Problem 1 Simple calculations with the multivariate normal distribution
a) $3 X_{1}-2 X_{2}+X_{3}=(3-21) \boldsymbol{X}$, and we know from theory that $A \boldsymbol{X}+\boldsymbol{b}$ is multivariate normal if \boldsymbol{X} is. In this case, $E((3-21) \boldsymbol{X})=(3-21) E \boldsymbol{X}=(3-21)(2-31)^{\mathrm{T}}=13$ and

$$
\left.\begin{array}{rl}
\operatorname{Cov}\left(\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right) \boldsymbol{X}\right.
\end{array}\right)=\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right)\left(\begin{array}{lll}
\operatorname{Cov} \boldsymbol{X}
\end{array}\right)\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right)^{\mathrm{T}} .
$$

So $3 X_{1}-2 X_{2}+X_{3} \sim N(13,9)$. (By the way, we already knew that it had a univariate normal distribution since it is a linear combination of the components of a multivariate normal vector.)
b) We may use general properties of covariances (see p. 125 in Härdle and Simar). Let $\boldsymbol{a}=\left(a_{1} a_{3}\right)^{\mathrm{T}}$. Then we want

$$
\begin{aligned}
0 & =\operatorname{Cov}\left(X_{2}, X_{2}-\boldsymbol{a}^{\mathrm{T}}\binom{X_{1}}{X_{3}}\right)=\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2},-\boldsymbol{a}^{\mathrm{T}}\binom{X_{1}}{X_{3}}\right) \\
& =\operatorname{Var} X_{2}-\operatorname{Cov}\left(X_{2},\binom{X_{1}}{X_{3}}\right) \boldsymbol{a}=3-\left(\begin{array}{ll}
1 & 2
\end{array}\right)\binom{a_{1}}{a_{3}}=3-a_{1}-2 a_{3},
\end{aligned}
$$

so any $\boldsymbol{a}=\left(\begin{array}{ll}3-2 a_{3} & a_{3}\end{array}\right)^{\mathrm{T}}$ will do. Since both variables are linear combinations of components of a multivariate normal vector, zero covariance implies independence.
Alternatively, we might note that

$$
X_{2}=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \boldsymbol{X} \quad \text { and } \quad X_{2}-\boldsymbol{a}^{\mathrm{T}}\binom{X_{1}}{X_{3}}=\left(\begin{array}{lll}
-a_{1} & 1 & -a_{3}
\end{array}\right) \boldsymbol{X}
$$

and require

$$
\begin{aligned}
0 & =\operatorname{Cov}\left(X_{2}, X_{2}-\boldsymbol{a}^{\mathrm{T}}\binom{X_{1}}{X_{3}}\right)=\operatorname{Cov}\left(\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \boldsymbol{X},\left(\begin{array}{lll}
-a_{1} & 1 & -a_{3}
\end{array}\right) \boldsymbol{X}\right) \\
& =\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)(\operatorname{Cov} \boldsymbol{X})\left(\begin{array}{c}
-a_{1} \\
1 \\
-a_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
-a_{1} \\
1 \\
-a_{3}
\end{array}\right)=-a_{1}+3-2 a_{3},
\end{aligned}
$$

c) We need to partition \boldsymbol{x}, the mean vector $\boldsymbol{\mu}$ and covariance matrix Σ of \boldsymbol{X} into

$$
\boldsymbol{x}=\binom{\boldsymbol{x}_{\mathrm{A}}}{\boldsymbol{x}_{\mathrm{B}}}, \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{\mathrm{A}}}{\boldsymbol{\mu}_{B}} \quad \text { and } \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{\mathrm{AA}} & \Sigma_{\mathrm{AB}} \\
\Sigma_{\mathrm{BA}} & \Sigma_{\mathrm{BB}}
\end{array}\right),
$$

where the A-parts relates to X_{1} and the B-parts to $\left(\begin{array}{ll}X_{2} & X_{3}\end{array}\right)^{\mathrm{T}}$. The the conditional distribution of X_{1} given $X_{2}=x_{2}$ and $X_{3}=x_{3}$ is

$$
N\left(\boldsymbol{\mu}_{\mathrm{A}}+\Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1}\left(\boldsymbol{x}_{\mathrm{B}}-\boldsymbol{\mu}_{\mathrm{B}}\right), \Sigma_{\mathrm{AA}}-\Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} \Sigma_{\mathrm{BA}}\right)
$$

