TMA4267 Linear statistical models

Recommended exercises 4 - solutions

Problem 1 Symmetric, idempotent matrices

a) $\left(\begin{array}{ll}1 & 0 \\ c & 0\end{array}\right)$ is idempotent but not symmetric for $c \neq 0$.
b) $\operatorname{rank} A=\operatorname{rank} \Lambda=\operatorname{tr} \Lambda=\operatorname{tr} A$. The first and third equalities follow from information given in the problem. The second follow from the fact that $\operatorname{tr} \Lambda$ is the number of non-zero columns of Λ (remember that the eigenvalues of A are 0 and 1), which is also rank A.
c)

$$
\left(\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}\right)^{\mathrm{T}}=\frac{1}{n}\left(\mathbf{1}^{\mathrm{T}}\right)^{\mathrm{T}} \mathbf{1}^{\mathrm{T}}=\frac{1}{n} \mathbf{1 1}^{\mathrm{T}},
$$

showing that $\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}$ is symmetric.

$$
\left(\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}\right)^{2}=\frac{1}{n} \frac{1}{n} \mathbf{1} \underbrace{\mathbf{1}^{\mathrm{T}}}_{=n} \mathbf{1}^{\mathrm{T}}=\frac{1}{n} \mathbf{1 1}^{\mathrm{T}},
$$

showing that $\frac{1}{n} \mathbf{1 1}{ }^{\mathrm{T}}$ is idempotent. $\operatorname{rank} \frac{1}{n} \mathbf{1 1}{ }^{\mathrm{T}}=\operatorname{tr} \frac{1}{n} \mathbf{1 1} \mathbf{1}^{\mathrm{T}}=n \cdot \frac{1}{n}=1$.
In general, if A is symmetric, then $I-A$ is symmetric, since, in that case, $(I-A)^{\mathrm{T}}=$ $I^{\mathrm{T}}-A^{\mathrm{T}}=I-A$. If A is idempotent, then so is $I-A$, since, in that case, $(I-A)^{2}=$ $(I-A)(I-A)=I^{2}-A I-I A+A^{2}=I-A-A+A=I-A$. So $I-\frac{1}{n} 11^{\mathrm{T}}$ is symmetric and idempotent. Finally, $\operatorname{rank}\left(I-\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}\right)=\operatorname{tr}\left(I-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\mathrm{T}}\right)=\operatorname{tr} I-\operatorname{tr}\left(\frac{1}{n} \mathbf{1 1}^{\mathrm{T}}\right)=n-1$.

Problem 2 Linear combinations and quadratic forms

a) By the trace formula,

$$
E\left(\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}\right)=\operatorname{tr}(A I)+\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) A\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)^{\mathrm{T}}=\operatorname{tr} A+\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \mathbf{0}=3 \cdot \frac{2}{3}=2 .
$$

b) It is easy to verify that $A^{\mathrm{T}}=A$, so that A is symmetric, and that $A^{2}=A$, so that A is idempotent. The rank of an idempotent matrix is equal to the trace, the sum of the diagonal entries, so rank $A=\operatorname{tr} A=2$.
We know that for $Y \sim N\left(\mathbf{0}, \sigma^{2}\right)$, the quadratic form $\boldsymbol{Y}^{\mathrm{T}} A \boldsymbol{Y} \sim \chi_{r}^{2}$, where r is the rank of the symmetric idempotent matrix A. So $(\boldsymbol{X}-\boldsymbol{\mu})^{\mathrm{T}} A(\boldsymbol{X}-\boldsymbol{\mu}) \sim \chi_{2}^{2}$, where $\boldsymbol{\mu}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\mathrm{T}}$. But $A(\boldsymbol{X}-\boldsymbol{\mu})=A \boldsymbol{X}-A \boldsymbol{\mu}=A \boldsymbol{X}$ and $(\boldsymbol{X}-\mu)^{\mathrm{T}} A(\boldsymbol{X}-\boldsymbol{\mu})=(\boldsymbol{X}-\boldsymbol{\mu})^{\mathrm{T}} A \boldsymbol{X}=$ $\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}-(A \mu)^{\mathrm{T}} \boldsymbol{X}=\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}$, so $\boldsymbol{X}^{\mathrm{T}} A \boldsymbol{X}=(\boldsymbol{X}-\boldsymbol{\mu})^{\mathrm{T}} A(\boldsymbol{X}-\boldsymbol{\mu}) \sim \chi_{2}^{2}$.
According to statistical tables, the 0.95 -quantile of a χ_{2}^{2}-variable is 5.991 , thus the probability that the quadratic form is less than 6 is approximately 0.95 .

