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Today:

I Observational studies vs. designed experiments.
I Still linear regression, but now with k factors each with only 2

levels.
I Effect coding, orthogonal columns in design matrix.
I 2k full factorial design.
I Simplified formulas for β̂, Cov(β̂) and SSE.
I If time: from parameter estimated to main and interaction

effects.

Part 4 is based on Tyssedal: Design of experiments note.
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Design of experiments vs. observational studies
In this part of the course we are working with the linear regression
model:

Y = Xβ + ε with ε ∼ N(0, σ2I )

and use results from Part 2 of the course.

Earlier in the course: both the design matrix X and the reponses Y
were observed together in a randomly selected sample from a
population.

I Munich rent index: rent prices vs. area, location, condition of
bathroom, condition of kitchen, . . ..

I Lakes: pH level vs. content of SO4, NO3, latent Al, Ca,
organic, position, area.

I Happiness: Happiness vs. love, money, sex and work.
Now: we choose (design) the experiment by specifying the design
matrix X to be used to produce a sample, and then collecting
reponses Y for this design matrix.
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The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.
I The outcome of the process is measured as chemical yield (in

grams).
I Two quantitative variables (factors) were investigated:

I Factor A: Temperature (in degrees C).
I Factor B: Concentration (in percentage).

Experiment no. Temperature Concentration Yield
1 160 20 60
2 180 20 72
3 160 40 54
4 180 40 68

x1 x2 y
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Regression with pilot plant data V1- original

> x1=c(160,180,160,180)
> x2=c(20,20,40,40)
> y=c(60,72,54,68)

> fitx=lm(y~x1*x2)
Coefficients:
(Intercept) x1 x2 x1:x2

-14.000 0.500 -1.100 0.005

> model.matrix(fitx)
(Intercept) x1 x2 x1:x2

1 1 160 20 3200
2 1 180 20 3600
3 1 160 40 6400
4 1 180 40 7200
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Regression with pilot plant data V1- recoded

> # recode to -1 and 1
> z1=(x1-(max(x1)+min(x1))/2)/((max(x1)-min(x1))/2)
> z2=(x2-(max(x2)+min(x2))/2)/((max(x2)-min(x2))/2)
> fitz=lm(y~z1*z2)
Coefficients:
(Intercept) z1 z2 z1:z2

63.5 6.5 -2.5 0.5

> model.matrix(fitz)
(Intercept) z1 z2 z1:z2

1 1 -1 -1 1
2 1 1 -1 -1
3 1 -1 1 -1
4 1 1 1 1
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Regression with original and coded factors

Original: x1 and x2, gave estimated regression equation

ŷ = −14+ 0.5x1 − 1.1x2 + 0.005x1 · x2

Coded: z1 = (x1 − 170)/10 and z2 = (x2 − 30)/10, gave estimated
regression equation

ŷ = 63.5+ 6.5z1 − 2.5z2 + 0.5z1 · z2

Can you compare these two results?
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Regression with original and coded factors

Substitute z1 = (x1 − 170)/10 and z2 = (x2 − 30)/10 into the
equation to get a estimated regression equation based on x1 and x2.

ŷ = 63.5+ 6.5z1 − 2.5z2 + 0.5z1 · z2
= 63.5+ 6.5

x1 − 170
10

− 2.5
x2 − 30

10
+ 0.5

x1 − 170
10

· x2 − 30
10

= 63.5− 6.5
170
10

+ 2.5
30
10

+ 0.5
170 · 30
10 · 10

+ x1(6.5
1
10

− 0.5
1
10

30
10

) + x2(−2.5
1
10

− 0.5
1
10

170
10

)

+ 0.5
1
10

1
10

x1 · x2

= −14+ 0.5x1 − 1.1x2 + 0.005x1 · x2
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Design of experiments (DOE) terminology

I Variables are called factors, and denoted A, B , C , ...
I We will only look at factors with two levels:

I high, coded as +1 or just +, and,
I low, coded as −1 or just −.

I In the pilot plant example we had two factors with two levels,
thus 2 · 2 = 4 possible combinations. In general k factors with
two levels gives 2k possible combinations.

Standard notation for 22 experiment:
Experiment no. A B AB Level code Response

1 -1 -1 1 1 y1
2 1 -1 -1 a y2
3 -1 1 -1 b y3
4 1 1 1 ab y4

z1 z2 z12 y
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Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters,
page 321.

I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of lima bean (baby or large)
I Y: yield

A B C AB AC BC ABC Level code Response
- - - + + + - 1 6
+ - - - - + + a 4
- + - - + - + b 10
+ + - + - - - ab 7
- - + + - - + c 4
+ - + - + - - ac 3
- + + - - + - bc 8
+ + + + + + + abc 5
x1 x2 x3 x12 x13 x23 x123 y
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Main effects in DOE

Main effect of A

Â = 2β̂1

=
y2 + y4 + y6 + y8

4
− y1 + y3 + y5 + y7

4

Interpretation: mean response when A is high MINUS mean
response when A is low.
Similarily, main effect of B

B̂ = 2β̂2

=
y3 + y4 + y7 + y8

4
− y1 + y2 + y5 + y6

4

Interpretation: mean response when B is high MINUS mean
response when B is low.
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A B C A:B A:C B:C A:B:C
-2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25

Explain the main effects in plain words!

