part 3 with a quiz.
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Today

. Multiple testing

Single hypothesis testing: Hp and Hi, test statistic and
p-value.

Controlling Type | error (false positive findings) by selecting a
significance level.

Properties of p-values from true and false null hypotheses.
Testing many hypotheses: why?

Generalizing the type | error from single to multiple hypothesis
testing: FWER and FDR.

Two methods (Bonferroni and Sidak) that control the FWER
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Basal metabolic rate and the FTO-gene

The gene called FTO is known to be related to obesity

The basal metabolic rate says how many calories you burn
when you rest (hvilemetabolisme).

Data has been collected for 101 patient from the obesity clinic
at St. Olavs Hospital.

Research question: is there an association between the variant
of the FTO gene of the patient and the basal metabolic rate?

Regression setting, other covariates include age, sex, weight,
height, BMI, diet, exercise level, smoking, etc.
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The scientific process

‘ [1] well defined research question(s)

[[2] design study - collect data}

l

{[3] model—estimate—evaluate—TEST—predict}

|

[4] interpret

‘ [5] insight and new knowledge

3/33

Hypothesis testing example (from L13)
» We draw a random sample of size n = 100 from the

% & ‘ b
S blue population and measure systolic blood pressure:
P
i X1, X2, .0y Xa.
& .

A > Test statistic: X ~ N(120,1) when Hy is true.

N
I
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Hypothesis testing example (from L13)

» We draw a random sample of size n = 100 from the
blue population and measure systolic blood pressure:
X1, X2, ..oy Xn.
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Hypothesis testing example (from L13)

» We draw a random sample of size n = 100 from the
blue population and measure systolic blood pressure:
X1, Xos oo, X,

K > Test statistic: X ~ N(120,1) when Hy is true.
» We find that X = 122 mmHg.

"
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Hypothesis testing example (from L13)

» We draw a random sample of size n = 100 from the
blue population and measure systolic blood pressure:
X1, X2, ..oy Xa.

Test statistic: X ~ N(120,1) when Hy is true.
We find that X = 122 mmHg.

\

’\
50 155 150

Mo dH A

I

» Data: n =100, X = 122, gives a p-verdi=0.02.
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Hypothesis testing example (from L13)

Questions:
» How have | calculated this p-value?
P(X > 122 | Hy true).
» How can | interpret this p-value?
Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.
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Hypothesis testing example (from L13)

Questions:

> How have | calculated this p-value?
P(X > 122 | Hy true).

» How can | interpret this p-value?
Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would
be equal to or more extreme than its observed value.

» Should | conclude that p > 1207
Yes, if you choose significance level higher than 0.02. But, you
should also report a (two-sided) confidence interval for p:
Here [120.04, 123.96].
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Single hypothesis testing set-up

Hp true Hp false
Not reject Hy Correct Type Il error
Reject Hy Type | error Correct

Two types of errors:
» False positives = type | error =miscarriage of justice.
» False negatives = type Il error= guilty criminal go free.

The significance level of the test is a.
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Single hypothesis testing set-up
Hp true Hy false
Not reject Hyp Correct Type Il error
Reject Hy Type | error Correct
Two types of errors:
» False positives = type | error =miscarriage of justice.
» False negatives = type Il error= guilty criminal go free.
The significance level of the test is a.
We reject the null hypothesis when the p-value is below a.
We say that : Type | error is "controlled" at significance level .
The probability of miscarriage of justice (Type | error) does not
exceed a.
6/33




Repeating the blood pressure experiment

2w 2w 2w
3 X, X x X ®
% VXS ; v‘\\a ; j?a
x=120.9 x =118.9 X =121.2
p-value=0.18 p-value=0.86 p-value=0.12
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x 2 % x
X, X X e
> b5 -
= 4. =
x=120.9 x =118.9 X =121.2
p-value=0.18 p-value=0.86 p-value=0.12
=
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Repeating the blood pressure experiment

= 2w 2w
X X x X X
ey & Yy & s
x. { . 4
x=120.9 x =118.9 x =121.2
p-value=0.18 p-value=0.86 p-value=0.12
7/33
Repeating the blood pressure experiment
= 2% R %
X, X R 3 X
3 ;A 3 IA 3
RV &X‘.. ,&X
x=120.9 x =118.9 x =121.2
p-value=0.18 p-value=0.86 p-value=0.12

100 random samples

10k random sampies

e e

Histogram - and smoothed histogram of p-values.
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More about the p-value

» The p-value is just a function of the random sample and can
be regarded as a random variable.
We had: P(X > observed mean | Hy true).
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» But, isn't the p-value a probability? A number?
» A random variable (like the p-value) has a probability
distribution.
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More about the p-value

» The p-value is just a function of the random sample and can
be regarded as a random variable.
We had: P(X > observed mean | Hp true).