Problem 3 The F-distribution

a) The joint distribution of V and W is the product of the two marginal distributions.

$$
f_{V, W}(v, w)=\frac{1}{2^{p / 2} \Gamma(p / 2)} v^{p / 2-1} e^{-v / 2} \cdot \frac{1}{2^{q / 2} \Gamma(q / 2)} w^{q / 2-1} e^{-w / 2} .
$$

The inverse of the transformation $f=(v / p) /(w / q), \quad g=w$ is given by $v=p f g / q$, $w=g$, with Jacobian

$$
\left|\begin{array}{cc}
p g / q & p f / q \\
0 & 1
\end{array}\right|=\frac{p}{q} g
$$

Then the joint distribution of F and G is given by

$$
\begin{aligned}
f_{F, G}(f, g) & =f_{V, W}\left(\frac{p}{q} f g, g\right) \cdot\left|\frac{p}{q} g\right| \\
& =\frac{1}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)}\left(\frac{p}{q} f g\right)^{p / 2-1} g^{q / 2-1} e^{-(1+p f / q) g / 2} \cdot \frac{p}{q} g \\
& =\frac{(p / q)^{p / 2} f^{p / 2-1}}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)} g^{(p+q) / 2-1} e^{-(1+p f / q) g / 2}
\end{aligned}
$$

Then the marginal distribution of F is given by

$$
\begin{aligned}
f_{F}(f) & =\frac{(p / q)^{p / 2} f^{p / 2-1}}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)} \int_{0}^{\infty} g^{(p+q) / 2-1} e^{-(1+p f / q) g / 2} d g \\
& =\frac{(p / q)^{p / 2} f^{p / 2-1}}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)} \int_{0}^{\infty} \frac{u^{(p+q) / 2-1}}{(1+p f / q)^{(p+q) / 2-1}} e^{-u / 2} \frac{d u}{1+p f / q} \\
& =\frac{(p / q)^{p / 2} f^{p / 2-1}}{2^{(p+q) / 2} \Gamma(p / 2) \Gamma(q / 2)(1+p f / q)^{(p+q) / 2}} \int_{0}^{\infty} u^{(p+q) / 2-1} e^{-u / 2} d u \\
& =\frac{\Gamma((p+q) / 2)(p / q)^{p / 2} f^{p / 2-1}}{\Gamma(p / 2) \Gamma(q / 2)(1+p f / q)^{(p+q) / 2}} \int_{0}^{\infty} \frac{1}{2^{(p+q) / 2} \Gamma((p+q) / 2)} u^{(p+q) / 2-1} e^{-u / 2} d u
\end{aligned}
$$

$$
\text { (integrand is pdf of } \chi_{p+q}^{2} \text { variable) }
$$

$$
=\frac{\Gamma((p+q) / 2)(p / q)^{p / 2}}{\Gamma(p / 2) \Gamma(q / 2)} \frac{f^{p / 2-1}}{(1+p f / q)^{(p+q) / 2}} .
$$

b) If $V \sim \chi_{p}^{2}$ and $W \sim \chi_{q}^{2}$ and V and W are independent, $F=\frac{V / p}{W / q} \sim F_{p, q}$. Then $1 / F=$ $\frac{W / q}{V / p} \sim F_{q, p}$ by definition.
c) If $Z \sim N(0,1)$ and $V \sim \chi_{q}^{2}$ and Z and V are independent, $T=Z / \sqrt{V / q} \sim t_{q}$. Then $T^{2}=\frac{Z^{2} / 1}{V / q} \sim F_{1, q}$ by definition (remember that $Z^{2} \sim \chi_{1}^{2}$).

Problem $4 \quad T$ - and F-distributions in \mathbf{R}

```
## a
B <- 10000
p <- 9
u <- rnorm(B) # draw B standard normal variates
v <- rchisq(B, p) # draw B chi^2 variates with df = p
t <- u / sqrt(v / p)
hist(t, nclass = 50, freq = FALSE)
# freq = FALSE: probabilities at y-axis
plot(function(x)
    dt(x, df = p),
    min(t),
    max(t),
    add = TRUE,
    col = "red")
abline(v = qt(0.05, p), col = "green")
abline(v = qt(0.95, p), col = "green")
```

\#\# b
f <- t ~ 2
hist (f, nclass = 50, freq = FALSE)
plot(function(x)
$\mathrm{df}(\mathrm{x}, 1, \mathrm{p})$,
$\min (f)$,
$\max (f)$,
add = TRUE,
col = "red")
\# df: pdf of F-distribution
abline (v = qf (0.05, 1, p), col = "green")
abline (v = qf (0.95, 1, p), col = "green")
\#\# c
n1 <- 5
n2 <- 40
$\mathrm{u}<-\mathrm{rchisq}(\mathrm{B}, \mathrm{df}=\mathrm{n} 1)$
v <- rchisq(B, df = n2)

```
f <- u / n1 / (v / n2)
hist(f, nclass = 50, freq = FALSE)
plot(function(x)
    df(x, n1, n2),
    min(f),
    max(f),
    add = TRUE,
    col = "red")
abline(v = qf(0.05, n1, n2), col = "green")
abline(v = qf(0.95, n1, n2), col = "green")
```

