Norwegian University of Science and Technology Department of Mathematical Sciences TMA4267 Linear statistical models Recommended exercises 4 Page 1 of 3

Problem 1 Symmetric, idempotent matrices

A square matrix A is *idempotent* if $A^2 = A$. The *trace*, tr A, of a square matrix A is the sum of its diagonal entries, which is in general equal to the sum of the eigenvalues (counted with multiplicities as roots of the characteristic polynomial). The *rank*, rank A, of a matrix A is the dimension of the column space, which is equal to the dimension of the row space. A square $n \times n$ matrix A is invertible if and only if rank A = n, and if and only if 0 is not an eigenvalue of A.

a) Find a 2×2 matrix that is idempotent but not symmetric.

We have seen that the eigenvalues of an idempotent matrix A are 0 and 1, and that rank A = tr A. The latter can be seen more easily in the case that A is in addition symmetric, hence diagonalizable, using the fact that similar matrices have the same rank, i.e., if A and B are two square matrices such that $B = P^{-1}AP$ for an invertible matrix P, then rank A = rank B.

- b) Assume that A is idempotent and symmetric. Show that rank $A = \operatorname{tr} A$ by considering a diagonalization $\Lambda = P^{-1}AP$ of A.
- c) Let 1 be a vector of 1s, $\mathbf{1} = (1 \ 1 \ \cdots \ 1)^{\mathrm{T}}$, so that

$$\mathbf{11}^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

Show that $\frac{1}{n}\mathbf{1}\mathbf{1}^{\mathrm{T}}$ and $I - \frac{1}{n}\mathbf{1}\mathbf{1}^{\mathrm{T}}$ are both symmetric and idempotent, and find their ranks.

Problem 2 Quadratic form

(From Exam TMA4267, spring 2014, Problem 1. See also Recommended Exercises 1, Problem 2, for first part of exam problem.)

Let X be a trivariate random vector with mean $(1 \ 1 \ 1)^{T}$ and covariance matrix I, a 3×3 identity matrix. Let

$$A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

a) Find the mean of $X^{T}AX$. (Hint: formula involving the trace)

Now assume that \boldsymbol{X} is trivariate normal.

b) Show that A is a symmetric and idempotent matrix. Find the rank of A. Derive the distribution of $X^{T}AX$. Find the probability that $X^{T}AX$ is less than 6.

Problem 3 The *F*-distribution

This problem is similar to Problems 2–3 of Recommended Exercises 2, which were about the t- and the chi-squared distributions, respectively. Another distribution of great importance in statistical inference is the F-distribution.

The *F*-distribution with (p,q) degrees of freedom is the distribution of $F = \frac{V/p}{W/q}$, where $V \sim \chi_p^2$ and $W \sim \chi_q^2$ and *V* and *W* are independent. We write $F \sim F_{p,q}$.

- a) Use the multivariate transformation formula to find the pdf of the *F*-distribution. Hint: Let G = W and use the multivariate transformation formula to find the joint pdf of *F* and *G*. Find the marginal distribution of *F* from this joint distribution. For the last part it will help you to recognize the integral of a χ^2 pdf.
- b) Let $F \sim F_{p,q}$ (*F*-distribution with (p,q) degrees of freedom). Show that $1/F \sim F_{q,p}$. Hint: Use definition of *F*-distribution in terms of chi-squared distributed variables rather than a transformation formula.
- c) Let T ~ t_q (t-distribution with q degrees of freedom). Show that T² ~ F_{1,q} (F-distribution with (1, q) degrees of freedom).
 Hint: Use definition of t-distribution in terms of normally and chi-squared distributed variables rather than a transformation formula.

Problem 4 T- and F-distributions in R

This problem is similar to Problem 4 of Recommended Exercises 2, which was about the normal and chi-squared distributions, respectively.

Let B = 10000 and p = 9.

- a) Generate a random sample of *B* data points $U_i \sim N(0, 1)$, and independently a random sample of *B* data points $V_i \sim \chi_p^2$. Plot a histogram of the *t*-ratios, $U_i/\sqrt{V_i/p}$. Add the pdf of the t_p distribution to the histogram. Then add vertical lines at the 0.15 and 0.85 quantiles. Repeat this for other values of *p*.
- b) Plot a histogram of the squares of the *t*-ratios. Add the pdf of the $F_{1,p}$ distribution to the histogram. Then add vertical lines at the 0.05 and 0.95 quantiles.
- c) Let $n_1 = 5$ and $n_2 = 40$. Generate a random sample of *B* data points from the $\chi^2_{n_1}$ distribution and independently a random sample of *B* data points from the $\chi^2_{n_2}$ distribution. Plot a histogram of the *F*-ratios from the definition of *F* given in Problem 3. Add the pdf of the F_{n_1,n_2} distribution to the histogram. Then add vertical lines at the 0.05 and 0.95 quantiles.