We find

$$
\begin{aligned}
\Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{rr}
1 & 1
\end{array}\right)\left(\begin{array}{rr}
2 & -2 \\
-2 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & \frac{1}{2}
\end{array}\right), \\
\boldsymbol{\mu}_{\mathrm{A}}+\Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1}\left(\boldsymbol{x}_{\mathrm{B}}-\boldsymbol{\mu}_{\mathrm{B}}\right) & =2+\left(\begin{array}{ll}
0 & \frac{1}{2}
\end{array}\right)\left(\binom{x_{2}}{x_{3}}-\binom{-3}{1}\right)=2+\frac{1}{2}\left(x_{3}-1\right)=\frac{1}{2} x_{3}+\frac{3}{2}, \\
\Sigma_{\mathrm{AA}}-\Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} \Sigma_{\mathrm{BA}} & =1-\left(\begin{array}{ll}
0 & \frac{1}{2}
\end{array}\right)\binom{1}{1}=\frac{1}{2},
\end{aligned}
$$

so that the conditional distribution is univariate $N\left(x_{3} / 2+3 / 2,1 / 2\right)$.

Problem 2 From correlated to independent variables

a) Using the relevant entries of Σ, we find the correlations

$$
\begin{aligned}
& \operatorname{Corr}\left(X_{1}, X_{3}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{3}\right)}{\sqrt{\left(\operatorname{Var} X_{1}\right)\left(\operatorname{Var} X_{3}\right)}}=\frac{1}{\sqrt{1 \cdot 3}}=\frac{\sqrt{3}}{3} \approx 0.5774 \\
& \operatorname{Corr}\left(X_{2}, X_{3}\right)=\frac{\operatorname{Cov}\left(X_{2}, X_{3}\right)}{\sqrt{\left(\operatorname{Var} X_{2}\right)\left(\operatorname{Var} X_{3}\right)}}=\frac{-1}{\sqrt{2 \cdot 3}}=-\frac{\sqrt{6}}{6} \approx-0.4082,
\end{aligned}
$$

so X_{3} is most correlated with X_{3}.
We note that $\boldsymbol{Z}=A \boldsymbol{X}$, where

$$
A=\left(\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

a linear transformation of the trivariate normal vector \boldsymbol{X}, which means that \boldsymbol{Z} is multivariate, in this case bivariate, normal. The mean vector and covariance matrix of \boldsymbol{Z}
are

$$
\begin{aligned}
E \boldsymbol{Z} & =A \boldsymbol{\mu}=\left(\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
6 \\
4
\end{array}\right)=\left(\begin{array}{ll}
4 & 2
\end{array}\right), \\
\operatorname{Cov} \boldsymbol{Z} & =A \Sigma A^{\mathrm{T}}=\left(\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 3
\end{array}\right)\left(\begin{array}{rr}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
3 & -1 \\
-1 & 2
\end{array}\right) .
\end{aligned}
$$

b)

$$
\boldsymbol{Y}=\binom{\boldsymbol{e}_{1}^{\mathrm{T}}}{\boldsymbol{e}_{2}^{\mathrm{T}}} \boldsymbol{X}
$$

so \boldsymbol{Y} is a trivariate normal vector premultiplied by a 2×3 matrix, that is, bivariate normal.

