Problem 1 Principal components analysis

```
USArrests
```

```
pca <- prcomp(USArrests, scale = TRUE) # scale: variables are scaled
```

\#\# a
\# coefficients of PCs, called rotations or loadings
pca\$rotation
pca\$rotation \%*\% t(pca\$rotation) \# yes, it is orthogonal
\# done "manually":
corrmatrix <-
cor(USArrests) \# cor, not cov, since covariates are scaled
corrmatrix
cov(scale(USArrests)) \# the same
eigen(corrmatrix) \# same as pcs\$rotations - coincidentally same signs
\#\# b
\# sample variances of the PCs are the eigenvalues of s
pca\$sdev
pca\$sdev - 2 \# compare with eigenvalues above
\#\# c
\# scores - values of the PCs
pca\$x
cov(pca\$x) \# offdiag=0, ondiag=pca\$sdev^2
pca\$sdev ~ 2
\# check that scores for Alabama are the linear combinations they should be:
t(pca\$rotation) \%*\% t(scale(USArrests)) [, "Alabama"]
\# gives the 4 linear combinations that are the scores for Alabama - also
\# t(scale(USArrests))[, 1] can be used for picking the first column
\#\# d
\# plot the scores of two first PCs against each other

```
plot(pca$x[, 1], pca$x[, 2], type = "n")
text(pca$x[, 1], pca$x[, 2], rownames(USArrests), cex = 0.6)
# The same with also loading of two first PCs plotted
biplot(pca, scale = 0, cex = 0.6)
# scale=0: arrows scaled to represent the loadings
# plot scaled original data for assault and rape, which are influental for PC1,
# then add line parallell with vector consisting
# of loadings for assault and rape for PC1
plot(scale(USArrests)[, 2], scale(USArrests)[, 4])
abline(0, pca$rotation[2, 1] / pca$rotation[4, 1], col = "red")
# agrees visually with line onto which projections have large variance
# the same for other pairs of PCs:
biplot(pca,
    choices = c(1, 3),
    scale = 0,
    cex = 0.6)
```

\#\# e
\# How many PCs do we need to capture a large part of the variability in the data?
summary(pca) \# 2 to get 87%
plot(pca) \# screeplot

\#\# f

\# the effect of scaling
pca.noscale <- prcomp(USArrests, scale = FALSE)
summary (pca.noscale) \# 1
pca.noscale\$rotation \# PC1 dominated by Assault, PC2 by UrbanPop, etc.
cov(USArrests) \# this explains why
cov(pca.noscale)
biplot (pca.noscale, scale = 0)
biplot (pca.noscale, choices $=c(3,4)$, scale $=0$)

Problem 2 Multivariate transformation - the t distribution

a) Since U and V are independent, the joint pdf is the product of the marginal pdfs:

$$
f_{U, V}(u, v)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \cdot \frac{1}{\Gamma(p / 2) 2^{p / 2}} v^{p / 2-1} e^{-v / 2}=\frac{1}{2^{(p+1) / 2} \Gamma(p / 2) \sqrt{\pi}} v^{p / 2-1} e^{-\left(u^{2}+v\right) / 2}
$$

The inverse of the transformation $t=u / \sqrt{v / p}$ and $w=v$ is $u=t \sqrt{w / p}$ and $v=w$, with Jacobian $\sqrt{w / p}$. This gives the joint distribution of T and W :

$$
\begin{aligned}
f_{T, W}(t, w) & =f_{U, V}\left(t \sqrt{\frac{w}{p}}, w\right) \cdot \sqrt{\frac{w}{p}} \\
& =\frac{1}{2^{(p+1) / 2} \Gamma(p / 2) \sqrt{\pi}} w^{p / 2-1} e^{-\left(t^{2} w / p+w\right) / 2} e^{-w / 2}\left(\frac{w}{p}\right)^{1 / 2} \\
& =\frac{1}{2^{(p+1) / 2} \Gamma(p / 2) \sqrt{\pi p}} w^{(p-1) / 2} e^{-\left(1+t^{2} / p\right) w / 2}
\end{aligned}
$$

