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This note gives a short introduction to central elements of the topic of multiple hypothesis
testing. If you, after you have read this note, want to know more about multiple testing the
article Goeman and Solari (2014) is an excellent read.

1 Single hypothesis testing

Consider a linear regression model, Y = Xβ + ε, where the vector of regression coefficients,
β has length p, the vector of univariate responses Y has length n and the design matrix has
dimension n× p and rank p. Let βj denote an element of β, and assume that we are interesting
in testing a two-sided hypothesis about no linear association between the response and the jth
covariate

H0 : βj = 0 vs. H1 : βj 6= 0.

Two types of errors are possible, type I error and type II error. A type I error would be to reject
H0 when H0 is true, that is concluding that there is a linear association between the response
and the predictor where there is no such association. This is called a false positive finding.

A type II error would be to fail to reject H0 when the alternative hypothesis H1 is true, that is
not detecting that there is a linear association between the response and the covariate. This is
called a false negative finding.

The two types of errors for a single hypothesis test can be presented in Table 1.

Not reject H0 Reject H0
H0 true Correct Type I error
H0 false Type II error Correct

Table 1: Single hypothesis testing set-up.

A p-value p(X) is a test statistic satisfying 0 ≤ p(Y ) ≤ 1 for every vector of observations Y .
Small values give evidence that H1 is true. In single hypothesis testing, if the p-value is less
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than the chosen significance level (chosen upper limit for the probability of committing a type
I error), then we reject the null hypothesis, H0. The chosen significance level is often referred
to as α.

A p-value is valid if
P (p(Y ) ≤ α) ≤ α

for all α, 0 ≤ α ≤ 1, whenever H0 is true (Casella and Berger, 2001, p. 397), that is, if the
p-value is valid, rejection on the basis of the p-value ensures that the probability of type I error
does not exceed α. An example of a p-value that is not valid is given in Appendix A.1.

If P (p(Y ) ≤ α) = α for all α, 0 ≤ α ≤ 1, the p-value is called an exact p-value. Observe that
exact p-values are uniformly distributed when the null hypothesis is true, see Appendix A.2 for
a short proof. This is a fact that is often misunderstood by users of p-values. The incorrect
urban myth is that p-values from true null hypotheses are close to one, when the correct fact is
that all values in intervals of the same length are equally probable (which is a property of the
uniform distribution).

2 From single to multiple hypothesis testing

In many situations we are not interested in testing only one hypothesis, but instead m hypothe-
ses.

• In a regression setting m might be the number of covariates in the regression model, and
we would test H0 : βj = 0 vs H1 : βj 6= 0 for all j = 1, . . . ,m.

• If we have a linear regression with one categorical covariate with k levels, called a one-way
analysis of variance model, we might first want to test H0 : µ1 = µ2 = . . . = µk against
the alternative hypothesis, H1, that the means of at least two of the k levels are different
from each other. If the null hypothesis is rejected we might want to continue to test which
of all possible pairs of the means that are different – giving m =

(k
2
)
hypothesis tests, or

compare the mean of all levels to a common reference level µ1, givingm = k−1 hypothesis
tests.

Let us assume that we perform m hypothesis tests, giving m p-values and then choose a cut-off
on the p-values at some value αloc (called a local significance level) to decide if we want to reject
each null hypothesis. We then reject the null hypotheses where the p-value is smaller than αloc,
and this leads to rejection of R hypotheses. Benjamini and Hochberg (1995) summarized the
(unknown) result of the m hypotheses tests as shown in Table 2. Note that in this table only the
total number of hypotheses, m, and the number of rejected null hypotheses, R, are observed,
and all other quantities are unknown (unless we for some reason know which null hypotheses
are true or not).

In the table we assume that out of the m hypotheses tested, the (unknown) number of true null
hypotheses is m0. Further, V represents the number of type I errors (false positive findings)
and T the number of type II errors (false negative findings). The last two quantities represent
correct actions, with U true null hypotheses that are not rejected and S false null hypotheses
that are rejected.