A: depth (0.5 or 1), B: watering daily (once, twice), C: type (baby, large).
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Interaction effect in DOE

I What is the terpretation in DOE associated with β12?
I In DOE 2β̂12 is denoted ÂB and is called the estimated

interaction effect between A and B .

ÂB = 2β̂12

=
estimated main effect of A when B is high

2

− estimated main effect of A when B is low
2

=
estimated main effect of B when A is high

2

− estimated main effect of B when A is low
2
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A B C A:B A:C B:C A:B:C
-2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25
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Interpretation of ÂBC

I ÂBC = 1
2 ÂB interaction when C is at the high level -

1
2 ÂB interaction when C is at the low level.

I Or, two other possible interpretation with swapped placed for
A, B and C .

I And remember that ÂB = 1
2 Â main effect when B is at the

high level - 1
2 Â main effect when B is at the low level.
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Geometric interpretation of effects
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2k full factorial
I There are k factors: A, B, C, ..., and
I 2=each factor has two levels.
I There are 2k possible experiments.
I We have in total 2k parameters to be estimated:

I 1 intercept
I k =

(
k
1

)
main effects: A, B, C, ...

I
(
k
2

)
two factor interactions: AB, AC, .., BC, BD,...

I
(
k
3

)
three factor interactions: ABC, ABD, ABE, ...

I · · ·
I
(
k
k

)
= 1 k factor interaction.

Yi = β0 + β1x1i + β2x2i + · · ·+ βkxki

+ β12x12 + · · ·+ βk−1,kxk−1,k

+ β123x123 + · · ·+ βk−2,k−1,kxk−2,k−1,k

· · · +β12...kx12...k
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Last lesson - and today:

I Observational studies vs. designed experiments.
I Still linear regression, but now with k factors each with only 2

levels.
I Effect coding, orthogonal columns in design matrix.
I 2k full factorial design.
I Simplified formulas for β̂, Cov(β̂) and SSE.
I From parameter estimated to main and interaction effects.
I Inference.
I Compulsory exercise 4: the DOE project

Part 4 is based on Tyssedal: Design of experiments note.
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Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters,
page 321.

I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of lima bean (baby or large)
I Y: yield

Research question: what is the combination of A, B, C giving the
highest yield?
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Design of experiments (DOE) terminology

I Variables are called factors, and denoted A, B , C , ...
I We will only look at factors with two levels:

I high, coded as +1 or just +, and,
I low, coded as −1 or just −.

I The lima beans example had three factors with two levels, thus
23 = 8 possible combinations. In general k factors with two
levels gives 2k possible combinations.

Standard notation for 23 experiment (responses for lima beans
included)

A B C AB AC BC ABC Level code Response
- - - + + + - 1 6
+ - - - - + + a 4
- + - - + - + b 10
+ + - + - - - ab 7
- - + + - - + c 4
+ - + - + - - ac 3
- + + - - + - bc 8
+ + + + + + + abc 5
x1 x2 x3 x12 x13 x23 x123 y
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Results from last lecture: 2k full factorial

Known from Part 2: β̂ = (XTX )−1XTY and
Cov(β̂) = σ2(XTX )−1.

I The design matrix is chosen so that the columns (containing
-1 and 1) are orthogonal, and thus

I
∑n

i=1 xijxik = 0 for all combinations of the columns of the
design matrix X .

I
∑n

i=1 x
2
ij = n.

I The orthogonal columns lead to that the following formulas
are easy to interpret and calculate:

I XTX = diagonal matrix with n on the diagonal.
I β̂j =

1
n

∑n
i=1 xijYi .

I Var(β̂j) = σ2

n .
I Cov(β̂j , β̂k) = 0 for all j 6= k .
I SSR=

∑p−1
j=1 β̂

2
j .

See class notes for L17 for details on the derivation.
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Lima beans example: full 23 factorial design
I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of lima bean (baby or large)
I Y: yield

A B C AB AC BC ABC Level code Response
- - - + + + - 1 6
+ - - - - + + a 4
- + - - + - + b 10
+ + - + - - - ab 7
- - + + - - + c 4
+ - + - + - - ac 3
- + + - - + - bc 8
+ + + + + + + abc 5
x1 x2 x3 x12 x13 x23 x123 y

Write down the regression model with all possible interactions, and
find β̂j =

1
n

∑n
i=1 xijYi for the A and the AB columns.
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Main effects in DOE

Main effect of A

Â = 2β̂1

=
y2 + y4 + y6 + y8

4
− y1 + y3 + y5 + y7

4

Interpretation: mean response when A is high MINUS mean
response when A is low.
Similarily, main effect of B

B̂ = 2β̂2

=
y3 + y4 + y7 + y8

4
− y1 + y2 + y5 + y6

4

Interpretation: mean response when B is high MINUS mean
response when B is low.
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A

y
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B
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C

−1 1

Main effects plot for y

A B C A:B A:C B:C A:B:C
-2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25

Explain the main effects in plain words!

A: depth (0.5 or 1), B: watering daily (once, twice), C: type (baby, large).
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Interaction effect in DOE

I What is the terpretation in DOE associated with β12?
I In DOE 2β̂12 is denoted ÂB and is called the estimated

interaction effect between A and B .