$$
\begin{aligned}
\operatorname{Cov} \boldsymbol{Y} & =\operatorname{Cov}\left(\binom{\boldsymbol{e}_{1}^{\mathrm{T}}}{\boldsymbol{e}_{2}^{\mathrm{T}}} \boldsymbol{X}\right)=\binom{\boldsymbol{e}_{1}^{\mathrm{T}}}{\boldsymbol{e}_{2}^{\mathrm{T}}} \Sigma\left(\begin{array}{ll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\boldsymbol{e}_{1}^{\mathrm{T}} \Sigma \boldsymbol{e}_{1} & \boldsymbol{e}_{1}^{\mathrm{T}} \Sigma \boldsymbol{e}_{2} \\
\boldsymbol{e}_{2}^{\mathrm{T}} \Sigma \boldsymbol{e}_{1} & \boldsymbol{e}_{2}^{\mathrm{T}} \Sigma \boldsymbol{e}_{2}
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} \boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{1} & \lambda_{2} \boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{2} \\
\lambda_{1} \boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{e}_{1} & \lambda_{2} \boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{e}_{2}
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right),
\end{aligned}
$$

since $\Sigma \boldsymbol{e}_{i}=\lambda_{i} \boldsymbol{e}_{i}$ and the eigenvalues constitute an orthonormal set, showing that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$. Since Y_{1} and Y_{2} are components of a bivariate normal vector, they are independent. (You could also argue that $\left(\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{2}^{\mathrm{T}}\right)^{\mathrm{T}} \Sigma\left(\boldsymbol{e}_{1} \boldsymbol{e}_{2}\right)$ is an upper-left submatrix of $\left(\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{e}_{3}^{\mathrm{T}}\right)^{\mathrm{T}} \Sigma\left(\boldsymbol{e}_{1} \boldsymbol{e}_{2} \boldsymbol{e}_{3}\right)$, which is diagonal by orthogonal diagonalization. $)$
The total variance of \boldsymbol{X} is defined as the sum of the variances of its components, that is, as $\operatorname{tr} \Sigma$. By theory, the trace is equal to the sum of the eigenvalues, so the total variance is $\lambda_{1}+\lambda_{2}+\lambda_{3}$. The total variance of $\left(\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{2}^{\mathrm{T}} \boldsymbol{e}_{3}^{\mathrm{T}}\right)^{\mathrm{T}} \boldsymbol{X}$ is also $\lambda_{1}+\lambda_{2}+\lambda_{3}$ by an argument as the one above, or by theory for principal components. For $\boldsymbol{Y}=\left(\boldsymbol{e}_{1}^{\mathrm{T}} \boldsymbol{e}_{2}^{\mathrm{T}}\right)^{\mathrm{T}} \boldsymbol{X}$, the total variance is $\lambda_{1}+\lambda_{2}$. The proportion of the total variance explained by \boldsymbol{Y} is then $\left(\lambda_{1}+\lambda_{2}\right) /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \approx 0.922$ (see R output for eigenvalues).
(Note that the components of \boldsymbol{Y} are the two first (theoretical) principal components of \boldsymbol{X}.)

Problem 3

a) By the formula $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b a}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$,

$$
\Sigma^{-1}=\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right)
$$

$(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$ is the quadratic form defined by Σ^{-1} evaluated in $\boldsymbol{x}-\boldsymbol{\mu}=$ $\left(x-\mu_{X} \quad y-\mu_{Y}\right)^{\mathrm{T}}$,

$$
\begin{aligned}
(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} & \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(\sigma_{Y}^{2}\left(x-\mu_{X}\right)^{2}+\sigma_{X}^{2}\left(y-\mu_{Y}\right)^{2}-2 \rho \sigma_{X}^{2} \sigma_{Y}^{2}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)\right) \\
& =\frac{1}{1-\rho^{2}}\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)\right)=Q(x, y) .
\end{aligned}
$$

b) Using the results from (a), we get

$$
f(x, y)=f(\boldsymbol{x})=\frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} .
$$

