Problem 1 Symmetric, idempotent matrices

A square matrix A is idempotent if $A^{2}=A$. The trace, $\operatorname{tr} A$, of a square matrix A is the sum of its diagonal entries, which is in general equal to the sum of the eigenvalues (counted with multiplicities as roots of the characteristic polynomial). The rank, $\operatorname{rank} A$, of a matrix A is the dimension of the column space, which is equal to the dimension of the row space. A square $n \times n$ matrix A is invertible if and only if $\operatorname{rank} A=n$, and if and only if 0 is not an eigenvalue of A.
a) Find a 2×2 matrix that is idempotent but not symmetric.

We have seen that the eigenvalues of an idempotent matrix A are 0 and 1 , and that $\operatorname{rank} A=$ $\operatorname{tr} A$. The latter can be seen more easily in the case that A is in addition symmetric, hence diagonalizable, using the fact that similar matrices have the same rank, i.e., if A and B are two square matrices such that $B=P^{-1} A P$ for an invertible matrix P, then $\operatorname{rank} A=\operatorname{rank} B$.
b) Assume that A is idempotent and symmetric. Show that $\operatorname{rank} A=\operatorname{tr} A$ by considering a diagonalization $\Lambda=P^{-1} A P$ of A.
c) Let $\mathbf{1}$ be a vector of $1 \mathrm{~s}, \mathbf{1}=(11 \cdots 1)^{\mathrm{T}}$, so that

$$
\mathbf{1 1}^{\mathrm{T}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Show that $\frac{1}{n} \mathbf{1 1}{ }^{\mathrm{T}}$ and $I-\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}$ are both symmetric and idempotent, and find their ranks.

Problem 2 Quadratic form

(From Exam TMA4267, spring 2014, Problem 1. See also Recommended Exercises 1, Problem 2, for first part of exam problem.)

Let \boldsymbol{X} be a trivariate random vector with mean $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\mathrm{T}}$ and covariance matrix I, a 3×3 identity matrix. Let

$$
A=\left(\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right) .
$$

a) Find the mean of $\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}$. (Hint: formula involving the trace)

Now assume that \boldsymbol{X} is trivariate normal.
b) Show that A is a symmetric and idempotent matrix. Find the rank of A. Derive the distribution of $\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}$. Find the probability that $\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}$ is less than 6 .

Problem 3 The F-distribution

This problem is similar to Problems 2-3 of Recommended Exercises 2, which were about the t - and the chi-squared distributions, respectively. Another distribution of great importance in statistical inference is the F-distribution.

The F-distribution with (p, q) degrees of freedom is the distribution of $F=\frac{V / p}{W / q}$, where $V \sim \chi_{p}^{2}$ and $W \sim \chi_{q}^{2}$ and V and W are independent. We write $F \sim F_{p, q}$.
a) Use the multivariate transformation formula to find the pdf of the F-distribution.

Hint: Let $G=W$ and use the multivariate transformation formula to find the joint pdf of F and G. Find the marginal distribution of F from this joint distribution. For the last part it will help you to recognize the integral of a χ^{2} pdf.
b) Let $F \sim F_{p, q}$ (F-distribution with (p, q) degrees of freedom). Show that $1 / F \sim F_{q, p}$.

Hint: Use definition of F-distribution in terms of chi-squared distributed variables rather than a transformation formula.
c) Let $T \sim t_{q}$ (t-distribution with q degrees of freedom). Show that $T^{2} \sim F_{1, q}(F$-distribution with $(1, q)$ degrees of freedom).
Hint: Use definition of t-distribution in terms of normally and chi-squared distributed variables rather than a transformation formula.

Problem $4 \quad T$ - and F-distributions in \mathbf{R}

This problem is similar to Problem 4 of Recommended Exercises 2, which was about the normal and chi-squared distributions, respectively.

Let $B=10000$ and $p=9$.
a) Generate a random sample of B data points $U_{i} \sim N(0,1)$, and independently a random sample of B data points $V_{i} \sim \chi_{p}^{2}$. Plot a histogram of the t-ratios, $U_{i} / \sqrt{V_{i} / p}$. Add the pdf of the t_{p} distribution to the histogram. Then add vertical lines at the 0.15 and 0.85 quantiles. Repeat this for other values of p.
b) Plot a histogram of the squares of the t-ratios. Add the pdf of the $F_{1, p}$ distribution to the histogram. Then add vertical lines at the 0.05 and 0.95 quantiles.
c) Let $n_{1}=5$ and $n_{2}=40$. Generate a random sample of B data points from the $\chi_{n_{1}}^{2}$ distribution and independently a random sample of B data points from the $\chi_{n_{2}}^{2}$ distribution. Plot a histogram of the F-ratios from the definition of F given in Problem 3. Add the pdf of the $F_{n_{1}, n_{2}}$ distribution to the histogram. Then add vertical lines at the 0.05 and 0.95 quantiles.