It is possible to define a generalization of the type I error rate to include the results of m tests,
and in the next sections, we will present two different overall type I error rates which are used
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Not reject H0 Reject H0 Total
H0 true U V m0
H0 false T S m−m0
Total m−R R m

Table 2: Multiple testing set-up

in multiple testing problems, the familywise error rate (FWER), which gives the probability of
at least one false positive result among m hypotheses tested and the false discovery rate (FDR),
which gives the expected proportion of false positive results among the m hypotheses tested.

But, first, why is this needed?

Consider a multiple testing problem where m = 20 covariates are tested for association with a
response based on a method producing exact p-values. First we look at the expected number
of false positive findings, E(V ). If we use αloc = 0.05 as the significance level cut-off for each
individual test, the probability of falsely rejecting each null hypothesis is controlled at 5%,
that is, given that the null hypothesis is true the probability that the p-value is smaller than
αloc = 0.05 is 0.05. So, for each of the m hypotheses the probability of falsely rejecting the
null hypothesis is 0.05 (because we are working with exact p-values). If we assume that all null
hypotheses are true, then the expected number of false positive findings ism·αloc = 20·0.05 = 1.
We expect to get 1 false positive finding when we use significance cut-off αloc = 0.05 and perform
m = 20 tests. It that good enough for us?

Further, we look at the probability of at least one false positive result among the m tests. Also
here we assume that all null hypotheses are true, and now we also assume that the p-values
from the 20 hypothesis tests are independent. Let the p-value for the ith test be denoted Pi.
The probability of at least one false positive result among the m = 20 tests is

P (V > 0) = 1− P (V = 0) = 1− P (P1 > αloc ∩ P2 > αloc ∩ · · · ∩ P20 > αloc) =
= 1− P (P1 > αloc) · P (P2 > αloc) · · ·P (P20 > αloc) = 1− (1− 0.05)20

= 0.64,

that is, for a multiple testing problem with m = 20 tests, the probability of obtaining at least
one false positive result is 64%.

This example illustrates the importance of choosing the local significance cut-off αloc lower than
what we usually do for single hypothesis testing when performing many hypotheses tests.

3 Familywise error rate

The familywise error rate (FWER) is defined as the probability of one or more false positive
findings

FWER = P (V > 0)

where V is the number of false positive findings among the m hypotheses tested. The number
of false positive findings is not known in a real life situation, but still we may find a cut-off on
the p-value, called αloc, that gives an upper limit to (controls) the FWER.
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Raw and adjusted p-values Multiple testing methods can be described in terms of the raw
or adjusted p-values. Raw p-values, pj , are the lowest nominal level to reject the null hypothesis.
The adjusted p-value, p̃j , is the nominal level of the multiple (simultaneous) test procedure at
which H0j , j = 1, . . . ,m is just rejected, given the values of all test statistics involved. The
adjusted p-values can be defined as (Westfall and Young, 1993, p. 11)

p̃j = inf{α | H0j is rejected at FWER level α}.

In a multiple testing problem where all adjusted p-value below α are rejected, the overall type
I error rate (for example FWER) will be controlled at level α.

Strong and weak control Methods for multiple testing correction can give strong or weak
control of the overall type I error rate. Strong control means control of the overall type I error
rate under any combination of true and false hypotheses. Weak control means control of the
type I error rate only under the complete null hypothesis. Strong control of the overall type I
error rate implies weak control of the type I error rate (Goeman and Solari, 2014). In many
situations weak control implies strong control.

4 False discovery rate

The false discovery rate (FDR) is defined as

FDR =
{
E(VR ) for R > 0
0 else

(Benjamini and Hochberg, 1995) where V (the unknown number of false positive findings) and
R (the number of rejected null hypotheses) are given in Table 2.

FWER vs FDR If all null hypotheses are true, the FWER and FDR are equal (Benjamini
and Hochberg, 1995) and if only a subset of the null hypotheses are true, the FDR is less than
the FWER for a given data set. The FWER is the probability of obtaining at least one false
positive result, while the FDR is the expected proportion of false positives among the rejected
null hypotheses.