» But, isn't the p-value a probability? A number?

» A random variable (like the p-value) has a probability
distribution.

» What is the distribution of a p-value?
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Probability distribution for random variable Y

» Continuous random variable Y (could be the p-value).
» Probability distribution function (pdf): f(y).

aaaaaaaa
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Probability distribution for random variable Y

» Continuous random variable Y (could be the p-value).
» Probability distribution function (pdf): f(y).
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Probability distribution for random variable Y

» Continuous random variable Y (could be the p-value).
» Probability distribution function (pdf): f(y).
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Distribution of p-values for false hypothesis?

Blood pressure example:
Assume that p = 122 so
that Hy is false, and that
we collect a random
sample of size 100. What
is then the distribution of
the p-value?
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Distribution of p-values for false hypothesis?

Blood pressure example: ER
Assume that u = 122 so
that Hp is false, and that
we collect a random
sample of size 100. What
is then the distribution of

the p-value? “ M
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p-value

10/33

Distribution of p-values for false hypothesis?

Blood pressure example:
Assume that p = 121 so
that Hy is false, and that
we collect a random
sample of size 100. What
is then the distribution of
the p-value?
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Distribution of p-values for false hypothesis?

10k random samples

Blood pressure example: <
Assume that p = 121 so
that Hy is false, and that A

we collect a random
sample of size 100. What
is then the distribution of
the p-value?

0.0 0.2 0.4 06 08 1.0

p-value
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False null: u = 121 left, and pu = 122 right, when
Hy : =120

10k random samples
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Distribution of p-values for true hypothesis?

Blood pressure example:
Assume that x4 = 120 so
that Hp is true, and that
we collect a random
sample of size 100. What
is then the distribution of
the p-value?
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Distribution of p-values for true hypothesis?

Blood pressure example: 2
Assume that p = 120 so
that Hy is true, and that €1

we collect a random
sample of size 100. What
is then the distribution of .
the p-value?

p-value
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Distribution of p-values for true hypothesis?

Blood pressure example: 2
Assume that p = 120 so

that Hy is true, and that s %
we collect a random &
sample of size 100. What 7
is then the distribution of .
the p-value? )

p-value

Urban myth: A p-value for a true null hypothesis is close to

1. No, all intervals of equal length are equally probable!
=uniform distribution
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p-values from true null hypothesis is uniformly distributed

Why is this important:
» so you don't believe the urban myth, and

> it might be useful to understand plots (pdf or cdf) of p-values,
and these are often used for quality control of statistical
models.
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p-values from true null hypothesis is uniformly distributed

Why is this important:
» so you don't believe the urban myth, and

» it might be useful to understand plots (pdf or cdf) of p-values,
and these are often used for quality control of statistical
models.

Assume that large values of the test statistic T leads to rejection of
the null hypothesis, and that a value t of the test statistic T
corresponds to a value w of the p-value W. This means that

P(T > t) = P(W < w). On the other hand the p-value is

P(W <w)=P(T >t)=w when Hy is true.

This means that P(W < w) = w when Hg is true. If W is a
continuous random variable taking values from 0 to 1, the the
p-value W must be uniformly distributed over the interval from 0
to 1.

This is true when the p-value is continuous and exact.

14 /33
Valid p-value
A p-value p(Y) is valid if
P(p(Y) <) <a
for all , 0 < @ < 1, whenever Hy is true, that is, if the p-value is
valid, rejection on the basis of the p-value ensures that the
probability of type | error does not exceed «.
16 /33

Exact p-value

If P(p(Y) < a)=aforall a, 0 <« <1, the p-value is called an
exact p-value.
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From single to multiple hypothesis testing

In many situations we are not interested in testing only one
hypothesis, but instead m hypotheses.

> In a regression setting m might be the number of covariates in
the regression model, and we would test Hp : §; = 0 vs
Hy:pj#0forallj=1,...,m.
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hypothesis, but instead m hypotheses.

> In a regression setting m might be the number of covariates in
the regression model, and we would test Hp : ; = 0 vs
Hy:Bj#0forall j=1,...,m.