(An alternative way to find the joint distribution of T and W is to use the conditional pdf, $f_{T \mid W=w}$, of T given $W=w$, that is, the pdf of $\sqrt{p / w} U$, which has the $N(0, p / w)$ distribution. Then $f_{T, W}(t, w)=f_{T \mid W=w}(t) f_{W}(w)$, where f_{W} is the pdf of W. But here the point was to use the transformation formula.)
b) The marginal pdf of T is

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{T, W}(t, w) d w \\
& =\frac{1}{2^{(p+1) / 2} \Gamma(p / 2) \sqrt{\pi p}} \int_{0}^{\infty} w^{(p+1) / 2-1} e^{-\left(1+t^{2} / p\right) w / 2} \\
& =\frac{\Gamma\left(\frac{p+1}{2}\right)}{\left(1+\frac{t^{2}}{p}\right)^{(p+1) / 2} \Gamma\left(\frac{p}{2}\right) \sqrt{\pi p}} \int_{0}^{\infty} \frac{1}{\left(\frac{2}{1+t^{2} / p}\right)^{(p+1) / 2} \Gamma\left(\frac{p+1}{2}\right)} w^{(p+1) / 2-1} e^{-\left(1+t^{2} / p\right) w / 2} d w \\
& =\frac{\Gamma((p+1) / 2)}{\Gamma(p / 2) \sqrt{\pi p}}\left(1+\frac{t^{2}}{p}\right)^{-(p+1) / 2}
\end{aligned}
$$

The trick was to recognize that the integrand of the last integral is the pdf of the gamma distribution, $\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta}$, with parameters $\alpha=(p+1) / 2$ and $\beta=2 /\left(1+t^{2} / p\right)$, so that the integral is 1 .

Problem 3 The standard normal and chi-squared distributions

a) Denote by ϕ the $N(0,1)$ pdf and by f the pdf of U^{2}. Then

$$
\begin{aligned}
P\left(U^{2} \leq x\right) & =P(-\sqrt{x} \leq U \leq \sqrt{x})=P(U \leq \sqrt{x})-P(U<-\sqrt{x}) \\
f(x) & =\frac{d}{d x} P\left(U^{2} \leq x\right)=\frac{d}{d x}(P(U \leq \sqrt{x})-P(U<-\sqrt{x})) \\
& =\phi(\sqrt{x}) \frac{d}{d x} \sqrt{x}-\phi(-\sqrt{x}) \frac{d}{d x}(-\sqrt{x})=\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \frac{1}{2 \sqrt{x}}+\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{2 \pi}} x^{-1 / 2} e^{-x / 2} .
\end{aligned}
$$

The moment-generating function of U^{2} is given by

$$
\begin{aligned}
M(t) & =\int_{-\infty}^{\infty} e^{t u^{2}} \phi(u) d u=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{t u^{2}} e^{-u^{2} / 2} d u=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-u^{2}(1-2 t) / 2} d u \\
& =\frac{1}{\sqrt{1-2 t}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2} d v=\frac{1}{\sqrt{1-2 t}}
\end{aligned}
$$

for $t<\frac{1}{2}$. We used the substitution $v=u \sqrt{1-2 t}, d v=\sqrt{1-2 t} d u$.
b) First we show that

$$
f(v)= \begin{cases}\frac{1}{2^{p / 2} \Gamma(p / 2)} v^{p / 2-1} e^{-v / 2} & \text { if } v \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

is really a pdf: Firstly, $f(v) \geq 0$ for all v, and secondly,

$$
\begin{aligned}
\Gamma\left(\frac{p}{2}\right) & =\int_{0}^{\infty} u^{p / 2-1} e^{-u} d u \quad \text { (definition of gamma function) } \\
& =\int_{0}^{\infty} \frac{1}{2^{p / 2}} v^{p / 2-1} e^{-v / 2} d v \quad(\text { substitution } v=2 u, d v=2 d u)
\end{aligned}
$$

