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Problem 1 Random vector

a)
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The covariance between X1 and X2 is zero. This doesn’t imply that X1 and X2 are
independent, unless the vector with elements X1 and X2 are binormal. We have no
information about the distribution of X, and can’t assume that zero covariance implies
independence.
For Y1 and Y2 the covariance is −1

3 , and Y1 and Y2 is dependent.
Find the expected value of XTAX.
We may use the trace-formula:

E(XTAX) = tr(AΣ) + µTAµ = trA+ µT 0 = 3 · 23 = 2

b) A is clearly symmetric, which we can see by AT = A. A projection matrix is an
idempotent matrix, that is, AA = A. We have already seen this in a).
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The rank of a symmetric idempotent matrix equals its trace, which we found in a) to be
tr(A) = 2.
Derive the distribution of XTAX.
From T3.26 in BF2010 we know that ifX ∼ N(0, σ2I) andA is a symmetric, idempotent
matrix with rank r then XTAX ∼ σ2χ2

r.
We have that X ∼ N(µ, I), and A is symmetric and idempotent with rank 2. We need
to rewrite our expression so that we have a normally distributed random vector with
mean zero and identity covariance matrix.
We subtract the mean and write

(X − µ)TA(X − µ) = XTAX − µTAX −XTAµ+ µTAµ = XTAX

since Aµ = 0. Define Z = X − µ, where Z ∼ N(0, I). We may thus use the above
theorem, to find that XTAX = ZTAZ ∼ χ2

2, that is χ2 with 2 degrees of freedom.
Tabeller og formler i statistikk, page 5, we see that 6 is the critical value in the χ2-
distribution with 2 degrees of freedom and probability 0.05 (value in table is 5.991). The
probability that the quadratic form is smaller than 6 is thus 95%.

Problem 2 Galapagos species

a) The fitted regression model is:

̂Species = 7.07−0.02·Area+0.32·Elevation+0.009·Nearest−0.24·Scruz−0.75·Adjacent

This model explains 77% of the variability in the data. The regression is significant
(the hypothesis that all regression coefficients are zero is rejected) and t-tests claim that
Elevation and Adjacent are significant covariates.
The residual plots: The plot of studentized residuals vs. fitted values hints to het-
eroscedasticity in the errors (differing variances), and the qq-plot shows deviance from the
normal distribution in the tails. The latter is also observed by looking at the Anderson-
Darling normality test, which gives a p-value of 0.0002 (reject the null hypothesis that
the errors are normal). The Box-Cox plot doesn’t include 1 in the 95% confidence inter-
val (dotted lines in the plot), and suggests that the cube root transform (λ = 1/3) may
be suitable as a variance stabilizating transform.

b) Let us assume that we have p covariates plus the intercept (notation from Part 6-7 of
the course, in Parts 1-5 we have used p to include the intercept).
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Estimate (Intercept): t value*Std. Error=7.365· 0.305=2.25
Meaning: estimate for the regression coefficient. Intercept associated with first column
of design matrix (first column of ones) β̂ = (XTX)−1XTY .
p-value of Area:two tails of t-distribution with 24 degrees of freedom. Can’t find precise
value, but from table 4 of Tabeller og formler i statistikk we see that the critical value
in the t-distribution with 24 degrees of freedom is 2.064 for α = 0.025. This means that
the p-value will approximately be 0.05.
Meaning: Test the null hypothesis that βArea = 0 vs. βArea 6= 0, with the other four
covariates present in the model, and produce a p-value of the test.
Std.Error of Nearest:estimate/tobs=0.012/0.7=0.017
Meaning: the estimated standard deviation for the regression estimate. Mathematically
the corresponding (Nearest) diagonal element of the square root of (XTX)−1s2, where
s2 is the estimate for the regression variance σ2.
Adjusted R-squared: 1−(1−R2)(n−1)/(n−p−1) = 1−(1−0.7543) ·29/24 = 0.7032, or
in a two stage process by first observing SSE=s2 · (n−p) = 0.97162 ·24 = 22.65 and then
finding SST from R2=1-SSE/SST, SST=SSE/(1-R2), and finally using R2

adj = 1−
SSE

n−p−1
SST
n−1

.

Yes, I would prefer model B to A. The plot of standardized residuals vs fitted values shows
no clear structure, and the qq-plot looks much better for B and A. The Anderson-Darling
normality test doesn’t reject the null hypothesis of normal data.

c) Let SSE be the sum-of-squares of error, SSR be the regression sum-of-squares, and SST
be the total som of squares. Then R2: coefficient of multiple determination is defined as

1− SSE/SST = SSR/SST

and is interpreted as the amount of variability in the data that is accounted for by
the regression. R2 will increase when a regressors are added to the model, even if the
new regressors are independent of the response. Why? The least squares estimator will
minimize SSE and if the regression coefficient for the new regressor is estimated to be a
value different from zero, this means that the SSE of this larger model will be smaller
than the SSE of the smaller model.
The R2

adj is constructed to also include information about the number of parameters
estimated and the number of observations in the data set. Assume we have 1 intercept
and in addition p regression parameters, then

R2
adj = 1−

SSE
n−p−1

SST
n−1

R2 will always increase then new covariates are added to the model, so R2 can only be
used to select the best model among models with the same number of covariates. This
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is done when in best subset selection one model is reported for each total number of
covariates. To choose between these models a criterion taking into account the number
of covariates in the model need to be used, and one such criterion is R2

adj. We therefore
use R2

adj to choose between the best models of each size.
In our example the best model is according to this strategy the model with four covariates.
These are all covariates except Nearest. To write down the estimated regression equation
we need to refit this model.
Lasso regression adds a penalty term to the least squares criterion to make the model
more sparse. This may give a robust fit and avoid overfitting. The penalty term for
lasso is the sum of the absolute value of the regression coefficients, and the optimization
procedure is to minimize with respect to β the following quantity