> If we have a linear regression with one categorical covariate
with k levels, called a one-way analysis of variance model, we
might first want to test Hp : u1 = 2 = ... = ux against the
alternative hypothesis, Hi, that the means of at least two of
the k levels are different from each other. If the null hypothesis
is rejected we might want to continue to test which of all
possible pairs of the means that are different — giving m = (é)
hypothesis tests, or compare the mean of all levels to a
common reference level 111, giving m = k — 1 hypothesis tests.
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From single to multiple hypothesis testing

In many situations we are not interested in testing only one
hypothesis, but instead m hypotheses.

> In a regression setting m might be the number of covariates in
the regression model, and we would test Hp : §; = 0 vs
Hy:Bj#0forall j=1,...,m.

» If we have a linear regression with one categorical covariate
with k levels, called a one-way analysis of variance model, we
might first want to test Hp : u1 = o = ... = uy against the
alternative hypothesis, Hi, that the means of at least two of
the k levels are different from each other. If the null hypothesis
is rejected we might want to continue to test which of all
possible pairs of the means that are different — giving m = (’2‘)
hypothesis tests, or compare the mean of all levels to a
common reference level 111, giving m = k — 1 hypothesis tests.

But, can't we still use cut-off o on the p-values to detect
significant findings?

17/33

Westfall & Young (1993):
Multicenter Oat Bran Study

» At each of ten study centers a control vs treated experiment is
performed with 20 subjects per group.

» |t is common to analyze the data for each center separately, as
well as to combine over center.

» T-statistics are computed for each center as
yT —yc
(2 + 2)/20

with p-values calculated as lower tail probabilities from the
t-distribution with 38 degrees of freedom.
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FIRST Oat Bran Study

Table 1.2 First Multicenter Oat Bran Study Using Simulated Data

FIRST Oat Bran Study

» Centres 2 and 3 show significant reduction in blood cholestreol
for the treatment group.

» Centre 5 happens to show a significant increase, but that is
not “noticed” since one-sided tests are performed.

» If the studies were run as uncoordinated trials, it is likely that
the two significant studies would be reported and perhaps
published in reputable journals.

» The eight nonsignificant studies would go to the file drawer
and a “true, confirmed” effect would be established for the two
sites where significance is found.

» The centres with insignificant results may decide to collect
fresh data, and analyse only the new data.

p-Value
Center Group y 5 -Statistic (Lower-Tailed)
L Gl s s a0 16
S T TR
S B A oue
oI omsom
T I TR
S o w28 L 32
2
pome o om W W
P Cow 7m0 o8 52 52
T T ST
T s
* p-value less than .03,
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SECOND Oat Bran Study
THE MULTIPLE TESTING PROBLEM
Table 1.3 Second Hypothetical Oat Bran Study
Center Group ¥y s #-Statistic (Lo‘;e‘f?:h
T o ow w e
P o gos ows a5t
S Coma meo ss ¥ 0
S~ S A A 340
soomeome % e w
S o aes  ss % sz
T G e a7 o
S o 27 s 1 o
s oI R s m
o Im om0 s w

¥ p-value less than 05,
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20/33
Oat bran study: lessons to be learned
» These are SIMULATED data with equal means of the control
and the treatment group, i.e. the truth is that there are no
biological effects of the treatment.
» With simulated data: simple to point to the multiplicity issue
as the cause for the small p-values for some centres.
» Real studies: not easy to determine if a seen effect is real or
not.
22/33




Oat bran study: lessons to be learned

» Real studies: not easy to determine if a seen effect is real or
not.

» At a particular centre showing significance: scientists would
believe that the effect is real, because why should the
existence of other centres in the study affect the outcome at
the given centre?

» How should one verify that an unusual event is real or
artificial?

» The possibility of false positive results is very real, and can lead

to serious misinterpretation by analysts: it is human nature to
rationalize any dramatic- statistically significant - change.
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From single to multiple hypothesis testing

Set-up
> Let us assume that we perform m hypothesis tests,
» giving m p-values and then

» choose a cut-off on the p-values at some value o (called a
local significance level) to decide if we want to reject each null
hypothesis.

» We then reject the null hypotheses where the p-value is
smaller than ayoc, and this leads to rejection of R hypotheses.