ÂB = 2β̂12

=
estimated main effect of A when B is high

2

− estimated main effect of A when B is low
2

=
estimated main effect of B when A is high

2

− estimated main effect of B when A is low
2
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Interaction plot matrix for y

A B C A:B A:C B:C A:B:C
-2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25
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Interpretation of ÂBC

I ÂBC = 1
2 ÂB interaction when C is at the high level -

1
2 ÂB interaction when C is at the low level.

I Or, two other possible interpretation with swapped placed for
A, B and C .

I And remember that ÂB = 1
2 Â main effect when B is at the

high level - 1
2 Â main effect when B is at the low level.
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R: DOE set-up for lima beans

> library(FrF2)
> plan <- FrF2(nruns=8,nfactors=3,randomize=FALSE)
creating full factorial with 8 runs ...
> plan

A B C
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1
class=design, type= full factorial

But, the experiment should be performed in random order. We use R to
find the random order, and then we choose randomize=TRUE. I have
used randomize=FALSE here because the y-values were easier to read in
in standard order.
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R: DOE add response

> y <- c(6,4,10,7,4,3,8,5)
> y
[1] 6 4 10 7 4 3 8 5
> plan <- add.response(plan,y)
> plan

A B C y
1 -1 -1 -1 6
2 1 -1 -1 4
3 -1 1 -1 10
4 1 1 -1 7
5 -1 -1 1 4
6 1 -1 1 3
7 -1 1 1 8
8 1 1 1 5
class=design, type= full factorial
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R: DOE lm and effect

> lm3 <- lm(y~(.)^3,data=plan)
> MEPlot(lm3)
> IAPlot(lm3)
> effects <- 2*lm3$coeff
> effects
(Intercept) A1 B1 C1 A1:B1 A1:C1 B1:C1 A1:B1:C1
11.75 -2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25
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2k full factorial
I There are k factors: A, B, C, ..., and
I 2=each factor has two levels.
I There are 2k possible experiments.
I We have in total 2k parameters to be estimated:

I 1 intercept
I k =

(
k
1

)
main effects: A, B, C, ...

I
(
k
2

)
two factor interactions: AB, AC, .., BC, BD,...

I
(
k
3

)
three factor interactions: ABC, ABD, ABE, ...

I · · ·
I
(
k
k

)
= 1 k factor interaction.

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk

+ β12x12 + · · ·+ βk−1,kxk−1,k

+ β123x123 + · · ·+ βk−2,k−1,kxk−2,k−1,k

· · · +β12...kx12...k + ε
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Geometric interpretation of effects
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Lima beans: significant effects?
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Main effects plot for y

A B C A:B A:C B:C A:B:C
-2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25
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Lima beans: significant effects?

> summary(lm3)

Call:
lm.default(formula = y ~ (.)^3, data = plan)

Residuals:
ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.875 NA NA NA
A1 -1.125 NA NA NA
B1 1.625 NA NA NA
C1 -0.875 NA NA NA
A1:B1 -0.375 NA NA NA
A1:C1 0.125 NA NA NA
B1:C1 -0.125 NA NA NA
A1:B1:C1 -0.125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1,Adjusted R-squared: NaN
F-statistic: NaN on 7 and 0 DF, p-value: NA
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Estimation of σ2

1. Perform replicates, estimate the full model and use s2 from
regression model.

2. Assuming specified higher order interactions are zero
(changing the regression model).

3. If the two above is not possible: Lenth’s Pseudo Standard
Error (PSE).
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Three factors in three full replicates

I Lima beans experiment from Box, Hunter, Hunter page 321.
I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of limabean (baby or large)
I Y: yield

I r = 3: Performed in three full replicate experiments, i.e. three
measurements for each combination of A, B and C.

I We then have (r − 1)23 = 2 · 8 = 16 degrees of freedom for
estimating the error variance.

I Estimates follow automatically. Perform this for yourself. R
code on course www-page.
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A1:B1:C1

B1:C1

A1:C1

A1:B1

C1

A1

B1

0.0 0.5 1.0 1.5 2.0 2.5
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ANOVA output: R

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 28.167 28.167 52.0000 2.075e-06 ***
B 1 37.500 37.500 69.2308 3.319e-07 ***
C 1 24.000 24.000 44.3077 5.517e-06 ***
A:B 1 0.667 0.667 1.2308 0.2837
A:C 1 0.167 0.167 0.3077 0.5868
B:C 1 0.167 0.167 0.3077 0.5868
A:B:C 1 0.000 0.000 0.0000 1.0000
Residuals 16 8.667 0.542
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Back to no extra replicates: Lima beans with only main
effects

> lm1 <- lm(y~.,data=plan)
> summary(lm1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.8750 0.2165 27.135 1.1e-05 ***
A1 -1.1250 0.2165 -5.196 0.00653 **
B1 1.6250 0.2165 7.506 0.00169 **
C1 -0.8750 0.2165 -4.041 0.01559 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6124 on 4 degrees of freedom
Multiple R-squared: 0.9614,Adjusted R-squared: 0.9325
F-statistic: 33.22 on 3 and 4 DF, p-value: 0.002755
> anova(lm1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 10.125 10.125 27.000 0.006533 **
B 1 21.125 21.125 56.333 0.001686 **
C 1 6.125 6.125 16.333 0.015585 *
Residuals 4 1.500 0.375
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Back to no extra replicates: Assuming specified higher order
interactions are zero
Result that is JUST a curiosity