5 Methods for control of the familywise error rate

We say that a method controls the FWER at some level α when FWER≤ α. The wording
corrects for multiple testing is also used to mean the same as controls for.

Single-step methods controls for multiple testing by estimating one local significance level, αloc,
which is used as a cut-off to detect significance for each individual test (Westfall and Young,
1993, p. 43). On the other hand, step-up and step-down methods use different cut-offs for a
ranking of the tests based on the p-values. We will only consider single-step methods in this
note.

We have m hypothesis tests and corresponding p-values. Let us define the event Rj ,

Rj =the jth null hypothesis is rejected
= the p-value for the jth hypothesis test is below αloc.
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Let R̄j be the complementary event, i.e. that the jth null hypothesis is not rejected.

Now, we assume that all the m null-hypotheses are true. Then the familywise error rate can
written as

FWER = P (R1 ∪R2 ∪ · · · ∪Rm) = 1− P (R̄1 ∩ R̄2 ∩ · · · ∩ R̄m) (1)

The local significance level, αloc, which controls the FWER at level α is found by solving
Equation (1) for αloc using FWER = α. But, where is αloc in Equation (1)?

We assume that we perform m two-sided tests based on continuous test statistics T1, T2, . . . , Tm
and let f(t1, t2, . . . , tm) be the joint distribution of the m test-statistics. Then the FWER can
be written as an m dimensional integral, and αloc found by solving

FWER = 1−
∫ c

−c

∫ c

−c
· · ·
∫ c

−c
f(t1, t2, . . . , tm)dt1 · · · dtm = α (2)

where 1−αloc = P (−c ≤ Tj ≤ c) for all Tj . That is, to control the FWER in an optimal way we
need to know the joint distribution of the test statistics and be able to solve an m-dimensional
integral. This is in many cases not possible, and that is why methods that control the FWER
without specifying the joint distribution is most often used. We will now look at two such
methods.

5.1 The Bonferroni method

The Bonferroni method is valid for all types of dependence structures between the test statistics.
Using Boole’s inequality (the probability of a union of events is smaller than or equal to the
sum of the probability of each of the events):

α = FWER = P (R1 ∪ · · · ∪Rm) ≤
m∑
j=1

P (Rj) =
m∑
j=1

αloc = mαloc (3)

and the local significance level is αloc = α
m for the Bonferroni method. In Equation (3) the

equality is if all events are disjoint, that is, perfectly negatively associated hypotheses.

The Bonferroni method gives strong control of the FWER (Goeman and Solari, 2014), but is
known to be conservative when the tests are dependent. Conservative means that it is possible
to get a higher value for αloc that controls the FWER error rate by modelling the dependency
structure between the tests.

5.2 The Šidák method

If the tests are assumed independent we find the Šidák correction

FWER = 1− P (R̄1 ∩ · · · ∩ R̄m) = 1−
m∏
j=1

P (R̄j) = 1−
m∏
j=1

(1− αloc)

which when we solve FWER=α gives the local significance level for the Šidák method

αloc = 1− (1− α)1/m. (4)
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The method of Šidák (1967) controls the FWER when an inequality called the Šidák inequality
is satisfied, see Šidák (1967). It is beyond the scope of this note to elaborate on this, but as we
have seen, independence of tests is sufficient for the Šidák method to control the FWER.

With the same explanation as for the Bonferroni method the Šidák method is also conservative.
It can be shown that αloc based on the Bonferroni method will always be smaller than αloc
based on the Šidák method, and as m increases the ratio between the αloc from Šidák divided
by the αloc from Bonferroni goes to the limit − ln(1− α)/α, which is 1.026 when α = 0.05.

