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Problem 1

a) If (X1
X2

) ∼ N
(
( µ1
µ2 ), ( Σ11 Σ12

Σ21 Σ22
)
)
, the conditional distribution of X2 given X1 = x1 is

N(µ2+Σ21Σ
−1
11 (x1−µ1),Σ22−Σ21Σ

−1
11 Σ12). Here, µ1 = 0, µ2 = 0, Σ11 = 1, Σ12 = −0.8,

Σ21 = −0.8, Σ22 = 2, and x1 = x, so µ2 + Σ21Σ
−1
11 (x1 −µ1) = 0 + (−0.8) · 1−1(x− 0) =

−0.8x and Σ22 − Σ21Σ
−1
11 Σ12 = 2 − (−0.8) · 1−1 · (−0.8) = 1.36, so the distribution is

univariate normal N(−0.8x, 1.36).

b) Since Σ is symmetric, there exists an orthogonal matrix P such that Σ = PΛPT,
where Λ is diagonal with the eigenvalues of Σ on the diagonal. Since Σ is positive
semidefinite, all eigenvalues are non-negative. Denote by Λ1/2 the matrix obtained from
Λ by replacing all entries by their square roots, and define Σ1/2 = PΛ1/2PT. Then
(Σ1/2)2 = PΛ1/2PTPΛ1/2PT = PΛ1/2Λ1/2PT = PΛPT = Σ.

The definition Σ1/2 = PΛ1/2PT is actually an orthogonal diagonalization of Σ1/2, so the
diagonal of Λ1/2 contains the eigenvalues of Σ1/2. Since Σ is non-singular, zero is not an
eigenvalue (and Σ is actually positive definite). The eigenvalues of Σ1/2 – the square roots
of the positive eigenvalues of Σ – are then also all non-zero, so that Σ1/2 is non-singular.
It is also easy to show explicitly that P (Λ1/2)−1PT is an inverse of Σ1/2.

Since Y is multivariate normal, so is (Σ1/2)−1(Y − µ) (it can be rewritten on
the form AY + c), and is determined by its mean vector and covariance matrix.
E((Σ1/2)−1(Y −µ)) = (Σ1/2)−1E(Y −µ) = (Σ1/2)−1(EY −µ) = (Σ1/2)−1(µ−µ) = 0 and
Cov((Σ1/2)−1(Y −µ)) = (Σ1/2)−1 Cov(Y −µ)((Σ1/2)−1)T = (Σ1/2)−1(CovY )(Σ1/2)−1 =
(Σ1/2)−1Σ(Σ1/2)−1 = (Σ1/2)−1Σ1/2Σ1/2(Σ1/2)−1 = II = I, so (Σ1/2)−1(Y −µ) ∼ N(0, I),
with 0 a p-dimensional zero vector and I a p×p identity matrix. This is the Mahalanobis
transform applied to the multivariate normal Y .

c) (Y − µ)TΣ−1(Y − µ) = ((Σ1/2)−1(Y − µ))T(Σ1/2)−1(Y − µ) =
∑p

j=1 Z
2
j , where Zj are

the components of (Σ1/2)−1(Y − µ). Since all pairwise covariances of the Zj are zero,
they are independent (they are components of a multivariate normal vector). The sum
of squares of p independent standard normal variables has the chi-squared distribution
with p degrees of freedom.
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Problem 2

a) The residual plot shows no particular pattern. The normal Q–Q plot might indicate some
deviation from normality – most middle points lie above the line and upper right points
below the line. The F -test of the model shows that it is significant on the 0.05 level.

It is true that R2 = 0.4805 is not a particularly good fit, but this does not indicate,
as many had written in their papers, that the model is not good. In fact, even if the
multiple regression model is perfect, R2 may be far from 1 due to a high variance σ2 of
the responses.

The larger number of points in the (right) mid-range of the residual plot does not indicate
any deviation from the model assumptions. It simply means that a majority of the
predictions (fitted values) lie in the mid-range, which is influenced by what the values of
the covariates happened to be. Also, it is hard to read any heteroscedasticy (non-constant
variance) out of the plot, as there are so few points at the low and high ends of the range
of the predictions. Finally, the sum of the (raw) residuals is always 0, although one could
argue whether there are more residuals of one sign than the other (with a tendency to
greater absolute values for the latter).

From the R output, we see that σ̂ = 5.956. σ̂2 = SSE/(n − p), where n = 20 is the
number of observations and p = 4 is the number of coefficients. So SSE = (n − p)σ̂2 =
(20− 4) · 5.9562 = 567.6. Next, 0.4805 = R2 = 1− SSE/SST, so SST = SSE/(1−R2) =
567.58/(1− 0.4805) = 1092.6. Finally, SSR = SST− SSE = 1092.56− 567.58 = 525.0.

b) In best subset selection, all 2k models including various subsets of the k = p−1 covariates
in addition to the intercept are considered. Among models including j covariates, the one
with the best fit (highest R2 or smallest SSE) is chosen, j = 0, 1, . . . , k. Among these
k+1 candidate models, the best, according to some model choice criterion (such as large
adjusted R2, small Mallows’ CP , small AIC or small BIC) is finally selected.