I In general
Êffect j ∼ N(Effect j , σ2

effect)

I If we assume that the effect is zero (βj = 0), then
E(Effectj) = 0 and

E(Êffect
2
j ) = σ2

effect

I Thus Êffect
2
j is an unbiased estimator of σ2

effect if βj = 0.
I If several effects are assumed to be 0, we use the average of

the Êffect
2
j to estimate σ2

effect .
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Lima beans estimated effects: full model

Estimated effects (2*coeff):
(Intercept) A1 B1 C1 A1:B1 A1:C1 B1:C1 A1:B1:C1

11.75 -2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(>F)

A 1 10.125 10.125
B 1 21.125 21.125
C 1 6.125 6.125
A:B 1 1.125 1.125
A:C 1 0.125 0.125
B:C 1 0.125 0.125
A:B:C 1 0.125 0.125
Residuals 0 0.000
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Lenth’s PSE
Let C1,C2, . . . ,Cm be estimated effects, e.g. Â, B̂, ÂB , etc.
1. Order absolute values |Cj | in increasing order.
2. Find the median of the |Cj | and compute preliminary estimate

s0 = 1.5 ·medianj |Cj |

3. Take out the effects Cj with |Cj | ≥ 2.5 · s0 and find the median
of the rest of the |Cj |. Then PSE is this median multiplied by
1.5, i.e.

PSE = 1.5 ·median{|Cj | : |Cj | < 2.5s0}

and this is Lenth’s estimate of σeffect .
4. Lenth has suggested empirically that the degrees of freedom to

be used with PSE is m/3 where m is the initial number of
effects in the algorithm (intercept not included). Thus we
claim as significant the effects for which |Cj | > tα/2,m/3 · PSE .
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R: Pareto plot for Lima beans

A1:C1

A1:B1:C1

B1:C1

A1:B1

C1

A1

B1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Pareto plot: ordered histogram of absolute value of estimated
effects, Length sign line added.
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Which ν?

From the previous slide, connection between ν and your chosen
estimation method for σ and σeffect .
1. If you have performed the 2k experiment r times, then
ν = (r − 1)2k .

2. If m effects (preferrable higher order interactions) are assumed
to be zero, then ν = m.

3. When Lenth’s PSE is used, the degrees of freedom is

ν =
2k − 1

3

where 2k − 1 is the number of effects in the model, while the 3
in the denominator has been found empirically by Lenth.
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DOE workflow

1. Set up full factorial design with k factors in R, and
2. randomize the runs.
3. Perform experiments, and enter data into R.
4. Fit a full model (all interactions) - make Pareto-plot

(with/without red line).
5. If you do not have replications, refit the data to a reduced

model.
6. Assess model fit (residual plots, need transformations?).
7. Construct confidence intervals, assess significance.
8. Interpret you results (main and interaction plots).
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Example compulsory project
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Response: length of plant after 8 days of growing.
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The experiments
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Full model
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Full model
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Inference

A, C and D, AC and CD found to be significant.
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Interpretation: Interaction plots
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The practical issues (1)

I You may work alone, or in groups of two.
I You need to perform a multiple regression experiment

consisting of 16 trials - that is, n=16 observations.
I The response that is measure should be continuous, so that

the response itself or a transformation of the response in a
regression model can be seen to be normally distributed. ( It is
also possible to assume that a response with at least 7 ordered
categories can be seen as continuous.)

I You choose 3 or 4 factors with two levels each that might
influence your response (it is possible to choose more factors,
but then you need to do a so called fractional factorial design
to be lectured soon).
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The practical issues (2)

I If you choose 3 factors you need to perform all possible
combinations of the 3 factors two times (2·2·2=8), if you
choose 4 factors you need to perform all possible combinations
only once (2 · 2 · 2 · 2 = 16). If you choose more than 4 factors
you need to study the “factional factorials” to find out which
of the possible combinations you perform.

I A very important aspect of performing the 16 trials is that the
trials should be independent and performed in a randomized
order (why?). You use R to randomize the experiments for you.

I Each experment should be a complete new experiment - a
genuine run replicate, unless you use blocking (not lectured
yet). For example a block effect my be person or day.
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Genuine run replicates

"When genuine run replicates are made under a given set of
experimental conditions, the variation between the associated
observations may be used to estimate the standard deviation of the
effects. By genuine run replicated we mean that variation between
runs made at the same experimental conditions is a reflection of the
total variability afflicting runs made at different experimental
conditions. This point requires careful consideration."
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.
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Genuine run replicates

Randomization of run order usually ensures that replicates are
genuine. Pilot plant example: each run consists of
1. cleaning the reactor
2. inserting the appropriate catalyst carge
3. running the apparatus at at given temperature and a given

feed concentration for 3 hrs to allow the process to settle
down at the chosen experimental conditions, and

4. combining chemical analyses made on these samples.
A genuine run replicate must involve the taking of all these steps
again. In particular, several chemical analyses from a single run
would provide only an estimate of analytical variance, usually only a
small part of the run-to-run variance.
From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.10.6.
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The practical issues (3)

I After you have performed all 16 experiments you need to
record the response and enter it into the experiment you have
designed in R.

I Then you analyze the data, estimate effects, perform
inference, check the model assumptions (RESIDUALS!), and
explain your findings.
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The report (1)

1. Describe the problem you want to study. Why is this
interesting? What prior knowledge do you have? What do you
want to achieve?