6 Examples

6.1 Illustration: the p-value is a random variable

We assume that in a normal population of females the systolic blood pressure is normally
distributed with mean 120 mmHg and standard deviation 10 mmHg. We would like to study a
population of females with a specific disease, and want to investigate if the mean systolic blood
pressure in this population is larger than 120 mmHg. We assume that the standard deviation of
the systolic blood pressure in the population with the specific disease is known to be 10 mmHg
(just to make this simple). The null hypothesis we want to study is one-sided,

H0 : µ = 120 vs. H1 : µ > 120

where µ is the unknown mean for the systolic blood pressure in the population of females with
a specific disease.

We draw a random sample of size n = 100 from the population with the specific disease, and
measure the systolic blood pressure, define random variables X1, X2, . . . , Xn. As test statistic
we use X̄ = 1

n

∑n
i=1Xi, and when the null hypothesis is true then X̄ ∼ N(120, 1) (since

SD(X̄) = 10√
n

= 10
10 = 1). Let us assume that in our sample we observe x̄ = 122 mmHg. This

will give a p-value of P (X̄ > 122) = 1− Φ(122− 120) = 1− Φ(2) = 0.023.

How can we interpret this p-value? Informally, a p-value is the probability under a specified
statistical model that a statistical summary of the data would be equal to or more extreme
than its observed value. Should I conclude that µ > 120? Yes, if we choose significance level
higher than 0.02. But, we should also report a (two-sided) confidence interval for µ: Here
[120.04, 123.96].

But now, what if we have the possibility to repeat the experiment. Assume that we repeat the
experiment three times, and that we get

1. x̄=120.9, p-value=0.18.

2. x̄ =118.9, p-value=0.86.

3. x̄=121.2, p-value=0.12.

So, the p-value is also a random variable, and for each time we draw a new sample we get an
observed version of the p-value. Let us assume that we do this first 100 times, and then 10 000
times. Histograms of p-values are presented in Figure 1.
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Figure 1: Histogram – and smoothed histogram – of p-values from the blood pressure example
in Section 6.1.

6.2 Simulation: distribution of p-values from true null hypotheses

We continue with the blood pressure example. Now, we assume that the mean of the population
of females with a specific disease is µ = 120, that is, the null hypothesis is true. Again, we
collect a random sample of size 100 and define the p-value to be P (X̄ > x̄) for an observed value
for the random sample of x̄. What is then the distribution of the p-value? See the upper part
of Figure 2 for R-code for drawing samples and plotting p-values, and the left panel of Figure
3 for the histogram of p-values when the experiment is repeated 10 000 times.

As we saw in Section 1, with proof in Appendix A.2, the p-values from the true null hypotheses
is uniformly distributed when the p-value is exact, and in this example we have exact p-values.

6.3 Simulation: distribution of p-values from false null hypotheses

We continue with the blood pressure example, but now we assume that the null hypothesis is
fals, and that the mean of the population of females with a specific disease is µ = 122. Again,
we collect a random sample of size 100 and define the p-value to be P (X̄ > x̄) for an observed
value for the random sample of x̄. What is then the distribution of the p-value? See the lower
part of Figure 2 for R-code for drawing samples and plotting p-values, and the right panel of
Figure 3 for the histogram of p-values when the experiment is repeated 10 000 times.

There is no general result for the distribution of p-values from false null hypotheses. In our
example we may change the true value from µ = 122 to another value under the alternative
hypothesis to see the effect on the distribution of the p-values.
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sigma=10
n=100
sn=sigma/sqrt(n)
# H0 true
mu0=120
set.seed(123)
pval=NULL
for(i in 1:10000)
{xbar=mean(rnorm(n,mu0,sigma))
pval=c(pval,1-pnorm((xbar-mu0)/sn))
}
hist(pval,nclass=20,main="10000 random samples",

xlab="p-value",prob=TRUE,col="lightblue")
# H1 true and mu=122
mu1=122
set.seed(123)
pval=NULL
for(i in 1:10000)
{xbar=mean(rnorm(n,mu1,sigma))
pval=c(pval,1-pnorm((xbar-mu0)/sn))
}
hist(pval,nclass=20,main="10000 random samples",

xlab="p-value",prob=TRUE,col="lightblue")