Multiple hypothesis testing set-up

One hypothesis:

Not reject Hy Reject Hy
Hp true Correct Type | error
Hp false Correct
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Multiple hypothesis testing set-up
One hypothesis:
Not reject Hy Reject Hy
Hp true Correct Type | error
Hp false Correct
m hypotheses:
Not reject Hy Reject Hy Total
Hp true U 74 mo
Hy false S m— mg
Total m—R R m
> R rejected null hypotheses
» V false positives (type | errors)
» T false negatives (type Il errors)
Only m and R are observed. What should we now control?
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Overall Type | error control (1)

» In some situation one expects that just a few null hypothesis
are false,
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Overall Type | error control (1)

» In some situation one expects that just a few null hypothesis
are false,

» therefore a strict criterion for controlling an overall version of
the Type | error is chosen.

Overall Type | error control (1)

» In some situation one expects that just a few null hypothesis
are false,

» therefore a strict criterion for controlling an overall version of
the Type | error is chosen.

» Family-Wise Error Rate (FWER) is controlled at level «.
FWER = P(V > 1) = P(the number of false positives is > 1)

(remark: V' is not observed)
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Overall Type | error control (1)
» In some situation one expects that just a few null hypothesis
are false,
» therefore a strict criterion for controlling an overall version of
the Type | error is chosen.
» Family-Wise Error Rate (FWER) is controlled at level .
FWER = P(V > 1) = P(the number of false positives is > 1)
(remark: V is not observed)
» The FWER can be controlled by defining a local significance
level a oc for each test and reject the Hy of that test if the
p-value of the test is less than the aoc.
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Basal metabolic rate and the FTO-gene: revisited

» The gene called FTO is known to be related to obesity

» The basal metabolic rate says how many calories you burn
when you rest (hvilemetabolisme).

» Data has been collected for 101 patient from the obesity clinic
at St. Olavs Hospital.

» Research question: is there an association between the variant
of the FTO gene of the patient and the basal metabolic rate?

> Regression setting, other covariates include age, sex, weight,
height, BMI, diet, exercise level, smoking, etc.

If we had not only collected data on this one gene, but instead for
many (e.g. m = 100000) genetic markers positioned along the
chromosome, and then wanted to test m hypotheses, we would not
expect to find many true associations. This strategy is called a
genome-wide association analysis and for this purpose FWER is
usually controlled.
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Overall Type | error control for GWA data: FWER control

» GWAS often use a oc = 5- 1078,
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» The most popular method controlling the FWER is the
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Overall Type | error control for GWA data: FWER control

» GWAS often use oy oc =5-1078.
» The most popular method controlling the FWER is the
Bonferroni method, which can always be used.

» The Bonferroni method might be slightly conservative (too low
aLoc), since it is constructed to control FWER for all types of
dependency structures between the test statistics for the
different hypotheses- including independence.
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Overall Type | error control for GWA data: FWER control Overall Type | error control (2)

» GWAS often use ajoc =5-1078. » For other types of data one expects that many null hypotheses

» The most popular method controlling the FWER is the are false,

Bonferroni method, which can always be used.

» The Bonferroni method might be slightly conservative (too low
aLoc), since it is constructed to control FWER for all types of
dependency structures between the test statistics for the
different hypotheses- including independence.

> https://arxiv.org/abs/1603.05938: Efficient and
powerful familywise error control in genome-wide association
studies using generalized linear models, K. K. Halle, @. Bakke,
S. Djurovic, A. Bye, E. Ryeng, U. Wislgff, O. A. Andreassen,

M. Langaas.
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Overall Type | error control (2) Overall Type | error control (2)
» For other types of data one expects that many null hypotheses » For other types of data one expects that many null hypotheses
are false, are false,
» and therefore a less strict criterion for controlling an overall » and therefore a less strict criterion for controlling an overall
version of the Type | error is chosen. version of the Type | error is chosen.

» The False Discovery Rate (FDR) by Benjamini & Hochberg
(1995) is controlled at level .
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Overall Type | error control (2)

» For other types of data one expects that many null hypotheses
are false,

» and therefore a less strict criterion for controlling an overall
version of the Type | error is chosen.

» The False Discovery Rate (FDR) by Benjamini & Hochberg
(1995) is controlled at level .

» Informally, the FDR is the expected proportion of Type | errors
among the rejected hypotheses.

FDR = E(Q) where by definition

0 V/R ifR>0, or
o ifR=0
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Hedenfalk et al (2001) gene expression dataset

Available from library(qvalue) from Bioconductor

» The data from the breast cancer gene expression study of
Hedenfalk et al. (2001) were obtained and analyzed.

» A comparison was made between 3,226 genes of two mutation
types, BRCAL (7 arrays) and BRCA2 (8 arrays).