The philosophy of model choice criteria is that they not only reward good fit, but also
penalize complexity (number of covariates). R2 and SSE do not penalize complexity – in
fact, R2 can only increase and SSE only decrease if new covariates are added to a model.

For the current data set, a model including weight and protein, but not age, in addition
to an intercept, has the lowest CP among the best models of each size.
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Problem 3

a) X has one column for each of the four dummy covariates of the second formulation. So

X =



1 0 0 0
...

...
...

...
1 0 0 0
0 1 0 0
...

...
...

...
0 1 0 0
0 0 1 0
...

...
...

...
0 0 1 0
0 0 0 1
...

...
...

...
0 0 0 1



,

a 60×4 matrix. The first 15 rows are identical, so are the 15 next, etc. It is easy to verify
that

XTX =


15 0 0 0
0 15 0 0
0 0 15 0
0 0 0 15

 = 15I,

so that (XTX)−1 = 1
15
I.

b) H0 can be written Cβ = 0, where C = (0 0 1 −1) and β = (β1 β2 β3 β4)
T. If H0 is true,

F =
(Cβ̂)T(C(XTX)−1CT)−1Cβ̂/r

SSE/(n− p)
,

where β̂ = (β̂1 β̂2 β̂3 β̂4)
T is the vector of least-squares estimators, r = rankC = 1,

n = 60 is the number of observations and p = 4 the number of columns in the design
matrix, has an F -distribution with r = 1 and n − p = 56 degrees of freedom. Here,
Cβ̂ = β̂3 − β̂4 and C(XTX)−1CT = 1

15
CCT = 2

15
. The value of F becomes

15
2

(β̂3 − β̂4)2

SSE/(60− 4)
=

15
2

(1.0902858− 0.1752633)2

43.04524/(60− 4)
= 8.17.

In the statistical tables of critical values corresponding to 0.05 for the F -distribution, we
find 4.03 for 1 and 50 degrees of freedom, and 4.00 for 1 and 60 degrees of freedom. So
at the 0.05 level we reject H0 and conclude that β3 6= β4. (We would arrive at the same
conclusion even for level 0.01.)



TMA4267, 25 May 2018 – solutions Page 4 of 4

c) The family-wise error rate (FWER) is the probability of making at least one type I
error (reject a true null hypothesis). Using the Bonferroni method, if α/m is used as
significance level for each of m tests, FWER ≤ α even if all null hyptheses are true.

Here there are six tests, so by the Bonferroni method, we should use significance level
0.05/6 = 0.0083 for each individual test to keep FWER below 0.05. The null hypotheses
β2 = β3 and β3 = β4 are rejected.

Problem 4

a) According to the general rule Cov(AY ) = A(CovY )AT, we have

Cov β̂ = Cov((XTX)−1XTY ) = (XTX)−1XT(CovY )((XTX)−1XT)T

= σ2(XTX)−1XTX(XTX)−1 = σ2(XTX)−1

and Cov β̃ = Cov(BY ) = B(CovY )BT = σ2BBT.

For all β, β = Eβ̃ = E(BY ) = BEY = BXβ, so that BX = Ip (consider β =
(1 0 · · · 0)T to show that the first column of BX is (1 0 · · · 0)T and so on).

b)
MMT = σ2(B − (XTX)−1XT)(B − (XTX)−1XT)T

= σ2(B − (XTX)−1XT)(BT −X(XTX)−1)

= σ2(BBT − (XTX)−1XTBT −BX(XTX)−1 + (XTX)−1XTX(XTX)−1)

= σ2(BBT − (XTX)−1 − (XTX)−1 + (XTX)−1) since BX = Ip

= σ2BBT − σ2(XTX)−1

= Cov β̃ − Cov β̂.

On the diagonal of Cov β̃ − Cov β̂, we find the differences of the variances of the com-
ponents of β̃ and the variances of the corresponding components of β̂. Specifically, if β̃j
and β̂j denote the jth component of β̃ and β̂, respectively, then the jth diagonal entry is
Var β̃j − Var β̂j. But, denoting the jk entry of M mjk, the jth diagonal entry of MMT

is Var β̃j − Var β̂j =
∑p

k=1mjkmjk =
∑p

k=1m
2
jk ≥ 0, where the dimensions of MMT are

p× p.
The conclusion is that the variances of the components of any unbiased estimator of β of
form BY , are always greater than or equal to the variances of the least-squares estimator.
This is called the Gauss–Markov Theorem.