Figure 2: The blood pressure example. R-code for simulating data when the null hypothesis
(µ = 120) is true, and when the null hypothesis is false and µ = 122. The histograms are based
on 10 000 drawings of samples of size 100.
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Figure 3: Histogram of p-values for the blood pressure example. Left panel is for µ = 120 (null
hypothesis is true in Section 6.2), and the right panel is for µ = 122 (null hypothesis is false in
Section 6.3).
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6.4 Diabetes progression data

In a medical study the aim was to explain the ethology of diabetes progression, see Efron et al.
(2004). Data was collected from n = 442 diabetes patients, and from each patient the following
measurements are available:

• age (in years) at baseline

• sex (0=female and 1=male) at baseline

• body mass index (bmi) at baseline

• mean arterial blood pressure (map) at baseline

• six blood serum measurements: total cholesterol (tc), ldl cholesterol (ldl), hdl cholesterol
(hdl), tch, ltg, glucose glu, all at baseline,

• a quantitative measurement of disease progression one year after baseline (prog)

All measurements except sex are continuous.

A multiple linear regression model is fitted to the data set with prog as response and all the
other measurements as covariates, and is presented in Figure 4. Let p = 11 be the number of
regression parameters in the model (intercept and all the covariates).

First, observe from Figure 4 that the regression is found to be significant, and that we then
want to test the following hypothesis test for each of the regression parameters (we are not
interested in testing the intercept):

H1 : βj = 0 vs. H1 : βj 6= 0

for j = 1, . . . , 10, so m = 10 hypothesis tests.

What should then be the cut-off used for calling each regression parameter significant if we want
to control the FWER at level α = 0.1?

First we look at the Bonferroni method, which gives αloc = α/m = 0.1/10 = 0.01. Using this
cut-off is always valid, and then we reject R = 4 hypotheses (sex, bmi, map, and ltg).

Then, is it possible to give a higher value of αloc while still controlling the FWER at level 0.1? It
is possible to try an asymptotic version of the integral presented in (1). In the linear regression
we assume that Y = Xβ+ ε and that ε ∼ Nn(0, σ2I). This leads to β ∼ Np(β, (XTX)−1σ2).
The test statistic for testing the hypotheses (as reported in Figure 4) is the t-statistic

Tj = βj − 0√
cjj σ̂2

where cjj is the element (j, j) in (XTX)−1 and σ̂2 = 1
n−p(Y −Xβ̂)T (Y −Xβ̂). The vector of

test statistics will have a multivariate t-distribution, but asymptotically – and we have n = 442
– the vector of test statistics will follow a multivariate normal distribution with mean 0 and
covariance matrix equal to the estimated correlation matrix of β̂. This integral can be calculated
using the mvtnorm library with function pmvnorm and method Genz-Bretz. Then αloc can
be found by solving FWER=0.1 using a bi-sectioning algorithm. For our data set this gave
αloc = 0.0127, which then takes into account dependency structure between the test statistics
through the joint distribution of the test statistics.
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>ds=read.csv("https://web.stanford.edu/~hastie/CASI_files/DATA/diabetes.csv",
sep=",")
>apply(ds,2,summary)

age sex bmi map tc ldl hdl tch ltg glu prog
Min. 19.00 0.0000 18.00 62.00 97.0 41.60 22.00 2.00 1.410 58.00 25.0
1st Qu. 38.25 0.0000 23.20 84.00 164.2 96.05 40.25 3.00 1.860 83.25 87.0
Median 50.00 0.0000 25.70 93.00 186.0 113.00 48.00 4.00 2.005 91.00 140.5
Mean 48.52 0.4683 26.38 94.65 189.1 115.40 49.79 4.07 2.016 91.26 152.1
3rd Qu. 59.00 1.0000 29.28 105.00 209.8 134.50 57.75 5.00 2.170 98.00 211.5
Max. 79.00 1.0000 42.20 133.00 301.0 242.40 99.00 9.09 2.650 124.00 346.0
>full=lm(prog~.,data=ds)
>summary(full)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -356.64395 67.01983 -5.321 1.66e-07 ***
age -0.03529 0.21705 -0.163 0.870910
sex -22.79233 5.83657 -3.905 0.000109 ***
bmi 5.59548 0.71746 7.799 4.75e-14 ***
map 1.11589 0.22526 4.954 1.05e-06 ***
tc -1.08286 0.57294 -1.890 0.059428 .
ldl 0.73914 0.53032 1.394 0.164108
hdl 0.36783 0.78274 0.470 0.638648
tch 6.54048 5.95956 1.097 0.273045
ltg 157.17606 36.04811 4.360 1.63e-05 ***
glu 0.28148 0.27332 1.030 0.303661
---
Residual standard error: 54.16 on 431 degrees of freedom
Multiple R-squared: 0.5176, Adjusted R-squared: 0.5065
F-statistic: 46.25 on 10 and 431 DF, p-value: < 2.2e-16

