NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4267 Linear Statistical Models

Academic contact during examination: Øyvind Bakke
Phone: 73598126, 99041673

Examination date: 22 May 2015
Examination time (from-to): 9:00-13:00
Permitted examination support material: Yellow stamped A5 sheet with your own handwritten notes, specific basic calculator, Tabeller og formler i statistikk (Tapir forlag), Matematisk formelsamling (K. Rottmann)

Other information:

In the grading, each of the eight points counts equally.

Language: English
Number of pages: 4
Number pages enclosed: 0
> model1<-lm(Period~Length+Amplitude+Mass)
$>$ summary (model1)
Call:
lm(formula $=$ Period \sim Length + Amplitude + Mass)

| Residuals: | |
| ---: | ---: | ---: | ---: |
| Min | 1Q Median |

Intercept) 0.

Figure 1: Model from Problem 1a: R input and output (left), residual plot (upper right) and Box-Cox plot (lower right).

Problem 1

The period of swing of a pendulum was studied as 100 combinations of the pendulum's length (measured in cm), amplitude (the maximum angle that the pendulum swings away from vertical, measured in radians) and mass (kg) were varied. A multiple regression model was fitted. R input and output, a residual plot and a Box-Cox plot are shown in Figure 1.
a) Write down the fitted regression model, and comment briefly on the model fit. What conclusions can you draw from the residual plot? Suggest a transformation based on the Box-Cox plot.

Residual standard error: 0.03976 on 97 degrees of freedom
Multiple R-squared: 0.9991, Adjusted R-squared: 0.9991
F-statistic: 3.566e+04 on 3 and 97 DF, p-value: < $2.2 \mathrm{e}-16$
> sres2<-rstudent(model2)
$>$ plot(model2\$fitted.values,sres2)
> pendulum<-as.data.frame(cbind(Period,Length,Amplitude, Mass))
> library(leaps)
> best<-regsubsets(Period~2~., data=pendulum,intercept=FALSE)
> summary(best)\$which
Length Amplitude Mass
1 TRUE FALSE FALSE
2 TRUE TRUE FALSE
3 TRUE TRUE TRUE
> summary(best)\$cp
[1] 4.5693361 .4719643 .000000
> plot(best,scale="Cp")

Figure 2: Model from Problem 1b: R input and output (left), residual plot (upper right) and a graphical table of best subsets using Mallows' C_{P} as the statistic for ordering models (lower right). Note that the information of the graphical table is also included in the R output.

The approximate formula $T \approx 2 \pi \sqrt{L / g}$ for the period T of a pendulum, where L is the length and $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational acceleration, suggests the use of the square of the period rather than the period as the response in a regression model, and also to drop the intercept. R input and output, a residual plot and a plot of best subset selection based on Mallows' C_{P} for such models are shown in Figure 2.
b) Would you prefer the original model or the new model just described? Considering submodels of the new model, which would you choose? Briefly justify your answers.

```
> model3<-lm(log(Period)~log(Length)+log(1+Amplitude^2/16+11*Amplitude^4/3072))
> summary(model3)
Call:
lm(formula = log(Period) ~ log(Length) + log(1 + Amplitude^2/16 +
    11 * Amplitude^4/3072))
Residuals:
    Min 1Q Median 3Q Max
-0.09906 -0.01002 0.00126 0.01266 0.08019
Coefficients:
```



```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.02705 on 97 degrees of freedom
Multiple R-squared: 0.9912, Adjusted R-squared: 0.9911
F-statistic: 5491 on 2 and 97 DF, p-value: < 2.2e-16
```

Figure 3: Model from Problem 1c: R input and output.

Finally, a more exact formula, $T=2 \pi \sqrt{\frac{L}{g}}\left(1+\frac{1}{16} \theta^{2}+\frac{11}{3072} \theta^{4}+\cdots\right)$, or $\ln T=$ $\ln (2 \pi / \sqrt{g})+\frac{1}{2} \ln L+\ln \left(1+\frac{1}{16} \theta^{2}+\frac{11}{3072} \theta^{4}+\cdots\right)$, where θ is amplitude, suggests a third model in which both the response variable and the covariates are transformed. R input and output are shown in Figure 3.
c) How do the estimates of the coefficients agree with the physical model given above? Find an estimate of g, the gravitational acceleration, and a 95% confidence interval for g.

Problem 2

Assume a linear regression model $\boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where \boldsymbol{Y} is an n-dimensional random vector, X an $n \times p$ design matrix, $\boldsymbol{\beta}$ a p-dimensional parameter (coefficient) vector and $\boldsymbol{\epsilon} n$-dimensional multinormal with mean $\mathbf{0}$ and covariance matrix $\sigma^{2} I$, where I is an $n \times n$ identity matrix.