2. Selection of factors and levels: Which factors do you think are
relevant to the problem described above? Which of these
factors do you think is active/inert? Do you expect an
interaction between some of the factors? Which levels should
be used, and why do you think these are reasonable? How can
you control that the factors really are at the desired level?

3. Selection of response variable: Which response variable will
provide information about the problem described above? Are
there several response variables of interest? How should the
response be measured? What can you say about the accuracy
of these measurements?
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The report (2)

4. Choice of design: 2 k factorial, 2 k-p fractional factorial
(resolution?)? Is it necessary or desirable to use a blocked
design? Is it necessary or desirable with replicates?

5. Implementation of the experiment: Randomization. Describe
any problems with the implementation.

6. Analysis of data: Calculation of effects and assessment of
statistical significance. Use Lenth (not only), replicates or
“setting some interactions to zero” to perform inference?
Check the assumptions. RESIDUAL PLOTS!

7. Conclusion (explain main and interaction plots) and
recommendations: Which conclusions can you draw from the
experiment?

To get 10 points you need to have addressed all of these aspects in
a correct manner! BUT - don’t hand in more than 8 pages
(included printout from R and plots)!
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I don’t want to collect data!

I Well, it is possible to instead analyse a observational data set
(but talk to the lecturer first),

I or to perform a simulation experiment to investigate properties
of the regression model.
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Supervision?

I See course page - several possibilities until deadline for hand-in
on Tuesday May 2.
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DOE workflow

1. Set up full factorial design with k factors in R, and
2. randomize the runs.
3. Perform experiments, and enter data into R.
4. Fit a full model (all interactions).
5. If you do not have replications, look at Pareto plots and, use

this to suggest at reduced model (if possible). Refit the
reduced model.

6. Assess model fit (residual plots, need transformations?).
7. Assess significance.
8. Interpret you results (main and interaction plots).

1 / 23

Q: Randomization

Why do you need to randomize the order in which you perform the
experiments?
To make the experiments

I A: random.
I B: robust to external factors.
I C: have constant variance.
I D: independent.

Vote at clicker.math.ntnu.no, TMA4267 classroom.
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Genuine run replicates

"When genuine run replicates are made under a given set of
experimental conditions, the variation between the associated
observations may be used to estimate the standard deviation of the
effects. By genuine run replicated we mean that variation between
runs made at the same experimental conditions is a reflection of the
total variability afflicting runs made at different experimental
conditions. This point requires careful consideration."
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.
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Genuine run replicates

Randomization of run order usually ensures that replicates are
genuine. Pilot plant example: each run consists of
1. cleaning the reactor
2. inserting the appropriate catalyst charge
3. running the apparatus at at given temperature and a given

feed concentration for 3 hrs to allow the process to settle
down at the chosen experimental conditions, and

4. combining chemical analyses made on these samples.
A genuine run replicate must involve the taking of all these steps
again. In particular, several chemical analyses from a single run
would provide only an estimate of analytical variance, usually only a
small part of the run-to-run variance.
From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.10.6.
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Pilot plant: A, B and C

A=Temperature, B=Concentration, C=Catalyst, Y=yield.
A B C AB AC BC ABC Level code Response
- - - + + + - 1 60
+ - - - - + + a 72
- + - - + - + b 54
+ + - + - - - ab 68
- - + + - - + c 52
+ - + - + - - ac 83
- + + - - + - bc 45
+ + + + + + + abc 80
x1 x2 x3 x12 x13 x23 x123 y
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Blocking on ABC

Block 1 consists of experiments with ABC=-1.
Block 2 consists of experiments with ABC=1.
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Blocking on ABC

I ABC is counfunded with the block effect. We can not separate
these two effects from eachother.

I Suppose all values in block 2 is increased by 10 units.
I Then the estimated effect of ABC will increase by 10.
I But all other estimated effects remain unchanged - and these

are the most important to estimate.
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Original data

Factorial Fit:
Y versus
Block A B C
Term Effect Coef

Constant 64,250
Block -0,250
A 23,000 11,500
B -5,000 -2,500
C 1,500 0,750
A*B 1,500 0,750
A*C 10,000 5,000
B*C 0,000 0,000

Added 10 to all obs in Block 2.

Factorial Fit:
"block effect" versus
Block A B C

Term Effect Coef
Constant 69,250
Block -5,250
A 23,000 11,500
B -5,000 -2,500
C 1,500 0,750
A*B 1,500 0,750
A*C 10,000 5,000
B*C 0,000 0,000
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23 with four blocks
We need two generators (columns) to define four blocks: the
optimal choice is AB and AC

I Block 1: AB=AC=-1 (- -)
I Block 2: AB=-1, AC=1 (- +)
I Block 3: AB=1, AC=-1 (+ -)
I Block 4: AB=AC=1 (+ +)

Std order A B C AB AC BC ABC
1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +
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23 with AB and AC as generators

Std order A B C AB AC BC ABC Block
2 + - - - - + + 1
7 - + + - - + - 1
3 - + - - + - + 2
6 + - + - + - - 2
4 + + - + - - - 3
5 - - + + - - + 3
1 - - - + + + - 4
8 + + + + + + + 4
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23 with AB and AC as generators

I Interaction effects AB and AC are confounded with the block
effect, since they are the generators.