Figure 4: R code and print-out for fitting the diabetes progression data.
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mm=model.matrix(full)
covB=solve(t(mm)%*%mm)
dd=diag(1/sqrt(diag(covB)))
corrB=dd%*%covB%*%dd

FWERGB=function(a,R)
{

c=qnorm(1-a/2)
m=dim(R)[1]
return(1-pmvnorm(rep(-c,m),rep(c,m),sigma=R,

alg=GenzBretz(maxpts=1e6,abseps=1e-6))[[1]])
}
library(mvtnorm)
thislower=0.1/10
thisupper=0.1/5
alphalocm=uniroot(function(a)FWERGB(a,corrB)-.1,

c(thislower,thisupper),tol=1e-8)$root
alphalocm
[1] 0.01265296

Figure 5: The diabetes progression data. R-code for finding the local significance level αloc
based on integration of the asymptotic joint distribution of the test statistics.

Please observe, that with our p-values in Figure 4 all values of αloc less than 0.059 and larger
than 0.0001 gives the same result – rejection of the four hypotheses for sex, bmi, map and ltg.

A Appendix

A.1 Example of a p-value that is not valid

Assume that X1 is binomially distributed with parameters n1 = 5 and p1 = 0.5, and that X2 is
binomially distributed with parameters n2 = 5 and p2 = 0.5. Also assume that X1 and X2 are
independent. Let us test

H0 : p1 = p2 vs. H1 : p1 6= p2

using the test statistic

T (X1, X2) =
X1
5 −

X2
5√

X1+X2
10 (1− X1+X2

10 )(1
5 + 1

5)

(as we used in the first course in statistics). We assume that T (X1, X2) is approximately
standard normally distributed, and the p-value of the sample point (x1, x2) can be calculated
as

p(x1, x2) = 2P (Z ≥ |T (x1, x2)|)

where Z is standard normally distributed.

In our case the p-value p(x1, x2) is less than 0.05 for 10 sample points:

(x1, x2) ∈ S = {(0, 3), (0, 4), (0, 5), (1, 5), (2, 5), (3, 0), (4, 0), (5, 0), (5, 1)}
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We get

P (p(X1, X2) ≤ 0.05) =
∑

(x1,x2)∈S

(
5
x1

)
0.5x10.55−x1

(
5
x2

)
0.5x20.55−x2 = 0.0605

Thus, this p-value is not valid. The normal approximation should not be used to define p-values
for such small samples.

A.2 Uniformity of exact p-values

Result:
Assume we have an hypothesis test situation and W is an exact p-value based on a continuous
test-statistic. Then the p-values W from true null hypotheses are uniformly distributed.

Proof:
Assume that large values of the test statistic T leads to rejection of the null hypothesis, and
that a value t of the test statistic T corresponds to a value w of the p-value W . This means
that P (T ≥ t) = P (W ≤ w). On the other hand the p-value is P (W ≤ w) = P (T ≥ t) = w
when H0 is true.

This means that P (W ≤ w) = w when H0 is true. If W is a continuous random variable taking
values from 0 to 1, the the p-value W must be uniformly distributed over the interval from 0 to
1.
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