Norwegian University of Science and Technology Department of Mathematical Sciences TMA4267 Linear statistical models Recommended exercises 1

Page 1 of 2

Problem 1 Simple matrix calculations

Solve the problems by hand and by use of R (when possible).

Let
$$A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}$$
.

- a) Construct A as a matrix in R. Use the function matrix.
- b) Is A symmetric? Use the R function t.
- c) Show that A is positive definite (not in R use the definition of positive definiteness).
- d) Find the eigenvalues and the eigenvectors of A. Are the eigenvectors found by R normalized? Use the function eigen.
- e) Find an orthogonal diagonalization of A. In R, matrix multiplication is performed by %*%.
- f) Find A^{-1} . Use the R function solve.
- g) Find the eigenvalues and the eigenvectors of A^{-1} . Is there a relationship between the eigenvalues and the eigenvectors of A and A^{-1} ?
- **h**) Why can A be a covariance matrix?
- i) Assume that A is the covariance matrix of a random vector. Find the correlation matrix, that is, the matrix having the correlation coefficient of the *i* and *j* entries of the random vector as its *ij* entry The R functions diag and sqrt may be useful. Check your computations with cov2cor.
- j) Let X be a random vector, and assume

$$E\boldsymbol{X} = \begin{pmatrix} 3\\1 \end{pmatrix}$$
 and $\operatorname{Cov} \boldsymbol{X} = A.$

Find, in R, the expectation and covariance matrices of

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \boldsymbol{X}, \quad \begin{pmatrix} 1 & 2 \end{pmatrix} \boldsymbol{X} \quad \text{and} \quad \begin{pmatrix} \boldsymbol{X} \\ 3 \boldsymbol{X} \end{pmatrix}$$

(the last is a block matrix, in this case the concatenation of the vectors X and 3X).

Problem 2 Mean and covariance of linear combinations

Let X be a trivariate (three-dimensional) random vector with mean (expectation) $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^{\mathrm{T}}$ and covariance matrix I, a 3 × 3 identity matrix. Find the mean and covariance matrix of

$$\begin{pmatrix} rac{2}{3} & -rac{1}{3} & -rac{1}{3} \ -rac{1}{3} & rac{2}{3} & -rac{1}{3} \ -rac{1}{3} & -rac{1}{3} & -rac{1}{3} & rac{2}{3} \end{pmatrix} oldsymbol{X}.$$

Problem 3 Covariance formula

Let V and W be random vectors of the same dimension. The covariance matrix of V and W is defined as $\text{Cov}(V, W) = E((V - EV)(W - EW)^{\text{T}})$. Show that $\text{Cov}(V, W) = E(VW^{\text{T}}) - (EV)(EW)^{\text{T}}$.

Note that this is a generalization of a well-known formula for univariate variables. In the case $\boldsymbol{W} = \boldsymbol{V}$, we get $\text{Cov}(\boldsymbol{V}) = E(\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}}) - (E\boldsymbol{V})(E\boldsymbol{V})^{\mathrm{T}}$, which is a generalization of the univariate $\text{Var } V = EV^2 - (EV)^2$.

Problem 4 The square root matrix and the Mahalanobis transform

Let the expectation (mean) and covariance matrix of a random vector \mathbf{X} be $\boldsymbol{\mu} = E\mathbf{X}$ and $\boldsymbol{\Sigma} = \text{Cov } \mathbf{X}$. Let P be an orthogonal matrix having eigenvectors of $\boldsymbol{\Sigma}$ as columns and Λ a diagonal matrix having the eigenvalue corresponding to the *i*th column of $\boldsymbol{\Sigma}$ as its *ii* entry. Then $\boldsymbol{\Sigma} = P \Lambda P^{\mathrm{T}}$.

a) Show that Σ is positive semidefinite. (A symmetric matrix A is positive semidefinite if $\boldsymbol{z}^{\mathrm{T}} A \boldsymbol{z} \geq 0$ for all vectors \boldsymbol{z} .)

Assume that Σ is positive definite. (A symmetric matrix A is positive definite if $\mathbf{z}^{\mathrm{T}}A\mathbf{z} > 0$ for all vectors $\mathbf{z} \neq \mathbf{0}$.)

b) Show that all eigenvalues of Σ are positive.

Why does Σ have an inverse? What can you say about the eigenvalues and eigenvectors of Σ^{-1} ? Justify the answer.

c) Let $\Lambda^{1/2}$ be the diagonal matrix having as entries the square root of those of Λ , and let $\Lambda^{-1/2} = (\Lambda^{1/2})^{-1}$. Define

$$\Sigma^{1/2} = P \Lambda^{1/2} P^{\mathrm{T}}$$
 and $\Sigma^{-1/2} = P \Lambda^{-1/2} P^{\mathrm{T}}$.

Show that both are symmetric, and that

$$\Sigma^{1/2}\Sigma^{1/2} = \Sigma, \qquad \Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^{-1} \qquad \text{and} \qquad \Sigma^{1/2}\Sigma^{-1/2} = I,$$

where I is an identity matrix.

d) The transform $\mathbf{Y} = \Sigma^{-1/2} (\mathbf{X} - \boldsymbol{\mu})$ is called the Mahalanobis transform. Show that $E\mathbf{Y} = \mathbf{0}$ and $\operatorname{Cov} \mathbf{Y} = I$.