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TMA4267 Linear Statistical Models – 4 June 2016

Problem 1 Independence

a) It is known that if X ∼ Np(µ,Σ) then Y = Aq×pX ∼ Nq(AX,AΣAT). We have

A =
(

1 −1
−1 1

)
, µ =

(
5
3

)
and Σ =

(
2 1
1 2

)
.

E(Y ) = AE(X) =
(

1 −1
−1 1

)(
5
3

)
=
(

2
−2

)

Cov(Y ) = AΣAT =
(

1 −1
−1 1

)(
2 1
1 2

)(
1 −1
−1 1

)
=
(

2 −2
−2 2

)

Answer: Y ∼ N2(
(

2
−2

)
,

(
2 −2
−2 2

)
).

It is known that if X ∼ Np(µ,Σ) then Y = Aq×pX and Z = Br×pX are independent
iff AΣBT = 0.

AΣBT =
(

1 −1
−1 1

)(
2 1
1 2

)(
2 b
a 1

)
=
(

1 −1
−1 1

)(
2 b
a 1

)

AΣBT = 0⇔
(

2− a b− 1
−2 + a −b+ 1

)
=
(

0 0
0 0

)

Element (1,1) and (2,1) gives the same equation for a: 2− a = 0, so a = 2, and element
(1,2) and (2,2) gives the same equation for b: b − 1 = 0, so b = 1. Thus, (a, b) = (2, 1)

to give Y =
(
X1 −X2
−X1 +X2

)
independent of Z =

(
2X1 + 2X2
X1 +X2

)
.

Problem 2 Plant stress

a) T-statistic in Intercept row: t0 = β̂0−0√
V̂ar(β̂0)

= 16.15942
0.04140 = 390.3. Meaning: this is the

test statistic for testing the null hypothesis H0 : β0 = 0 vs H1 : β0 6= 0.

Std.Error in row named D : T : in general, tj = β̂j−0√
V̂ar(β̂j)

so that
√

V̂ar(β̂j) = β̂j
tj

=
−0.00242
−0.058 = 0.04. Alternatively, we may conclude that the Std.Error for β̂D:T is 0.04140
since we have orthogonal columns in our design matrix and the std.error is the same
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for all estimated regression parameters in the model. Meaning: the estimated standard
deviation for the regression coefficient estimate. Mathematically we find this by looking
at the diagonal element corresponding to D : T of the square root of (XTX)−1s2, where
s2 is the estimate for the regression variance σ2. For our orthogonal design XTX is a
diagonal matrix with 32 on the diagonal. We read off s from the print-out "Residual
standard error=0.2342". Thus, Std.Error=0.2342 · 1√

32 = 0.04.
p-value in row named D : F : T : two tails of t-distribution with 24 degrees of freedom,
observed t-statistics is 2.198. Can’t find precise value, but from the table on page 4 of
"Tabeller og formler i statistikk" we see that the critical value in the t-distribution with
24 degrees of freedom is 2.064 for α = 0.025 and 2.492 for α = 0.01. This means that
the p-value must be between 0.02 and 0.05.
Meaning: Test the null hypothesis that βD:F :T = 0 vs. βD:F :T 6= 0, (with the other seven
covariates and intercept present in the model), and produce a p-value of the test. Reject
the null hypothesis if the p-value is smaller than the chosen significance level.
Multiple R-squared (also just called R2): R2=1-SSE/SST, so we need SSE and
SST. We find SSE from s since SSE=s2 · (n − p) = 0.23422 · 24 = 1.32, but SST is
more difficult (not impossible, may be found from the F -statistic). But, it is easiest
to find R2 from R2-adjusted (Adjusted R-squared), since Adjusted R-squared: 1− (1−
R2)(n− 1)/(n− p) = 0.9594 is given, and we know that n = 32 and n− p = 24. Thus,
R2 = 1− n−p

n−1(1− R2
adj) = 1− 24

31(1− 0.9594) = 0.9686. Differences in answers is due to
rounding.
For completeness: SST will be SSE in a model where only intercept is included. The
F-test for the null hypothesis that all regression coefficients (except the intercept) equals
zero gives test statistic F =

SST−SSE
31−24

SSE
24

= 105.6, and SSE in the full model we found above
to be 1.32. Solving for SST yields 39.2. Finally, R2 = SST-SSE