c) $(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=d^{2}$ if and only if $f(\boldsymbol{x})=\frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} e^{-\frac{1}{2} d^{2}}$, and the right hand side of the last equation is a constant, so the equation defines a contour of f. Also, any contour of f can be expressed this way, since $(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$ is always non-negative (the quadratic form is positive semidefinite).
Let P be an orthogonal matrix such that $P^{\mathrm{T}} \Sigma P=\Lambda$ is diagonal, with the eigenvalues λ_{1} and λ_{2} of Σ on the diagonal. Then $P^{\mathrm{T}} \Sigma^{-1} P=\Lambda^{-1}$. Make a change of variable, $P \boldsymbol{y}=\boldsymbol{x}-\boldsymbol{\mu}$ (translation followed by an orthogonal change of variable), so that $(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=$ $\boldsymbol{y}^{\mathrm{T}} P^{\mathrm{T}} \Sigma^{-1} P \boldsymbol{y}=\boldsymbol{y}^{\mathrm{T}} \Lambda^{-1} \boldsymbol{y}$. Assume $\boldsymbol{y}=\left(y_{1} y_{2}\right)^{\mathrm{T}}$. The contour is the graph of $\boldsymbol{y}^{\mathrm{T}} \Lambda^{-1} \boldsymbol{y}=d^{2}$, or $y_{1}^{2} / \lambda_{1}+y_{2}^{2} / \lambda_{2}=d^{2}$, that is,

$$
\frac{y_{1}^{2}}{\lambda_{1} d^{2}}+\frac{y_{2}^{2}}{\lambda_{2} d^{2}}=1
$$

In the $y_{1}-y_{2}$-coordinate system, this is an ellipse with centre in the origin and axes along the coordinate axes, with half-lengths $\sqrt{\lambda_{1}} d$ and $\sqrt{\lambda_{2}} d$. In the original coordinate system, the centre is in $P \mathbf{0}+\boldsymbol{\mu}=\boldsymbol{\mu}$. The axes has directions $P(10)^{\mathrm{T}}$ and $P\left(\begin{array}{ll}0 & 1)^{\mathrm{T}} \text {, that is, the }\end{array}\right.$ eigenvectors given by the columns of P (corresponding to λ_{1} and λ_{2}, respectively).
d) In the case that $\sigma_{X}=\sigma_{Y}=\sigma, \quad \Sigma=\sigma^{2}\left(\begin{array}{cc}1 & -\rho \\ -\rho & 1\end{array}\right)$, we find the eigenvalues, e.g. by solving the characteristic equation, $\operatorname{det}(\lambda I-\Sigma)=0$, to be $\sigma^{2}(1 \pm \rho)$. Eigenvectors can be found by solving $(\lambda I-\Sigma) \mathbf{x}=\mathbf{0}$ for \mathbf{x}, where λ is an eigenvalue. We find linearly independent, normalized eigenvectors

$$
\frac{1}{\sqrt{2}}\binom{1}{ \pm 1}
$$

(they also work for $\rho=0$, when σ^{2} is the only eigenvalue). Note that the directions of the two axes of a contour ellipse do not depend on ρ and are at 45° with the coordinate axes. If $\rho>0$, the major axis is in the direction of $(11)^{\mathrm{T}}$, and if $\rho<0$, the major axis is in the direction of $(1-1)^{\mathrm{T}}$. The ratio of the half-length of the major axis to that of
the minor axis will grow when ρ approaches 1 or -1 , thus the eccentricity of the ellipse will increase. For $\rho=0$, both axes have the same length, and the contour is a circle.

Problem 4 Normal marginals, but not multivariate normal

a) By the law of total probability,

$$
\begin{aligned}
P(Z \leq z) & =P(Z \leq z \mid X Y \geq 0) P(X Y \geq 0)+P(Z \leq z \mid X Y<0) P(X Y<0) \\
& =\frac{1}{2} P(X \leq z)+\frac{1}{2} P(-X \leq z)=\frac{1}{2} P(X \leq z)+\frac{1}{2} P(X \leq z)=P(X \leq z),
\end{aligned}
$$

so Z has the same cdf as X, and is thus $N(0,1)$.
b) $\left(\begin{array}{l} \\ Z\end{array}\right)^{\mathrm{T}}$ cannot have the bivariate normal distribution, because Y and Z always have the same sign, which follows from the definition by inspection of the possible signs of X and Y.

