Problem 1 Simple calculations with the multivariate normal distribution

Let $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right) \sim N\left(\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2\end{array}\right)\right)$.
a) Find the distribution of $3 X_{1}-2 X_{2}+X_{3}$.
b) Find a 2×1 vector \boldsymbol{a} such that X_{2} and $X_{2}-\boldsymbol{a}^{\mathrm{T}}\binom{X_{1}}{X_{3}}$ are independent.
c) Find the conditional distribution of X_{1} given $X_{2}=x_{2}$ and $X_{3}=x_{3}$.

Problem 2 From correlated to independent variables

(Exam TMA4267, May 2013, Problem 1, slightly modified)
Assume that the random vector $\boldsymbol{X}=\left(X_{1} X_{2} X_{3}\right)^{\mathrm{T}}$ has a trivariate normal distribution with mean vector $\boldsymbol{\mu}=\left(\begin{array}{lll}2 & 6 & 4\end{array}\right)^{\mathrm{T}}$ and covariance matrix

$$
\Sigma=\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

a) Find out which of the random variables X_{1} and X_{2} is most correlated (in absolute value) with X_{3}. What is the distribution of the random vector $\boldsymbol{Z}=\left(X_{2}-X_{1} X_{3}-X_{1}\right)^{\mathrm{T}}$?

A company is measuring three quality characteristics in order to control the quality of a product. Their respective random variables can be arranged in a random vector $\boldsymbol{X}=\left(X_{1} X_{2} X_{3}\right)^{\mathrm{T}}$. Based on previous experience, it is reasonable to assume that \boldsymbol{X} is trivariate normal with mean $\boldsymbol{\mu}$ and covariance matrix Σ, as given above.

The company would like to have a simplified quality control procedure where they only consider a bivariate random vector instead of a trivariate one. The eigenvalues, $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$, of Σ, as well as their respective eigenvectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3}, are given below as R output.
\$values
[1] 3.87938521 .65270360 .4679111

\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	-0.2931284	-0.4490988	0.8440296
$[2]$,	0.4490988	-0.8440296	-0.2931284
$[3]$,	-0.8440296	-0.2931284	-0.4490988

b) Define the bivariate vector $\boldsymbol{Y}=\left(\begin{array}{ll}\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{X} & \boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{X}\end{array}\right)^{\mathrm{T}}$. Why does \boldsymbol{Y} have a bivariate normal distribution?
Show that $Y_{1}=\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{X}$ and $Y_{2}=\boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{X}$ are independent. How much of the total variance in \boldsymbol{X} is explained by \boldsymbol{Y} ? Hint: The total variance is the trace of the covariance matrix, that is, the sum of the variances. Also, there is a relationship between the trace and eigenvalues of a matrix - which relationship?

Problem 3 The bivariate normal distribution

Let X and Y be random variables with joint pdf f parameterized by ($\mu_{X}, \mu_{Y}, \rho, \sigma_{X}^{2}, \sigma_{Y}^{2}$),

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2} Q(x, y)}, \quad \text { where } \\
Q(x, y) & =\frac{1}{1-\rho^{2}}\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)\right) .
\end{aligned}
$$

This is the bivariate normal distribution.
a) Show that $Q(x, y)$ can be written $(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$, where $\boldsymbol{x}=(x y)^{\mathrm{T}}, \boldsymbol{\mu}=\left(\mu_{X} \mu_{Y}\right)^{\mathrm{T}}$ and

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Var} X & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(Y, X) & \operatorname{Var} Y
\end{array}\right) .
$$

Remark: Σ is called the variance-covariance matrix of \boldsymbol{X}.
b) Rewrite f using $\boldsymbol{\mu}$ and Σ. Note that $\operatorname{det} \Sigma=\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)$.

Now we turn to look at contours of f, that is, curves in the $x y$-plane along which f has a constant value.
c) Why can the contours be seen as solutions to the equation $(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=d^{2}$ for a given constant d ?

Use the method of diagonalization (spectral decomposition) to explain that the contours are ellipses with centre in $\boldsymbol{\mu}$, axes in the direction of the eigenvectors of Σ, with halflengths $\sqrt{\lambda_{1}} d$ and $\sqrt{\lambda_{2}} d$ of the axes, where λ_{1} and λ_{2} are the eigenvalues of Σ.
Remark: Remember that there is a simple connection between the eigenvectors and eigenvalues of Σ and Σ^{-1}.
d) For the special case that $\sigma_{X}=\sigma_{Y}$, find the eigenvalues and eigenvectors of Σ. Make a drawing of some contours by hand.
e) Now we turn to R to draw ellipses. This can be done using

```
install.packages("ellipse") # if not already installed
library(ellipse)
```

First look at $\mu_{X}=\mu_{Y}=1$, and $\sigma_{X}=\sigma_{Y}=1$ and $\rho=0.5$.
mu1 <- mu2 <- 1
sigma1 <- 1
sigma2 <- 1
rho <- 0.5
plot(ellipse(rho, scale=c(sigma1, sigma2), centre=c(mu1, mu2)), type = "l")

Try varying the parameters in Σ and observe.

Problem 4 Normal marginals, but not multivariate normal

Let X and Y be independent standard normally distributed variables, and define

$$
Z= \begin{cases}X & \text { if } X Y \geq 0 \\ -X & \text { if } X Y<0\end{cases}
$$

a) Show that Z has the standard normal distribution.
b) Show that $(Y Z)^{\mathrm{T}}$ does not have the bivariate normal distribution. Hint: Consider the signs of Y and Z.