(Y −Xβ)T (Y −Xβ) + λ
p∑

j=1
| βj |

The difficulty with using R2
adj is that the number of parameters that enter into the

formula is not defined since the lasso regression shrinks parameter estimates - some by a
certain amount and some all the way down to zero. The model complexity for the lasso
is defined from λ and we can’t put λ into the R2

adj-formula.
Instead cross-validation is used for model choice.
The following was not asked for: SST is the same for all models, and thus R2 is pro-
portional to SSE. SSE can therefore be used as a model selection criterion in the cross-
validation. In short - this involves: 10-fold, training set, test set, fit, predict, SSE on the
test set, and sum to produce SSE on the whole set. Choose the penalty parameter with
the smallest SSE.
The fitted lasso regression model is:

̂Species1/3 = 3.54 + 0.00028 · Elevation



Tentative Solutions to TMA4267 Linear Statistical Models, 22 May 2014 Page 5 of 7

Problem 3 Design of experiments

A column for BC is added to the design,

A B C D BC
1 -1 -1 -1 1 1
2 1 -1 -1 1 1
3 -1 1 -1 -1 -1
4 1 1 -1 -1 -1
5 -1 -1 1 -1 -1
6 1 -1 1 -1 -1
7 -1 1 1 1 1
8 1 1 1 1 1

a) What type of experiment is this?
We see that we have a full factorial design in the factors A, B, C, but there is a fourth
factor D added. This is a half fraction of a 24 design, also called a 24−1-design.
What is the generator and the defining relation for the experiment?
The generator for the design is D=BC (which is seen from the table above after the BC
column is added). The defining relation is then I=BCD.
What is the resolution of the experiment?
The resolution of the design equals the number of letters in the defining relation, thus
the resolution is III.
Write down the alias structure of the experiment.
A=ABCD, B=CD, C=BD, D=BC.
AB=ACD, AC=ABD, AD=ABC
I=BCD

Problem 4 Multiple Linear Regression

a) Let (λi, ei), i = 1, ..., p be the eigenvalues and eigenvectors of V . Let P be the (p × p)
matrix of eigenvectors,

P = [e1e2 · · · ep]

and Λ be a diagonal matrix with the eigenvalues λ1, λ1, ..., λp on the diagonal. Then
V − 1

2 is defined as

V − 1
2 = PΛ− 1

2P T
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Observe that V − 1
2 is symmetric, and that V − 1

2V − 1
2 = V −1.

Y = Xβ + ε
V − 1

2Y = V − 1
2Xβ + V − 1

2ε

Y ∗ = X∗β + ε∗

where ε∗ ∼ N(0, σ2I). To see this calculate Cov(ε∗) = V − 1
2 Cov(ε)V − 1

2 = V − 1
2σ2V V − 1

2 =
σ2I.
We have now the ordinary least squares problem in the new quantities Y ∗, X∗ and ε∗,
and know that the least squares solution is

β̃ = (X∗TX∗)−1X∗TY ∗

= (XTV − 1
2V − 1

2X)−1XTV − 1
2V − 1

2Y

= (XTV −1X)−1XTV −1Y

Mean:

E(β̃) = E((X∗TX∗)−1X∗TY ∗) = (X∗TX∗)−1X∗T E(Y ∗)
= (X∗TX∗)−1X∗TX∗β = β

since E(Y ∗) = X∗β.
The ordinary least square estimator β̂ = (XTX)−1XTY is unbiased in this model since
the mean of Y doesn’t depend on V .

E(β̂) = E((XTX)−1XTY ) = (XTX)−1XT E(Y )
= (XTX)−1XTXβ = β

If we just look at unbiasedness it may appear that the two estimators are equally good.
However, since β̃ is the least squares estimator (from looking at transformed quantities)
we may conclude using the Gauss-Markov Theorem (T3.13 in Bingham and Fry 2010)
that β̃ has the minimum variance in each component among all the unbiased estimators,
BLUE. If we had calculated the covariance matrices of β̃ and β̂, we should see this. Thus,
β̃ should be preferred. Another issue is the fact that V seldom is known, and need to be
estimated. The concept of BLUE is handled in detail in our Statistical Inference course.
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b) Find the expected value and covariance matrix of α̂1 under the true model

E(α̂1) = E((XT
1X1)−1XT

1Y )
= (XT

1X1)−1XT
1 E(Y ) == (XT

1X1)−1XT
1 (X1β1 +X2β2)

= β1 + (XT
1X1)−1XT

1X2β2

Thus, α̂1 is a biased estimator for β1.

Cov(α̂1) = Cov((XT
1X1)−1XT

1Y )
= (XT

1X1)−1XT
1 Cov(Y )X1(XT

1X1)−1

= (XT
1X1)−1XT

1 σ
2IX1(XT

1X1)−1

= σ2(XT
1X1)−1

Observe, Cov(α̂1) is not dependent on β2.
We see that the bias term for α̂1 is (XT

1X1)−1XT
1X2β2. When is the bias term equal

to zero?
When β2 = 0 there is no bias (but that is not so exciting). The bias is also zero when
XT

1X2 = 0. This will happen if the two matrices are orthogonal. If we think back to
Part 6: DOE this is true for DOE, and is why the interpretation of the DOE coefficients
is easy and the model chosen doesn’t influence the unbiasedness of the coefficients - but
influences the variance thereof.