so that $\int_{-\infty}^{\infty} f(v) d v=\frac{1}{\Gamma(p / 2)} \int_{0}^{\infty} \frac{1}{2^{p / 2}} v^{p / 2-1} e^{-v / 2} d v=\frac{1}{\Gamma(p / 2)} \Gamma(p / 2)=1$.
Since V is the sum of p independent χ_{1}^{2} variables, the MGF of V is the product of the MGF of $p \chi_{1}^{2}$ variables,

$$
\underbrace{M(t) M(t) \cdots M(t)}_{p \text { factors }}=(1-2 t)^{-p / 2}, \quad t<\frac{1}{2}
$$

The MGF of a variable Y having pdf f is given by

$$
\begin{aligned}
E e^{t Y} & =\int_{-\infty}^{\infty} e^{t y} f(y) d y=\int_{0}^{\infty} e^{t y} \frac{1}{2^{p / 2} \Gamma(p / 2)} y^{p / 2-1} e^{-y / 2} d y \\
& =\int_{0}^{\infty} \frac{1}{2^{p / 2} \Gamma(p / 2)} y^{p / 2-1} e^{-(1-2 t) y / 2} d y \\
& =(1-2 t)^{-p / 2} \int_{0}^{\infty} \frac{1}{2^{p / 2} \Gamma(p / 2)} u^{p / 2-1} e^{-u / 2} d y \quad(u=(1-2 t) y, \quad d u=(1-2 t) d y) \\
& =(1-2 t)^{-p / 2} \int_{0}^{\infty} f(u) d u=(1-2 t)^{-p / 2} .
\end{aligned}
$$

We must assume $u>0$, that is, $t<\frac{1}{2}$, for the integral to converge.
So V has the MGF of a variable having pdf f. So V has pdf f.

Problem 4 Normal and chi-squared distributions in R

```
## a
B <- 20
n <- 10
rnorm(B, mean = 0, sd = 1) # draw B standard normal variates
rnorm(B, 0, 1) # the same - 2nd argument is mean, 3rd is sd
rnorm(B) # the same - default values for mean is 0 and for sd 1
dchisq(1, 1) # density at 1 for chi-squared with df=1
pt(0, n - 1) # cdf at 0 for t with df=n-1
qf(0.05, 1, 2) # critical value with area 0.05 to the left
qf(0.05, 1, 2, lower.tail = FALSE) # critical value with area 0.05 to the right
qf(0.95, 1, 2) # same as above
## b
plot(dnorm, -4, 4)
abline(v = qnorm(0.05), col = "red")
abline(v = qnorm(0.95), col = "red")
# adding shades to tails:
xvalues <- seq(from = -4, to = qnorm(0.05), length = 101)
polygon(x = c(-4, xvalues, qnorm(0.05)), y = c(0, dnorm(xvalues), 0), col = "gray")
xvalues <- seq(from = qnorm(0.95), to = 4, length = 101)
polygon(x = c(qnorm(0.95), xvalues, 4), y = c(0, dnorm(xvalues), 0), col = "gray")
## c
B <- }1000
y <- rnorm(B, 0, 1) ~ 2
range(y)
hist(y, nclass = 100, freq = FALSE)
    # freq = FALSE probabilities, not frequencies, at y axis
dchisq1 <- function(x) dchisq(x, df = 1)
    # plot only takes a function with ONE argument,
    # needed to make a df=1 version of dchisq
plot(dchisq1, min(y), max(y), add = TRUE, col = "red")
# or more compactly, using a so-called anonymous function:
plot(function(x) dchisq(x, df = 1), min(y), max(y), add = TRUE, col = "red")
abline(v = qchisq(0.1, 1), col = 3)
abline(v = qchisq(0.9, 1), col = 3)
```

