Problem 1

All answers must be justified: if "no" why, if "yes" give an example.
a) Does there exist a random vector having the following matrix as its covariance matrix?

$$
\begin{gathered}
\Sigma_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \Sigma_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \Sigma_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right], \\
\Sigma_{4}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \Sigma_{5}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \Sigma_{6}=\left[\begin{array}{ccc}
1 & 1 / 3 & 1 / 2 \\
1 / 2 & 1 & 1 / 3 \\
1 / 3 & 1 / 2 & 1
\end{array}\right], \\
\Sigma_{7}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \Sigma_{8}=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 2 \\
1 & 2 & 1
\end{array}\right], \Sigma_{9}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] .
\end{gathered}
$$

b) Do there exist two random vectors having the following matrix as their covariance matrix?

$$
\begin{gathered}
\Sigma_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \Sigma_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \Sigma_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right], \\
\Sigma_{4}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \Sigma_{5}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \Sigma_{6}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

Problem 2

a) Give an example of a bivariate random vector $X=\left(X_{1}, X_{2}\right)^{T}$ and a bivariate vector a such that both X_{1} and X_{2} are normally distributed but $a^{T} X$ is not normal. Do there exist such vectors X and a under additional condition that X_{1} and X_{2} are independent?
b) Does the answer to the last question change if "independent" is replaced by "uncorrelated"? Consider the following example and make analysis. Let $X_{1} \sim N(0,1)$, a random variable U does not depend on X_{1}, and $P(U=1)=P(U=-1)=1 / 2$. Finally $X_{2}=U X_{1}$.
c) Thus. Are the following two conditions equivalent? Condition 1: X_{1} and X_{2} are normal. Condition 2: $\left(X_{1}, X_{2}\right)$ is normal.

Problem 3

The following data are given:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x_{i}	2	3	2	1	3	2	4	4	5	5	3	2	3	5	4
y_{i}	14	23	13	5	24	13	39	39	59	58	23	12	23	57	39

A multiple linear regression model is fitted, where the expected value of the response y is a second order polynomial in x. More precisely, the assumed model is:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\epsilon_{i}
$$

for $i=1, \ldots, 15$, where $\epsilon_{1}, \ldots, \epsilon_{15}$ are independent and $N\left(0, \sigma^{2}\right)$. R output is given below.

Call:
$\operatorname{lm}(f o r m u l a=y \sim x 1+x 2)$

Residuals:

Min	1Q	Median	3Q	Max
-0.7786	-0.4026	-0.1349	0.4655	1.2074

Coefficients:

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	3.16495	0.95841	3.302	$0.00631 * *$
x1	0.72854	0.58319	1.249	0.23540
x2	2.04910	0.08128	25.210	$9.21 \mathrm{e}-12$ ***

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6168 on 12 degrees of freedom
Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
F-statistic: 8664 on 2 and $12 \mathrm{DF}, \mathrm{p}$-value: < $2.2 \mathrm{e}-16$
a) Comment briefly on the model fit. Calculate SSE, SSR and SST.
b) How can man find diagonal elements of the matrix $\left(X^{T} X\right)^{-1}$, using the R output, where X is the design matrix? Calculate these diagonal elements (using only the R output!).

Problem 4

A multiple linear regression model is considered. It is assumed that

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\epsilon_{i},
$$

where ϵ-s are independent and have the same normal distribution with zero expectation and unknown variance $\sigma^{2} .100$ measurements are made, i.e. $i=1,2, \ldots, 100$. The explanatory variables take the following values: $x_{i 1}=2$ for $1 \leq i \leq 25$ and 0 otherwise, $x_{i 2}=\sqrt{2}$ for $26 \leq i \leq 75$ and 0 otherwise, $x_{i 3}=2$ for $76 \leq i \leq 100$ and 0 otherwise.
a) Let $\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}$ be least-square estimators of $\beta_{1}, \beta_{2}, \beta_{3}$. Prove that in the considered case $\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}$ are independent, and

$$
\operatorname{Var}\left(\hat{\beta}_{1}\right)=\operatorname{Var}\left(\hat{\beta}_{2}\right)=\operatorname{Var}\left(\hat{\beta}_{3}\right) .
$$

Do these properties hold in the general case? If not, give counterexamples.
b) Perform a test for

$$
H_{0}: \beta_{1}+\beta_{3}=2 \beta_{2}
$$

vs.

$$
H_{1}: \beta_{1}+\beta_{3} \neq 2 \beta_{2} .
$$

The significance level is 0.05 . The least-squares estimates of β_{1}, β_{2} and β_{3} are 0.9812 1.8851 and 3.4406 , respectively. The unbiased estimate of the variance σ^{2} is 3.27 .
c) Three hypotheses

$$
\begin{gathered}
H_{0}: \beta_{1}=1 \text { vs. } H_{1}: \beta_{1} \neq 1 \\
H_{0}: \beta_{1}+\beta_{2}=3 \text { vs. } H_{1}: \beta_{1}+\beta_{2} \neq 3
\end{gathered}
$$

and

$$
H_{0}: \beta_{1}+\beta_{2}+\beta_{3}=5 \text { vs. } H_{1}: \beta_{1}+\beta_{2}+\beta_{3} \neq 5
$$

are tested simulteneously. Probability of at least one Type I error must not be greater than 0.05 . One of the following two methods can be used: the Bonferrony method and the S̆idák method. Which one do you choose? Why? Which null hypotheses are rejected if the P-values are given in the table below? Why?

H_{0}	$\beta_{1}=1$	$\beta_{1}+\beta_{2}=3$	$\beta_{1}+\beta_{2}+\beta_{3}=5$
P-value	0.2317	0.5134	0.0012

Problem 5

The yield of a chemical process was studied in a pilot experiment. The following factors were considered:

Factor	Factor level	
	-1	1
A Amount of active compound	4 mol	5 mol
B Acidity, pH	6	7
C Reaction time	2 hours	4 hours
D Filtering (first pass)	none	after $1 / 2$ hour
E Filtering (second pass)	none	after 1 hour

A fractional 2^{5-2} experiment was performed, based on a full 2^{3} experiment with factors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and generators $D=A B$ and $E=A C$.

The response Y was defined as yield measured relative to a theoretical maximum. The responses Y_{1}, \ldots, Y_{8} of the 8 experiments are assumed to be independent and normally distributed with the same variance σ^{2}.

The design and the 8 responses are presented in the table below

Experiment	A	B	C	D	E	Y
1	-	-	-	+	+	69.3
2	+	-	-	-	-	70.8
3	-	+	-	-	+	71.3
4	+	+	-	+	-	73.2
5	-	-	+	+	-	77.5
6	+	-	+	-	+	79.3
7	-	+	+	-	-	88.9
8	+	+	+	+	+	91.2

a) What are the defining relations and what is the resolution of the design in this Problem? Estimate the effect of the main factor A and effects of interactions BD, CE and ABCDE. Compare these estimated effects. Comment the results.

