TMA4267 Linear statistical models

Recommended exercises 5 - solutions

Problem 1 Simple linear regression

b) X has two non-zero columns (corresponding to intercept, and pressure), and neither is a multiple of the other. So the two columns are linearly independent, and $\operatorname{rank} X=$ $\operatorname{dim} \operatorname{Col} X=2$. We can check it in R by verifying that both eigenvalues of $X^{\mathrm{T}} X$ are positive $\left(\operatorname{rank}\left(X^{\mathrm{T}} X\right)=\operatorname{rank} X\right.$ in general): eigen $(\mathrm{t}(\mathrm{X}) \% * \% \mathrm{X})$
c) The relationship between boiling point and pressure looks linear.
d) To calculate $\hat{\boldsymbol{\beta}}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} \boldsymbol{Y}$:
betahat <- solve(t(X) \%*\% X) \%*\% t(X) \%*\% Y.
The estimated regression parameters are $\hat{\beta}_{0}=68.5$ and $\hat{\beta}_{1}=32.2$. We predict boiling point (or estimate its expected value) at pressure x by $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$. thus, $\hat{\beta}_{0}$ is the boiling point the model would predict for $x=0$ bar, i.e. in a vacuum, and $\hat{\beta}_{1}$ is the estimated rate of change of the boiling point with pressure: If the pressure increases by 1 bar, we expect the boiling point to increase by $\hat{\beta}_{1}$ kelvin.
e) ehat <- Y - X \% * \% betahat
plot $(X[, 2]$, ehat, $p c h=20$)
The points follow an inverted U-shape.
f) A linear model seems appropriate from the first plot. It is difficult to assess homoscedasticity from the second plot - it would have been easier with more data points. The second plot clearly shows a non-linear relationship, but it is difficult to judge whether the plot highlights a deviation from the linearity assumption of the model, or the error terms are somehow correlated. (For simple linear regression, a plot of residuals versus covariate is the same as the plot of response versus covariate, but with the estimated regression line rotated to be a horizontal axis, and the origin set at the intersection of the new horizontal axis and the vertical axis.) We see no specific evidence of non-additivity of errors, although one might consider several explanations for the look of the second plot.
We can use a normal Q-Q plot of the residuals to assess normality:

```
qqnorm(ehat, pch = 20)
```

qqline(ehat)
But bear in mind that the residuals are (slightly) correlated (their sum is zero) and only approximately normally distributed.

Problem 2 Results on $\hat{\beta}$ and SSE in multiple linear regression

a) H is symmetric and idempotent, which means that $H \boldsymbol{y}$ is the orthogonal projection of \boldsymbol{y} onto the column space of X (and H) for all $\boldsymbol{y} \in \mathbb{R}^{n}$. It is symmetric since

$$
\begin{aligned}
H^{\mathrm{T}} & =\left(X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}\right)^{\mathrm{T}}=\left(X^{\mathrm{T}}\right)^{\mathrm{T}}\left(\left(X^{\mathrm{T}} X\right)^{-1}\right)^{\mathrm{T}} X^{\mathrm{T}} \\
& =X\left(\left(X^{\mathrm{T}} X\right)^{\mathrm{T}}\right)^{-1} X^{\mathrm{T}}=X\left(\left(X^{\mathrm{T}}\left(X^{\mathrm{T}}\right)^{\mathrm{T}}\right)^{-1} X^{\mathrm{T}}=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}=H\right.
\end{aligned}
$$

and idempotent since

$$
\begin{aligned}
H^{2} & =\left(X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}\right)\left(X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}\right) \\
& =X\left(\left(X^{\mathrm{T}} X\right)^{-1}\left(X^{\mathrm{T}} X\right)\right)\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}=X I\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}=H
\end{aligned}
$$