I Their product, AB ∗ AC = A2BC = BC , is alco confounded
with the block effect (see that BC is constant within each
block).

I Adding h2 to block 2, h3 to block 3 and h4 to block 4 does
not change the estimated main effects A, B, or C, and not the
interaction effect ABC.

I However, AB will change with 2 · h3 + 2 · h4 − 2 · h2, and we
will NOT be able to separate the true AB effect from the
block effect.
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How to choose which blocks to be used for blocking?

I Idea: try to leave estimates for main effects and low order
interaction unchanged by the blocking.

I Note: I=AA=BB=CC, where I is a column of 1’s.
I How NOT to do this:

I Find the blocks for a 23 experiment using generators ABC and
AC.

I The interaction between ABC and AC is ABC*AC=B.
I This means chosing ABC and AC is not a good idea since then

we can not trust our estimate of B.
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Questions

Should you use a blocking factor in your compulsory project?
Do you understand the difference between blocking and repetition?
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Box, Hunter, Hunter: Reactor example

I A=feed rate (liters/min).
I B=Catalyst (%).
I C=Agitation rate (rpm).
I D=Temperature (deg C).
I E=Concentration (%).
I Response= (%) reacted.

Full factorial with 25 = 32 experiments.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.
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Reactor data: standard order

A B C D E y
1 -1 -1 -1 -1 -1 61 17 -1 -1 -1 -1 1 56
2 1 -1 -1 -1 -1 53 18 1 -1 -1 -1 1 63
3 -1 1 -1 -1 -1 63 19 -1 1 -1 -1 1 70
4 1 1 -1 -1 -1 61 20 1 1 -1 -1 1 65
5 -1 -1 1 -1 -1 53 21 -1 -1 1 -1 1 59
6 1 -1 1 -1 -1 56 22 1 -1 1 -1 1 55
7 -1 1 1 -1 -1 54 23 -1 1 1 -1 1 67
8 1 1 1 -1 -1 61 24 1 1 1 -1 1 65
9 -1 -1 -1 1 -1 69 25 -1 -1 -1 1 1 44
10 1 -1 -1 1 -1 61 26 1 -1 -1 1 1 45
11 -1 1 -1 1 -1 94 27 -1 1 -1 1 1 78
12 1 1 -1 1 -1 93 28 1 1 -1 1 1 77
13 -1 -1 1 1 -1 66 29 -1 -1 1 1 1 49
14 1 -1 1 1 -1 60 30 1 -1 1 1 1 42
15 -1 1 1 1 -1 95 31 -1 1 1 1 1 81
16 1 1 1 1 -1 98 32 1 1 1 1 1 82
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Pareto and Normal plot
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Redundancy

I The number of runs in a full 2k factorial design increases
geometrically when k is increased.

I E.g. k = 7 factors gives 27 = 128 runs and we can estimate
I

(7
1

)
= 7 main effects

I
(7
2

)
= 21 2nd order interactions

I
(7
3

)
= 35 3rd order interactions

I
(7
4

)
= 35 4th order interactions

I
(7
5

)
= 21 5th order interactions

I
(7
6

)
= 7 6th order interactions

I
(7
7

)
= 1 7th order interactions
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Redundancy (cont.)

I There is a hierarchy in absolute magnitude: the main effects
tend to be larger than the 2nd order interactions, which tends
to be larger than the 3rd order interactions, which ...

I At some point higher order interactions tend to become
negligible and can be discarded.

I If many factors are introduced into a design, it often happens
that some have no distinguishable effect at all.

I Fractional factorial designs exploit this redundancy!
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Full 23 factorial experiment

How can we accomodate four factors here?

Std order A B C AB AC BC ABC
1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +
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Full 23 factorial experiment - turned into 4-factor experiment

Which effects are confounded?

A B C AB AC BC D=ABC ABD ACD BCD ABCD
1 - - - + + + - - - - +
2 + - - - - + + - - + +
3 - + - - + - + - + - +
4 + + - + - - - - + + +
5 - - + + - - + + - - +
6 + - + - + - - + - + +
7 - + + - - + - + + - +
8 + + + + + + + + + + +
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Half fraction of 24

I The design is called 24−1
IV .

I D=ABC is called the generator for the design.
I I=ABCD is called the defining relation for the design.
I The design is said to have resolution IV.
I The alias structure defines which effects are confounded:

I A+BCD, B+ACD, C+ABD, D+ABC.
I AB+CD, AC+BD, BC+AD.
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What did we learn today?

I Why may experiments need to be performed in blocks?
(Batches of raw material, performed on different days,
different people performing the experiments.)

I Should we also add a "block" effect if we perform repeated
experiments? (Sometimes. If done by different people, or
external factors have changed.)

I Should then the block effect be a part of the regression
model? (In most cases: yes!)

I Why don’t we want to perform a full factorial experiment, but
a instead a fractional factorial? (If we have many factors we
maybe not need to be able to estimate all possible
interactions, and may accept that effects are confounded.)
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What did we learn today?

I What is the easiest way to design a half-fraction of a 2k

factorial experiment? (Perform all the experiments where the
highest order interaction =-1 or +1. E.g. for k=4 we may do
16 different experiments, and now we only do the 8 possible
experiments where ABCD=+1=defining relation. This is the
same as thinking that D=ABC=generator).

