Problem 1 Simple matrix calculations

Solve the problems by hand and by use of R (when possible).
Let $A=\left(\begin{array}{rr}9 & -2 \\ -2 & 6\end{array}\right)$.
a) Construct A as a matrix in R . Use the function matrix.
b) Is A symmetric? Use the R function t .
c) Show that A is positive definite (not in R - use the definition of positive definiteness).
d) Find the eigenvalues and the eigenvectors of A. Are the eigenvectors found by R normalized? Use the function eigen.
e) Find an orthogonal diagonalization of A. In R , matrix multiplication is performed by $\% * \%$.
f) Find A^{-1}. Use the R function solve.
g) Find the eigenvalues and the eigenvectors of A^{-1}. Is there a relationship between the eigenvalues and the eigenvectors of A and A^{-1} ?
h) Why can A be a covariance matrix?
i) Assume that A is the covariance matrix of a random vector. Find the correlation matrix, that is, the matrix having the correlation coefficient of the i and j entries of the random vector as its $i j$ entry The R functions diag and sqrt may be useful. Check your computations with cov2cor.
j) Let \boldsymbol{X} be a random vector, and assume

$$
E \boldsymbol{X}=\binom{3}{1} \quad \text { and } \quad \operatorname{Cov} \boldsymbol{X}=A
$$

Find, in R, the expectation and covariance matrices of

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \boldsymbol{X}, \quad\left(\begin{array}{ll}
1 & 2
\end{array}\right) \boldsymbol{X} \quad \text { and } \quad\binom{\boldsymbol{X}}{3 \boldsymbol{X}}
$$

(the last is a block matrix, in this case the concatenation of the vectors \boldsymbol{X} and $3 \boldsymbol{X}$).

Problem 2 Mean and covariance of linear combinations

Let \boldsymbol{X} be a trivariate (three-dimensional) random vector with mean (expectation) ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\mathrm{T}}$ and covariance matrix I, a 3×3 identity matrix. Find the mean and covariance matrix of

$$
\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right) \boldsymbol{X} .
$$

Problem 3 Covariance formula

Let \boldsymbol{V} and \boldsymbol{W} be random vectors of the same dimension. The covariance matrix of \boldsymbol{V} and \boldsymbol{W} is defined as $\operatorname{Cov}(\boldsymbol{V}, \boldsymbol{W})=E\left((\boldsymbol{V}-E \boldsymbol{V})(\boldsymbol{W}-E \boldsymbol{W})^{\mathrm{T}}\right)$. Show that $\operatorname{Cov}(\boldsymbol{V}, \boldsymbol{W})=$ $E\left(\boldsymbol{V} \boldsymbol{W}^{\mathrm{T}}\right)-(E \boldsymbol{V})(E \boldsymbol{W})^{\mathrm{T}}$.

Note that this is a generalization of a well-known formula for univariate variables. In the case $\boldsymbol{W}=\boldsymbol{V}$, we get $\operatorname{Cov}(\boldsymbol{V})=E\left(\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}\right)-(E \boldsymbol{V})(E \boldsymbol{V})^{\mathrm{T}}$, which is a generalization of the univariate $\operatorname{Var} V=E V^{2}-(E V)^{2}$.

Problem 4 The square root matrix and the Mahalanobis transform

Let the expectation (mean) and covariance matrix of a random vector \boldsymbol{X} be $\boldsymbol{\mu}=E \boldsymbol{X}$ and $\Sigma=\operatorname{Cov} \boldsymbol{X}$. Let P be an orthogonal matrix having eigenvectors of Σ as columns and Λ a diagonal matrix having the eigenvalue corresponding to the i th column of Σ as its $i i$ entry. Then $\Sigma=P \Lambda P^{\mathrm{T}}$.
a) Show that Σ is positive semidefinite. (A symmetric matrix A is positive semidefinite if $\boldsymbol{z}^{\mathrm{T}} A \boldsymbol{z} \geq 0$ for all vectors \boldsymbol{z}.)

Assume that Σ is positive definite. (A symmetric matrix A is positive definite if $\boldsymbol{z}^{\mathrm{T}} A \boldsymbol{z}>0$ for all vectors $\boldsymbol{z} \neq \mathbf{0}$.)
b) Show that all eigenvalues of Σ are positive.

Why does Σ have an inverse? What can you say about the eigenvalues and eigenvectors of Σ^{-1} ? Justify the answer.
c) Let $\Lambda^{1 / 2}$ be the diagonal matrix having as entries the square root of those of Λ, and let $\Lambda^{-1 / 2}=\left(\Lambda^{1 / 2}\right)^{-1}$. Define

$$
\Sigma^{1 / 2}=P \Lambda^{1 / 2} P^{\mathrm{T}} \quad \text { and } \quad \Sigma^{-1 / 2}=P \Lambda^{-1 / 2} P^{\mathrm{T}} .
$$

Show that both are symmetric, and that

$$
\Sigma^{1 / 2} \Sigma^{1 / 2}=\Sigma, \quad \Sigma^{-1 / 2} \Sigma^{-1 / 2}=\Sigma^{-1} \quad \text { and } \quad \Sigma^{1 / 2} \Sigma^{-1 / 2}=I,
$$

where I is an identity matrix.
d) The transform $\boldsymbol{Y}=\Sigma^{-1 / 2}(\boldsymbol{X}-\boldsymbol{\mu})$ is called the Mahalanobis transform. Show that $E \boldsymbol{Y}=\mathbf{0}$ and $\operatorname{Cov} \boldsymbol{Y}=I$.