SST = 39.3−1.32
39.2 = 0.966.

b) I would judge the model fit to be good. The model explains 96% of the variability in the
data and the model is significant (from the F-test). The plot of standardized residuals
vs fitted values shows no clear structure, and the qq-plot to follow a straight line. The
Anderson-Darling normality test doesn’t reject the null hypothesis of normal data.
The main effect of damage: when we compare the estimated effect of damage D = 1
with the estimated effect of no damage D = −1 (keeping the F and T constant at some
level), our estimate is 2 · β̂D = 2 · 0.93739 = 1.87. So, keeping F and T fixed, the effect
of damage raises the gene activity with 1.87.
The interaction plot for D and F is found both in cell (1,2) and (2,1). In cell (1,2) the two
lines are for D = −1 (red) and D = 1 (black). The red line goes from (15.2 + 14.5)/2 =
14.85 (F = −1 and D = −1) to (16.3 + 14.9)/2 = 15.6 (F = 1 and D = −1, and
shows the effect of F when D is kept at D = −1 (no damage) (15.6-14.85=0.75). The
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numbers taken from the cube plot. The black line goes from (17.4 + 16.4)/2 = 16.9
(F = −1 and D = 1) to (17.9 + 16.7)/2 = 17.3 (F = 1 and D = −1), and shows the
effect of F (17.3-16.9=0.4) when D is kept at D = 1 (damage). The two lines are not
exactly parallel, since the black line is less steep than the red line (however not much).
The estimated interaction effect for D : F is 2 · β̂D:F = 2 · (−0.08878) = −0.1775 - or
equivalently 0.4/2−0.75/2 = 0.2−0.375 = −0.175 (change due to rounding in cube plot
numbers).
A natural estimator for γ is

γ̂ = 2β̂F−β̂D

where β̂F and β̂D are the appropriate elements of the vector of parameter estimates
β̂ = (XTX)−1XTY , were the X is the design matrix and Y is the vector of responses.
We turn to first order Taylor approximations, but first observe that since 2x = exp(x ln 2)
then d(2x)

dx
= 2x · ln 2.

h(β̂F , β̂D) = 2β̂F−β̂D

∂h(β̂F , β̂D)
∂β̂F

= ln 2 · 2β̂F−β̂D

∂h(β̂F , β̂D)
∂β̂D

= − ln 2 · 2β̂F−β̂D

where the random variable β̂F has E(β̂F ) = βF and Var(β̂F ) = 1
n
σ2, and β̂D has E(β̂D) =

βD and Var(β̂D) = 1
n
σ2. Further, Cov(β̂F , β̂D) = 0 since we have an orthogonal design

matrix.
Define

h′βF (βF , βD) = ∂h(β̂F , β̂D)
∂β̂F

|β̂F=βF ,β̂D=βD= ln 2 · 2βF−βD

h′βD(βF , βD) = ∂h(β̂F , β̂D)
∂β̂D

|β̂F=βF ,β̂D=βD= − ln 2 · 2βF−βD

The first order Taylor approximation for two independent RVs gives:

E(h(β̂F , β̂D)) ≈ h(βF , βD) = 2βF−βD

Var(h(β̂F , β̂D)) ≈ (h′βF (βF , βD))2 Var(β̂F ) + (h′βD(βF , βD))2 Var(β̂D)

= (ln 2 · 2βF−βD)2 1
n
σ2 + (− ln 2 · 2βF−βD)2 1

n
σ2 = 2(ln 2)2σ2

n
· 22(βF−βD)
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Estimates using numerical values β̂F = 0.28546, β̂D = 0.93739, s2 = 0.23422 (estimat for
σ2), n = 32.