I New words: generator(s), defining relation(s), resolution.
I Next time: more on interpreting "confounding", interpreting

"resolution" and more fractional factorial experiments
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What did we learn last lession?
I Why don’t we want to perform a full factorial experiment, but

a instead a fractional factorial? (If we have many factors we
maybe not need to be able to estimate all possible
interactions, and may accept that effects are confounded.)

I What is the easiest way to design a half-fraction of a 2k

factorial experiment? (Perform all the experiments where the
highest order interaction =-1 or +1. E.g. for k=4 we may do
16 different experiments, and now we only do the 8 possible
experiments where ABCD=+1=defining relation. This is the
same as thinking that D=ABC=generator).

I New words:
I generator(s)=how to generate the design,
I defining relation(s), found from the generators,
I resolution=length of shortest defining relation,
I alias structure=confounding pattern, found by multiplying

each effect of interest with the defining relation.
I Today: more on interpreting "confounding", interpreting

"resolution" and more fractional factorial experiments
1 / 19

Box, Hunter, Hunter: Reactor example

I A=feed rate (liters/min).
I B=Catalyst (%).
I C=Agitation rate (rpm).
I D=Temperature (deg C).
I E=Concentration (%).
I Response= (%) reacted.

Full factorial with 25 = 32 experiments.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.
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Half fraction with reactor example

I Instead of running a full factorial with 25 = 32 experiments,
I we suggest running a half-fraction.
I We choose I = ABCDE as the defining relation.
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Reactor data: answer in groups

A B C D E y
1 -1 -1 -1 -1 -1 61 17 -1 -1 -1 -1 1 56
2 1 -1 -1 -1 -1 53 18 1 -1 -1 -1 1 63
3 -1 1 -1 -1 -1 63 19 -1 1 -1 -1 1 70
4 1 1 -1 -1 -1 61 20 1 1 -1 -1 1 65
5 -1 -1 1 -1 -1 53 21 -1 -1 1 -1 1 59
6 1 -1 1 -1 -1 56 22 1 -1 1 -1 1 55
7 -1 1 1 -1 -1 54 23 -1 1 1 -1 1 67
8 1 1 1 -1 -1 61 24 1 1 1 -1 1 65
9 -1 -1 -1 1 -1 69 25 -1 -1 -1 1 1 44
10 1 -1 -1 1 -1 61 26 1 -1 -1 1 1 45
11 -1 1 -1 1 -1 94 27 -1 1 -1 1 1 78
12 1 1 -1 1 -1 93 28 1 1 -1 1 1 77
13 -1 -1 1 1 -1 66 29 -1 -1 1 1 1 49
14 1 -1 1 1 -1 60 30 1 -1 1 1 1 42
15 -1 1 1 1 -1 95 31 -1 1 1 1 1 81
16 1 1 1 1 -1 98 32 1 1 1 1 1 82

I Which of the 32 experiments should be performed when
I = ABCDE is the defining relation? What is then the generator?

I What is the resolution for this design?

I Write down the aliasing pattern.
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Resolution
A design is said to be of resolution R if no p-factor effect is aliased
with an effect containing less than R-p factors.

A design of resolution
III does not confound main effects with one another, but

does confound main effects with two-factor
interactions.

IV does not confound main effects and two-factor
interactions, but does confound two-factor
interactions with other two-factor interactions.

V does not confound main effects and two-factor
interactions with each other, but does confound
two-factor interactions with three-factor interactions
and so on.

In general the resolution of a two-level factional design is the length
of the shortest word in the defining relation.
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Half fraction with reactor example: generator and defining
relation

I Instead of running a full factorial with 25 = 32 experiments,
I we suggest running a half-fraction.
I We choose I = ABCDE as the defining relation.
I Alternative thinking:

I Construct a full 24 design for A, B, C and D.
I The column of signs for the ABCD interaction is written and

used to define the levels for factor E.
I This means E = ABCD is the generator for the design, and

I = ABCDE is the defining relation.

R-code on course www-page.
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Interpretation of confounding: example

Suppose there are three factors, A, B, C, for which we know the
true effects and interaction effects:

A = 8
B = 20
C = 2

AB = 4
AC = 2
BC = 6

ABC = 4

Also is known that average response is 70.
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True regression model

The corresponding regression model is:

y = β0+β1z1+β2z2+β3z3+β12z12+β13z13+β23z23+β123z123+ε

where z12 = z1z2, z13 = z1z3, z23 = z2z3, z123 = z1z2z3, and where
the coefficients β are half the corresponding effects, while β0 = 70.
The regression model is hence

y = 70+ 4z1 + 10z2 + z3 + 2z12 + z13 + 3z23 + 2z123 + ε

In the following we shall also for simplicity assume that the errors ε
are 0. This makes it possible to compute the responses for any
experiment for which the levels of A, B, C are specified.
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Confounding example (cont.)

Assume now that a 23−1 experiment is performed, with generator
C = AB . And responses are computed using the true regression
model (check!).
St. order A B C=AB AB AC BC ABC y

1 + - - + + - - + 57
2 + + - - - - + + 65
3 + - + - - + - + 73
4 + + + + + + + + 93

Const. z1 z2 z3 z12 z13 z23 z123
Coeff. 70 4 10 1 2 1 3 2
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Confounding example (cont.)
It is now seen that in all of these 4 experiments are

Const. = z123

z1 = z23

z2 = z13

z3 = z12

so for the performed experiment we may as well write the model as

y = (β0 + β123) + (β1 + β23)z1 + (β2 + β13)z2 + (β3 + β12)z3

Using that we know the values of the coefficients, the true model
for the data is thus

y = (70+ 2) + (4+ 3)z1 + (10+ 1)z2 + (1+ 2)z3
= 72+ 7z1 + 11z2 + 3z3
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Confounding example (cont.)