rank $H=\operatorname{rank} X=p$ since H and X have the same column spaces. It can also be seen by using $\operatorname{tr} R=\operatorname{rank} R$ for idempontent matrices R, and a property of the trace: If A is an $m \times n$ and B an $n \times m$ matrix, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. So $\operatorname{tr} H=\operatorname{tr}\left(X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}\right)=$ $\operatorname{tr}\left(\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} X\right)=\operatorname{tr} I=p$, where I is an $p \times p$ identity matrix.
$H \boldsymbol{Y}$ is the orthogonal projection of \boldsymbol{Y} onto the column space of X.
Also $I-H$ is symmetric and idempotent, where I is now an $n \times n$ identity matrix: $(I-H)^{\mathrm{T}}=I^{\mathrm{T}}-H^{\mathrm{T}}=I-H$, and $(I-H)^{2}=(I-H) I-(I-H) H=I-H-I H+H^{2}=$ $I-H-H+H=I-H$.
$\operatorname{rank}(I-H)=\operatorname{tr}(I-H)=\operatorname{tr} I-\operatorname{tr} H=n-\operatorname{rank} H=n-p$.
By the orthogonal decomposition theorem (also known as the projection theorem) of linear algebra, if $\hat{\boldsymbol{Y}}$ is the orthogonal projection of \boldsymbol{Y} onto a subspace, then $\boldsymbol{Y}-\hat{\boldsymbol{Y}}$ is the orthogonal projection of \boldsymbol{Y} onto the orthogonal complement of the subspace. In our case, $H \boldsymbol{Y}$ is the orthogonal projection of \boldsymbol{Y} onto the column space of X, so $\boldsymbol{Y}-H \boldsymbol{Y}=(I-H) \boldsymbol{Y}$ is the orthogonal projection of \boldsymbol{Y} onto the orthogonal complement of the column space of X. (This provides another way to prove that $\operatorname{rank}(I-H)=n-p$.)
b) One of the key theorems of this course (Theorem B.8.2 on p. 651 of Fahrmeir et al.) states that if D is a symmetric and idempotent matrix with rank r, and $\boldsymbol{Z} \sim N(\mathbf{0}, I)$, then $\boldsymbol{Z}^{\mathrm{T}} D \boldsymbol{Z} \sim \chi_{r}^{2}$.
Applied to $D=I-H$ and $\boldsymbol{Z}=\frac{1}{\sigma^{2}}(\boldsymbol{Y}-X \boldsymbol{\beta}) \sim N(\mathbf{0}, I)$, we get

$$
\frac{1}{\sigma^{2}}(\boldsymbol{Y}-X \boldsymbol{\beta})^{\mathrm{T}}(I-H)(\boldsymbol{Y}-X \boldsymbol{\beta}) \sim \chi_{n-p}^{2}
$$

But $(I-H) X \boldsymbol{\beta}=\mathbf{0}$, since $H X=X$, and the above simplifies to

$$
\frac{1}{\sigma^{2}} \mathrm{SSE}=\frac{1}{\sigma^{2}} \boldsymbol{Y}^{\mathrm{T}}(I-H) \boldsymbol{Y} \sim \chi_{n-p}^{2}
$$

which is the distributional result for SSE that is asked for.
In the following, we use that the expected value of a χ_{r}^{2}-variable is r and its variance $2 r$. Then $E\left(\mathrm{SSE} / \sigma^{2}\right)=n-p$, and $\sigma^{2}=E(\mathrm{SSE}) /(n-p)$, suggesting the unbiased estimator $\operatorname{SSE} /(n-p)$ for σ^{2}. Its variance is

$$
\operatorname{Var} \frac{\mathrm{SSE}}{n-p}=\operatorname{Var}\left(\frac{\sigma^{2}}{n-p} \frac{\mathrm{SSE}}{\sigma^{2}}\right)=\frac{\sigma^{4}}{(n-p)^{2}} \operatorname{Var} \frac{\mathrm{SSE}}{\sigma^{2}}=\frac{\sigma^{4}}{(n-p)^{2}} \cdot 2(n-p)=\frac{2 \sigma^{4}}{n-p} .
$$

c) Since X^{T}, and thus $\left(X^{\mathrm{T}} X\right)^{-1}$, has p rows, and X^{T} has n columns, $A=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is a $p \times n$ matrix. $B=I-H$ is an $n \times n$ matrix. $\operatorname{Cov}(A \boldsymbol{Y}, B \boldsymbol{Y})=A(\operatorname{Cov} \boldsymbol{Y}) B^{\mathrm{T}}=A \cdot \sigma^{2} I B^{\mathrm{T}}=\sigma^{2} A B^{\mathrm{T}}=\sigma^{2}\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}(I-H)=$ $\sigma^{2}\left(X^{\mathrm{T}} X\right)^{-1}\left(X^{\mathrm{T}}-X^{\mathrm{T}} H\right)=O$, since $X^{\mathrm{T}} H=(H X)^{\mathrm{T}}=X^{\mathrm{T}}$. Since $\left(A^{\mathrm{T}} B^{\mathrm{T}}\right)^{\mathrm{T}} \boldsymbol{Y}$ is multivariate normal, $\operatorname{Cov}(A \boldsymbol{Y}, B \boldsymbol{Y})=O$ implies $A \boldsymbol{Y}$ and $B \boldsymbol{Y}$ independent. Then $A \boldsymbol{Y}=\hat{\boldsymbol{\beta}}$ and $(B \boldsymbol{Y})^{\mathrm{T}}(B \boldsymbol{Y})=\boldsymbol{Y}^{\mathrm{T}}(I-H) \boldsymbol{Y}=$ SSE are independent. This independence is used in the construction of t-tests for the components β_{j} of $\boldsymbol{\beta}$.