Ê(h(β̂F , β̂D)) ≈ 20.28546−0.93739 = 2−0.65 = 0.64

V̂ar(h(β̂F , β̂D)) ≈ 2(ln 2)20.23422

32 · 22(0.28546−0.93739) = 0.001647 · 2−1.3 = 6.67 · 10−4

c) The hypothesis test can be performed as a general linear hypothesis:

H0 : Cβ = d vs. H1 : Cβ 6= d

with

C =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 , d =

0
0
0

 .
and β = (β0, βD, βF , βT , βD:F , βD:T , βF :T , βD:F :T ). To test the hypothesis we have worked
with the test statistics Fobs:

Fobs = 1
r

(Cβ̂ − d)T[σ̂2C(XTX)−1CT]−1(Cβ̂ − d)

where r is the number of hypotheses being tested (here r = 3), σ̂2 is the unbiased
estimator for σ2 (previously we have used s2 for σ̂2) and β̂ is the least squares estimator
for β (in the full model, where we have p=8 regression parameters). When the null
hypothesis is true Fobs follows a Fisher distribution with r and n− p degrees of freedom.
We have that othogonal columns of the design matrix, and thus XTX is a 8×8 diagonal
matrix with n = 32 on the diagonal, and (XTX)−1 is a 8×8 diagonal matrix with 1

32 on
the diagonal. Further, C(XTX)−1CT is a 3 × 3 matrix with 1

32 on the diagonal, and
finally [C(XTX)−1CT]−1 is a 3 × 3 matrix with 32 on the diagonal. This means that
Fobs will be a sum with three terms – one for each regression parameter to be tested.

Fobs = 32
3σ̂2 (β̂2

D:T + β̂2
F :T + β̂2

D:F :T )

= 32
3 · 0.23422 [(−0.00242)2 + (−0.12614)2 + (0.09099)2] = 4.705

The F-distribution with 3 and 24 degrees of freedom has critical value 3.01 for α = 0.05
and 3.72 for α = 0.025, so we reject the null hypothesis at level 0.025.

d) Let us assume that an intercept term is present in our regression model. In all-subsets
model selection we consider all possible 27 = 128 regression models. Let the model
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complexity be the number of regression parameters fitted, that is, our model complexity
is 1 (only intercept) - 8 (full model). First the best model (minimum SSE, maximum R2

and minimum s) for each model complexity is found, and is presented in the print-out
in Figure 5. E.g. the best model with 2 regression parameters is the one with intercept
and βD. Then, we use R2

adj to choose between each of these 7 best models.
The reason we don’t use R2 to choose between models of different complexity is that
R2 will increase when a regressors is added to the model, even if the new regressors are
independent of the response. Why? The least squares estimator will minimize SSE and
if the regression coefficient for the new regressor is estimated to be a value different from
zero, this means that the SSE of this larger model will be smaller than the SSE of the
smaller model.
The R2

adj is constructed to also include information about the number of parameters
estimated and the number of observations in the data set. In our example the best model
is according to this strategy the model with 6 covariates in addition to the intercept (only
the βD:T is not included). This model has an R2

adj of 0.961. The fitted regression for
this model is found by selecting the estimated regression parameter in Figure 1 (due to
orthogonal columns) for the non-zero coefficients.

ŷ = 16.2 + 0.94D + 0.29F − 0.52T − 0.09D · F − 0.13F · T + 0.09D · F · T

However, there are very minor differences between this best model and smaller models.
The model with 4 covariates (in addition to the intercept) has R2

adj equal to 0.95, so
other choices for the "best model" are possible - if we want model parsimony (which we
often want).
Lasso regression adds a penalty term to the least squares criterion to make the model
more sparse. This may give a robust fit and avoid overfitting. The penalty term for
lasso is the sum of the absolute value of the regression coefficients, and the optimization
procedure is to minimize with respect to β the following quantity

(Y −Xβ)T(Y −Xβ) + λ
p−1∑
j=1
| βj |

(The intercept is not part of the penalty term, and the sum is thus over the other
p − 1 = 7 parameters in our case.) Cross-validation is used for model choice, and we
see from Figure 5 that a value of -4.7 for log(λ) is chosen. This gives a regression model
with β̂D:T = 0.
The fitted lasso regression model is:

ŷ = 16.2 + 0.93D + 0.28F − 0.51T − 0.08D · F − 0.12F · T + 0.08D · F · T
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Both all-subset model selection and lasso regression came up with the same non-zero
covariates, but in the result from model selection the least-squares estimates for the non-
zero coefficients were kept, while for the lasso the least-squares estimates were shrunken
(due to the lasso penalty). However, looking at the fitted models we see that the differ-
ences between the least squares solution and the lasso solution are minor.

