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TMA4267 Linear statistical models
Recommended exercises 5 – solutions

Problem 1 Simple linear regression

b) X has two non-zero columns (corresponding to intercept, and pressure), and neither is
a multiple of the other. So the two columns are linearly independent, and rankX =
dim ColX = 2. We can check it in R by verifying that both eigenvalues of XTX are
positive (rank(XTX) = rankX in general): eigen(t(X) %*% X)

c) The relationship between boiling point and pressure looks linear.

d) To calculate β̂ = (XTX)−1XTY :
betahat <- solve(t(X) %*% X) %*% t(X) %*% Y.
The estimated regression parameters are β̂0 = 68.5 and β̂1 = 32.2. We predict boiling
point (or estimate its expected value) at pressure x by ŷ = β̂0 + β̂1x. thus, β̂0 is the
boiling point the model would predict for x = 0 bar, i.e. in a vacuum, and β̂1 is the
estimated rate of change of the boiling point with pressure: If the pressure increases by 1
bar, we expect the boiling point to increase by β̂1 kelvin.

e) ehat <- Y - X %*% betahat
plot(X[, 2], ehat, pch = 20)

The points follow an inverted U-shape.

f) A linear model seems appropriate from the first plot. It is difficult to assess homoscedas-
ticity from the second plot – it would have been easier with more data points. The second
plot clearly shows a non-linear relationship, but it is difficult to judge whether the plot
highlights a deviation from the linearity assumption of the model, or the error terms are
somehow correlated. (For simple linear regression, a plot of residuals versus covariate
is the same as the plot of response versus covariate, but with the estimated regression
line rotated to be a horizontal axis, and the origin set at the intersection of the new
horizontal axis and the vertical axis.) We see no specific evidence of non-additivity of
errors, although one might consider several explanations for the look of the second plot.
We can use a normal Q–Q plot of the residuals to assess normality:
qqnorm(ehat, pch = 20)
qqline(ehat)

But bear in mind that the residuals are (slightly) correlated (their sum is zero) and only
approximately normally distributed.
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Problem 2 Results on β̂ and SSE in multiple linear regression

a) H is symmetric and idempotent, which means that Hy is the orthogonal projection of y
onto the column space of X (and H) for all y ∈ Rn. It is symmetric since

HT = (X(XTX)−1XT)T = (XT)T((XTX)−1)TXT

= X((XTX)T)−1XT = X((XT(XT)T)−1XT = X(XTX)−1XT = H

and idempotent since

H2 = (X(XTX)−1XT)(X(XTX)−1XT)
= X((XTX)−1(XTX))(XTX)−1XT = XI(XTX)−1XT = X(XTX)−1XT = H.

rankH = rankX = p since H and X have the same column spaces. It can also be seen by
using trR = rankR for idempontent matrices R, and a property of the trace: If A is an
m× n and B an n×m matrix, then tr(AB) = tr(BA). So trH = tr(X(XTX)−1XT) =
tr((XTX)−1XTX) = tr I = p, where I is an p× p identity matrix.
HY is the orthogonal projection of Y onto the column space of X.
Also I − H is symmetric and idempotent, where I is now an n × n identity matrix:
(I−H)T = IT−HT = I−H, and (I−H)2 = (I−H)I−(I−H)H = I−H−IH+H2 =
I −H −H +H = I −H.
rank(I −H) = tr(I −H) = tr I − trH = n− rankH = n− p.
By the orthogonal decomposition theorem (also known as the projection theorem) of
linear algebra, if Ŷ is the orthogonal projection of Y onto a subspace, then Y − Ŷ
is the orthogonal projection of Y onto the orthogonal complement of the subspace.
In our case, HY is the orthogonal projection of Y onto the column space of X, so
Y −HY = (I−H)Y is the orthogonal projection of Y onto the orthogonal complement
of the column space of X. (This provides another way to prove that rank(I−H) = n−p.)

b) One of the key theorems of this course (Theorem B.8.2 on p. 651 of Fahrmeir et al.)
states that if D is a symmetric and idempotent matrix with rank r, and Z ∼ N(0, I),
then ZTDZ ∼ χ2

r.
Applied to D = I −H and Z = 1

σ2 (Y −Xβ) ∼ N(0, I), we get

1
σ2 (Y −Xβ)T(I −H)(Y −Xβ) ∼ χ2

n−p.

But (I −H)Xβ = 0, since HX = X, and the above simplifies to

1
σ2SSE = 1

σ2Y
T(I −H)Y ∼ χ2

n−p,
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which is the distributional result for SSE that is asked for.
In the following, we use that the expected value of a χ2

r-variable is r and its variance 2r.
Then E(SSE/σ2) = n− p, and σ2 = E(SSE)/(n− p), suggesting the unbiased estimator
SSE/(n− p) for σ2. Its variance is

Var SSE
n− p

= Var
(

σ2

n− p
SSE
σ2

)
= σ4

(n− p)2 Var SSE
σ2 = σ4

(n− p)2 · 2(n− p) = 2σ4

n− p
.

c) Since XT, and thus (XTX)−1, has p rows, and XT has n columns, A = (XTX)−1XT is
a p× n matrix. B = I −H is an n× n matrix.
Cov(AY , BY ) = A(CovY )BT = A · σ2IBT = σ2ABT = σ2(XTX)−1XT(I − H) =
σ2(XTX)−1(XT −XTH) = O, since XTH = (HX)T = XT. Since (AT BT)TY is mul-
tivariate normal, Cov(AY , BY ) = O implies AY and BY independent. Then AY = β̂
and (BY )T(BY ) = Y T(I −H)Y = SSE are independent. This independence is used in
the construction of t-tests for the components βj of β.