I Suppose now that we try to compute the main effect of A
from our data. Apparently this will be

`A =
65+ 93

2
− 57+ 73

2
= 79− 65 = 14

which is also found as twice the coefficient before z1 in the
regression model above.

I Similarly, the apparent interaction effect of B and C would be
computed as

`BC =
−57+ 65− 73+ 93

2
= 14

The truth (which is known to us) is, however, that A = 8 and
BC = 6, so that it is the sum of A and BC which is 14.
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This is what is meant by saying that the main effect of A and the
interaction effect between B and C are confounded (mixed). The
confounded effects are listed in R as the alias structure.

Factorial Fit: y versus A; B; C

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef
Constant 72,000
A 14,000 7,000
B 22,000 11,000
C 6,000 3,000

Alias Structure
I + A*B*C
A + B*C
B + A*C
C + A*B
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The bicycle example

From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.12.25

13 / 19

The bicycle example

I Set up a full factorial design in the three variables A, B, C.
I Use the generators: D=AB, E=AC, F=BC, G=ABC.
I Defining relations: I=ABD=ACE=BCF=ABCG.
I The design is of resolution III.
I It is a 1/16 fraction of the full 27, and thus called 27−4

III .
I A design where every available contrast is associated with a

factor is called a saturated design.

14 / 19

Using FrF2 in R, see file L20.R
> plan <- FrF2(nruns=8,nfactors=7,
generators=c("AB","AC","BC","ABC"),alias.info=2,randomize=FALSE)
> plan

A B C D E F G
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1
class=design, type= FrF2.generators
> summary(plan)
Call:
FrF2(nruns = 8, nfactors = 7, generators = c("AB", "AC", "BC",

"ABC"), alias.info = 2, randomize = FALSE)
Experimental design of type FrF2.generators
8 runs
Factor settings (scale ends):

A B C D E F G
1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1
Design generating information:
$legend
[1] A=A B=B C=C D=D E=E F=F G=G
$generators
[1] D=AB E=AC F=BC G=ABC
Alias structure:
$main
[1] A=BD=CE=FG B=AD=CF=EG C=AE=BF=DG D=AB=CG=EF E=AC=BG=DF F=AG=BC=DE G=AF=BE=CD
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Exam question on fractional factorials (K2014)

In a pilot study with four factors A, B, C and D, the 8 experiments
listed below were run.

A B C D
1 -1 -1 -1 1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 -1 1
5 -1 -1 1 1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 1

What type of experiment is this?
What is the generator and the defining relation for the experiment?
What is the resolution of the experiment?
Write down the alias structure of the experiment.
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Not covered: Response Surface Methods

Dates back to the 1950s, with popular book by Box and Draper.
I The method performes

sequential optimization, and
can deal with several
responses simultaneously.

I Central Composite Designs
(CCD) and Box-Behnken
Designs are two popular
methods.

I John Tyssedal supervises
5th year project and master
thesis in DOE.

https://onlinecourses.science.psu.edu/stat503/node/57
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Final word about the DOE Compulsory Exercise 4

I If you want to have 4 factors and perform 16 runs see R-code
named https://www.math.ntnu.no/emner/TMA4267/
2017v/RscriptDOEtreadmill.R

I If you want to have 3 factors, but need a block effect - look at
this code https://www.math.ntnu.no/emner/TMA4267/
2017v/DOE2in3withrepl.R, because it is best to code the
block with effect coding - FrFr use treatment coding - and
then we don’t have orthogonal columns and everything
becomes difficult...
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Summing up with Kahoot! quiz

kahoot.it
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Which of the following is NOT correct for a
2k full factorial design matrix X?

A X only contains the numbers -1 and 1.

B The sum of each column equals 1.

C The columns of X are orthogonal.

D XT X is a diagonal matrix.

Y = Xβ+ε, with ε ∼ Nn(0,σ2I),
Êffect j = 2 · 1

n
∑n

i=1 xijYi .
Var(Êffect j) equals

A σ2 B 1
nσ

2

C 2
nσ

2 D 4
nσ

2
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C
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B

A
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This plot is called
A Main effects plot

B Interaction effects plot

C Pareto plot

D Normal plot
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effect of A is
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Interaction plot matrix for y Which of the esti-
mated interaction ef-
fects AB, AC, BC is
the largest?
A AB

B AC

C BC

Set up a full factorial design in
the three variables A, B, C, and
use generators: D=AB, E=AC,
F=BC, G=ABC. What do you
get?

A 27−4
III B 27−3

IV
C 27−4

IV D 27−3
III

For a design is of resolution III:

A Main effects are confounded with each
other.

B Main effects are confounded with 2-way
interactions.

C Main effects are confounded with 3-way
interactions.

D Main effects are confounded with 4-way
interactions.



Correct?

Are you sure you want to read the correct
answers? Maybe try first?

Answers

Correct: BDCDAAB