e) The design of our experiment is a full factorial 23 design done in four replications. This
means that the design matrix (both of the full model and the reduced model) will be
an orthogonal matrix. This means that XTX will be a diagonal matrix with n on the
diagonal and thus β̂k = [(XTX)−1XTY ]k = 1

n
xT
kY where xk is the kth column of the

design matrix, i.e. the β̂k will only be a function of xk and Y . Further, Var(β̂)k =
1
n
σ2 and Cov(β̂k, β̂j) = 0 for j 6= k. This is the reason why the estimated regression

parameters are the same in the full and reduced model.
The full and reduced model will give different predictions and also different residuals,
and thus different estimates for the error variance, and thus different estimated standard
deviations for the estimated regression parameters between the full and reduced model.
Finally, prediction and prediction interval. In the reduced model the vector of regression
parameters is (β0, βD, βF , βT , βD:F ).The prediction is to be made at D = 1, F = 1, T =
−1, which gives x0 = (1, 1, 1,−1, 1) as coding for covariates in the reduced model. The
prediction is given as xT

0 β̂ = (1, 1, 1,−1, 1)T(16.16, 0.94, 0.29,−0.52,−0.09) = 16.16 +
0.94 + 0.29 + 0.52− 0.09 = 17.82.
For the interval we need to observe that XTX is a 5×5 diagonal matrix with 32 on the
diagonal, and thus (XTX)−1 is a 5×5 diagonal matrix with 1

32 on the diagonal. Further,
xT

0 (XTX)−1x0 = 5/32, since a quadratic form with a diagonal matrix A and a vector x
is just ∑5

i=1 x
2
iAii. The t critical number is found from Figure 7 to be 2.05, and we have

s = 0.2782 from Figure 7.

xT
0 β̂ ± tα2 ,n−p · s ·

√
1 + xT

0 (XTX)−1x0

=17.82± 2.05 · 0.2782 ·
√

1 + 5
32 = 17.82± 0.61 = [17.2, 18.4]

Problem 3

a) 1T1 = n and 11T is a n × n matrix were each entry is equal 1, further, the matrix
I − 1

n
11T has entries

I − 1
n

11T =


1− 1

n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n

− 1
n

− 1
n

. . . − 1
n

− 1
n

− 1
n
· · · 1− 1

n

 =


n−1
n
− 1
n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n

− 1
n
− 1
n

. . . − 1
n

− 1
n
− 1
n
· · · n−1

n
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So, for n = 4 1T1 = 4 and 11T is a 4× 4 matrix were each entry is equal 1, and

I − 1
411T ==


3
4 −1

4 −
1
4 −

1
4

−1
4

3
4 −1

4 −
1
4

−1
4 −

1
4

3
4 −1

4
−1

4 −
1
4 −

1
4

3
4


Key characteristics: 1) Symmetric: We see that this matrix is symmetric, since
(I − 1

n
11T)T = IT − 1

n
(11T)T = I − 1

n
11T. 2) Idempotent: We start by showing that

1
n
11T is idempotent, and then that I − 1

n
11T is idempotent.

( 1
n

11T)2 = 1
n2 11T11T = 1

n2


1 1 · · · 1
... ... ... ...
1 1 · · · 1




1 1 · · · 1
... ... ... ...
1 1 · · · 1



= 1
n2


n n · · · n
... ... ... ...
n n · · · n

 = 1
n


1 1 · · · 1
... ... ... ...
1 1 · · · 1

 = 1
n

11T

(I − 1
n

11T)2 = I − 2 1
n

11T + 1
n2 (11T)(11T) = I − 2 1

n
11T + 1

n
11T = I − 1

n
11T

For a symmetric idempotent matrix the rank of the matrix equals the trace (sum of
diagonal elements) of the matrix. tr(I − 1

n
11T) = tr(I)− tr( 1

n
11T) = n− 1, so the rank

of I − 1
n
11T is n− 1.

Finally, E(S2).