Assume further that the columns of X are orthogonal.
a) Show that the least squares estimator of β_{j}, the j th entry of $\boldsymbol{\beta}$, depends only on the j th column of X (i.e., the j th covariate vector) and \boldsymbol{Y}.

Consider a two-level 2^{2} factorial unreplicated experiment in which the levels are coded -1 and 1 . The response vector is $\left(\begin{array}{llll}6 & 4 & 10 & 7\end{array}\right)^{\mathrm{T}}$, corresponding to levels $\left(\begin{array}{llll}-1 & 1 & -1 & 1\end{array}\right)^{\mathrm{T}}$ of the first factor and $\left(\begin{array}{llll}-1 & -1 & 1 & 1\end{array}\right)^{\mathrm{T}}$ of the second.
b) Estimate the interaction effect (twice the coefficient) of the two factors.

Problem 3

Assume a linear regression model $\boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where \boldsymbol{Y} is an n-dimensional random vector, X an $n \times p$ design matrix, $\boldsymbol{\beta}$ a p-dimensional parameter vector and $\boldsymbol{\epsilon} n$-dimensional multinormal with mean $\mathbf{0}$ and covariance matrix $\sigma^{2} I$, where I is an $n \times n$ identity matrix.

We consider a reduced model involving only the r first covariates, with $r<p$. Let X_{0} denote the design matrix consisting only of the first r columns of X. Let $\hat{\boldsymbol{\beta}}_{(0)}=\left(X_{0}^{\mathrm{T}} X_{0}\right)^{-1} X_{0}^{\mathrm{T}} \boldsymbol{Y}$ denote the least squares estimator of the parameters of the submodel, and let $\hat{\boldsymbol{\beta}}_{0}$ be $\hat{\boldsymbol{\beta}}_{(0)}$ extended by zeros so that $\hat{\boldsymbol{\beta}}_{0}$ has length p, that is $\hat{\boldsymbol{\beta}}_{0}^{\mathrm{T}}=\left(\begin{array}{ll}\hat{\boldsymbol{\beta}}_{(0)}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}}\end{array}\right)$, where $\mathbf{0}$ is a zero vector of length $p-r$.

We would like to measure the adequacy of the submodel by

$$
J_{0}=\frac{1}{\sigma^{2}}\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}\right)^{\mathrm{T}} X^{\mathrm{T}} X\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}\right),
$$

called "the scaled sum of squared errors" by Mallows. A problem is of course that the parameters $\boldsymbol{\beta}$ (and σ^{2}) are unknown. We consider the original model to be "true", so that $E \boldsymbol{Y}=X \boldsymbol{\beta}$.
a) What is the covariance matrix of $\hat{\boldsymbol{\beta}}_{(0)}$? Find the covariance matrix $\operatorname{Cov}\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}\right)$ of $\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}$. Show that the trace of $\frac{1}{\sigma^{2}} X^{\mathrm{T}} X \operatorname{Cov}\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}\right)$ is r.

Let $H_{0}=X_{0}\left(X_{0}^{\mathrm{T}} X_{0}\right)^{-1} X_{0}^{\mathrm{T}}$ be the projection matrix for projecting onto the column space of X_{0} (the "hat matrix" of the submodel).
b) Show that $E\left(X\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{0}\right)\right)=\left(I-H_{0}\right) X \boldsymbol{\beta}$. Find $E J_{0}$. (Hint: Use the trace formula, $E\left(\boldsymbol{Z}^{\mathrm{T}} A \boldsymbol{Z}\right)=\operatorname{tr}(A \operatorname{Cov} \boldsymbol{Z})+\left(E \boldsymbol{Z}^{\mathrm{T}}\right) A(E \boldsymbol{Z})$.)

Let $\mathrm{SSE}_{0}=\boldsymbol{Y}^{\mathrm{T}}\left(I-H_{0}\right) \boldsymbol{Y}$ be the error (residual) sum of squares of the submodel.
c) Show that its expected value is $E \mathrm{SSE}_{0}=(n-r) \sigma^{2}+\boldsymbol{\beta}^{\mathrm{T}} X^{\mathrm{T}}\left(I-H_{0}\right) X \boldsymbol{\beta}$. Combine the expressions for $E J_{0}$ and $E \mathrm{SSE}_{0}$ to show that $E J_{0}=$ $\frac{1}{\sigma^{2}} E \mathrm{SSE}_{0}-n+2 r$. Discuss briefly how this motivates the use of Mallows' C_{P} statistic in submodel selection.