» The data included here are p-values, test-statistics, and
permutation null test-statistics obtained from a two-sample
t-test analysis on a set of 3170 genes, as described in Storey
and Tibshirani (2003).

For such gene expression data researchers expect to find may genes

that are differently expressed between conditions and therefore the
false discovery rate (FDR) is usually controlled. Hedenfalk 1 et al. (2001).

Gene expression profiles in hereditary breast cancer. New England Journal of Medicine, 344: 539-548.
Storey JD and Tibshirani R. (2003). Statistical significance for genol ide studies. Proceedi of the
National Academy of Sciences, 100: 9440-9445. http://www.pnas.org/content/100/16/9440.full

Overall Type | error control for gene expression data

» Popular algorithm for controlling the FDR: the
Benjamini-Hochberg step-up procedure.

31/33

30/33
Overall Type | error control for gene expression data
» Popular algorithm for controlling the FDR: the
Benjamini-Hochberg step-up procedure.
» Focus on minimal interesting biological effect: is possible that
you don’t want to test difference between treatments=0, but
instead > minimal biological interesting effect.
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Multiple testing

» Note from course www-page.

» RecEx5.Problem 2.

» CompulsoryPart3 Problem 2.

» This topic is new on the reading list in 2017.

» It replaces the topics of regularization with the lasso and ridge
regression, which will be covered in TMA4268 Statistical

Learning.
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Summarizing Part 3

with quiz in Kahoot!
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TMAA4267 Linear statistical models

Part 3: Hypothesis testing and ANOVA

March 14, 2017

Happiness

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.072081 0.852543 -0.085 0.9331

money 0.009578  0.005213 1.837 0.0749
sex -0.149008 0.418525 -0.356 0.7240
love 1.919279  0.295451 6.496 1.97e-07
work 0.476079 0.199389 2.388 0.0227

For which covariates would we reject the null hy-
pothesis 3 = 0 at significance level 1%?

A money B sex

love D work

Type | errors

What is a commonly used name for the type

| errors?
A true positives B false positives
false negatives D true negatives

Linear hypotheses

Hy : C = d in a regression model Y = X3 + .
n=number of observations,

p = number of estimated regression coefficients
r=number of linear hypotheses (rank of C).

What is the distribution of F,ps
—L(cp—d)T(62C(X"X)1CT) L (CB —d)?

A Fr,n—p B Fp,n—r
N(B,o2(XTX)Y) D N(0, o2l




ANOVA

Which type of covariate coding is used in the one-

way ANOVA model with design matrix given as:

1 1 0 o0 o0

1 0 1 0 o0

1 0 1 0 0

1 0 0o 1 0

1 0 o o0 1

1 0o o o0 1

1 -1 -1 -1 -1

1 -1 -1 -1 -1

A Continuous B Effect coding
Dummy variable D Categorical
coding

ANOVA

Is the interaction term significant at significance
level 0.017

> res <- 1lm(Words~Age*Process)
> anova(res)

Df Sum Sq Mean Sq F value Pr(>F)
Age 1 240.25 240.25 29.9356 3.981e-07 *x*x*
Process 4 1514.94 378.74 47.1911 < 2.2e-16 *x*x*
Age:Process 4 190.30 47.58 5.9279 0.0002793 *x**
Residuals 90 722.30 8.03

A Yes B Not enough informa-
tion to decide

No

p-value from true null hypothesis

For a continuous test statistic that gives an
exact p-value, what is the distribution the p-
value when the null hypothesis is true?

A Normal B Chisquared

Exponential D Uniform

FWER

V=number of false positives and
R=number of rejections.
The familywise error rate FWER is

A E(V/R) B E(V)
P(V/R>005 D P(V >D0)




Bonferroni

ox=level for control of FWER.
Xjoc=cut-off on p-value

m =number of tests.

What is the Bonferroni rule?

Correct?

Are you sure you want to read the correct
answers? Maybe try first? The answers are
explained on the next two slides.

[0
A a|oc — m“ B (X’IOC — E
oM D — (1 _ )1/m
Kjopc = & Kloc = x
Answers

1. C: only love is significant on level 1%,
since this is the only p-value below 0.01
(last column).

2. B: type | errors are called false positive
findings

3. A: linear hypotheses with
Fr n—p-distributed statistic.

4. B: Effect coding is used in ANOVA.

Answers

5. A: Interaction term has p-value below
0.01.

6. D: p-values from true nulls are uniform.

7. D: FWER is the probability of one or
more false positives.

8. B: Bonferroni rule is oo/ m.