S2 = 1
n− 1Y

T(I − 1
n

11T)Y

E(S2) = 1
n− 1 E(Y T(I − 1

n
11T)Y )

E(Y T(I − 1
n

11T)Y ) = tr((I − 1
n

11T)σ2I) + µ1T(I − 1
n

11T)µ1

= σ2 tr(I − 1
n

11T) + µ2(1T1− 1T 1
n

11T1) = σ2(n− 1) + µ2(n− 1
n
· n · n)

= σ2(n− 1)

E(S2) = 1
n− 1σ

2(n− 1) = σ2

b) It is known from the course curriculum and lectures that if Y ∼ Nn(0, I), and R is a
symmetric and idempotent matrix with rank r, then

Y TRY ∼ χ2
r
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We have Y ∼ Nn(µ1, σ2I), and R = I − 1
n
11T is symmetric and idempotent with rank

n − 1. We need to consider a transformation of Y with mean 0 and covariance I. The
transformed Y ∗ = 1

σ
(Y − µ1) ∼ Nn(0, I), since E( 1

σ
(Y − µ1)) = 1

σ
(µ1 − µ1) = 0 and

Cov( 1
σ
(Y − µ1)) = 1

σ2 Cov(Y ) = 1
σ2σ

2I = I.
We then have

(Y ∗)T(I − 1
n

11T)Y ∗ ∼ χ2
n−1

and need to relate this to 1
σ2Y

T(I − 1
n
11T)Y .

(Y ∗)T(I − 1
n

11T)Y ∗ = 1
σ

(Y − µ1)T(I − 1
n

11T) 1
σ

(Y − µ1)

= 1
σ2Y

T(I − 1
n

11T)Y − 2 1
σ2µ1T(I − 1

n
11T)Y + 1

σ2µ1T(I − 1
n

11T)µ1

= 1
σ2Y

T(I − 1
n

11T)Y − 2 1
σ2Y

Tµ(1− n

n
1) + 1

σ2µ1Tµ(1− n

n
1) = 1

σ2Y
T(I − 1

n
11T)Y

Thus, 1
σ2Y

T(I − 1
n
11T)Y ∼ χ2

n−1. It is known that the variance of a χ2
ν-distributed

variable equals 2ν.
Var(S2):

V ar(S2) = Var(σ
2

σ2
1

n− 1Y T(I − 1
n

11T)Y )

= σ4

(n− 1)2 Var( 1
σ2Y

T(I − 1
n

11T)Y ) = 2(n− 1)σ4

(n− 1)2 = 2σ4

n− 1

Distribution of AY : 1
n
1TY = Ȳ ∼ N1(µ, σ2

n
) since 1

n
1Tµ1 = µ and 1

n
1Tσ2I1 1

n
= σ2

n
.

Distribution of BY : (I − 1
n
11T)Y : It is known that if Y ∼ Nn(µ,Σ) then Z =

Aq×nY ∼ Nn(AY ,AΣAT). Here we have µ = µ1, Σ = σ2I and A = I − 1
n
11T.

E((I − 1
n

11T)Y ) = (I − 1
n

11T)µ1 = 0

Cov((I − 1
n

11Y )Y ) = (I − 1
n

11T)σ2I(I − 1
n

11T)T = σ2(I − 1
n

11T)

This gives: (I − 1
n
11T)Y ∼ Nn(0, σ2(I − 1

n
11T).

Since Y is multivariate normal with covariance matrix σ2I, then AY and BY are
independent iff Aσ2IBT = 0.

Aσ2IBT = 1
n

1Tσ2I(I − 1
n

1T1)T = σ2

n
(1TI − 1

n
1T11T)

= σ2

n
(1T − 1T) = 0
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This means that 1
n
1TY and (I − 1

n
11T)Y are independent random vectors.

Finally, to find the distribution of

n( 1
n
1TY − µ)2

1
n−1Y

T(I − 1
n
11T)Y

,

we know that the numerator and denominator of the expression are independent since
the numerator is a function of 1

n
1TY and the denominator is a function of (I− 1

n
1T1)TY ,

and we have shown that these two are independent. Further, observe that

( 1
n
1TY − µ)2

σ2

n

∼ χ2
1

1
σ2Y

T(I − 1
n

11T)Y ∼ χ2
n−1

We will rewrite the expression under study to include these two independent χ2-distributed
expressions.

n( 1
n
1TY − µ)2

1
n−1Y

T(I − 1
n
11T)Y

=
n
σ2 ( 1

n
1TY − µ)2

1
n−1

1
σ2Y

T(I − 1
n
11T)Y

= χ2
1/1

χ2
n−1/(n− 1) ∼ F1,n−1

Thus, the expression follows a Fisher distribution with 1 and n − 1 degrees of freedom.
Observe that this is the squared t-statistic for one sample inference, and that t2n−1 =
F1,n−1.


