Norwegian University of Science and Technology Department of Mathematical Sciences TMA4267 Linear statistical models Recommended exercises 5 – solutions

Problem 1 Simple linear regression

- **b)** X has two non-zero columns (corresponding to intercept, and pressure), and neither is a multiple of the other. So the two columns are linearly independent, and rank $X = \dim \operatorname{Col} X = 2$. We can check it in R by verifying that both eigenvalues of $X^{\mathrm{T}}X$ are positive (rank($X^{\mathrm{T}}X$) = rank X in general): eigen(t(X) %*% X)
- c) The relationship between boiling point and pressure looks linear.
- d) To calculate $\hat{\boldsymbol{\beta}} = (X^{T}X)^{-1}X^{T}\boldsymbol{Y}$: betahat <- solve(t(X) %*% X) %*% t(X) %*% Y.

The estimated regression parameters are $\hat{\beta}_0 = 68.5$ and $\hat{\beta}_1 = 32.2$. We predict boiling point (or estimate its expected value) at pressure x by $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$. thus, $\hat{\beta}_0$ is the boiling point the model would predict for x = 0 bar, i.e. in a vacuum, and $\hat{\beta}_1$ is the estimated rate of change of the boiling point with pressure: If the pressure increases by 1 bar, we expect the boiling point to increase by $\hat{\beta}_1$ kelvin.

- e) ehat <- Y X %*% betahat plot(X[, 2], ehat, pch = 20) The points follow an inverted U-shape.
- f) A linear model seems appropriate from the first plot. It is difficult to assess homoscedasticity from the second plot – it would have been easier with more data points. The second plot clearly shows a non-linear relationship, but it is difficult to judge whether the plot highlights a deviation from the linearity assumption of the model, or the error terms are somehow correlated. (For simple linear regression, a plot of residuals versus covariate is the same as the plot of response versus covariate, but with the estimated regression line rotated to be a horizontal axis, and the origin set at the intersection of the new horizontal axis and the vertical axis.) We see no specific evidence of non-additivity of errors, although one might consider several explanations for the look of the second plot.

We can use a normal Q–Q plot of the residuals to assess normality:

```
qqnorm(ehat, pch = 20)
qqline(ehat)
```

But bear in mind that the residuals are (slightly) correlated (their sum is zero) and only approximately normally distributed.

Problem 2 Results on $\hat{\beta}$ and SSE in multiple linear regression

a) *H* is symmetric and idempotent, which means that $H\mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of *X* (and *H*) for all $\mathbf{y} \in \mathbb{R}^n$. It is symmetric since

$$H^{\mathrm{T}} = (X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}})^{\mathrm{T}} = (X^{\mathrm{T}})^{\mathrm{T}}((X^{\mathrm{T}}X)^{-1})^{\mathrm{T}}X^{\mathrm{T}}$$
$$= X((X^{\mathrm{T}}X)^{\mathrm{T}})^{-1}X^{\mathrm{T}} = X((X^{\mathrm{T}}(X^{\mathrm{T}})^{\mathrm{T}})^{-1}X^{\mathrm{T}} = X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}} = H$$

and idempotent since

$$H^{2} = (X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}})(X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}})$$

= $X((X^{\mathrm{T}}X)^{-1}(X^{\mathrm{T}}X))(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}} = XI(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}} = X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}} = H.$

rank $H = \operatorname{rank} X = p$ since H and X have the same column spaces. It can also be seen by using tr $R = \operatorname{rank} R$ for idempotent matrices R, and a property of the trace: If A is an $m \times n$ and B an $n \times m$ matrix, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. So tr $H = \operatorname{tr}(X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}) =$ $\operatorname{tr}((X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}X) = \operatorname{tr} I = p$, where I is an $p \times p$ identity matrix.

HY is the orthogonal projection of Y onto the column space of X.

Also I - H is symmetric and idempotent, where I is now an $n \times n$ identity matrix: $(I - H)^{T} = I^{T} - H^{T} = I - H$, and $(I - H)^{2} = (I - H)I - (I - H)H = I - H - IH + H^{2} = I - H - H + H = I - H$.

$$\operatorname{rank}(I - H) = \operatorname{tr}(I - H) = \operatorname{tr} I - \operatorname{tr} H = n - \operatorname{rank} H = n - p.$$

By the orthogonal decomposition theorem (also known as the projection theorem) of linear algebra, if $\hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto a subspace, then $\mathbf{Y} - \hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto the orthogonal complement of the subspace. In our case, $H\mathbf{Y}$ is the orthogonal projection of \mathbf{Y} onto the column space of X, so $\mathbf{Y} - H\mathbf{Y} = (I - H)\mathbf{Y}$ is the orthogonal projection of \mathbf{Y} onto the orthogonal complement of the column space of X. (This provides another way to prove that $\operatorname{rank}(I - H) = n - p$.)

b) One of the key theorems of this course (Theorem B.8.2 on p. 651 of Fahrmeir et al.) states that if D is a symmetric and idempotent matrix with rank r, and $\mathbf{Z} \sim N(\mathbf{0}, I)$, then $\mathbf{Z}^{\mathrm{T}} D \mathbf{Z} \sim \chi_{r}^{2}$.

Applied to D = I - H and $\mathbf{Z} = \frac{1}{\sigma^2} (\mathbf{Y} - X\boldsymbol{\beta}) \sim N(\mathbf{0}, I)$, we get

$$\frac{1}{\sigma^2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^{\mathrm{T}} (\boldsymbol{I} - \boldsymbol{H}) (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \sim \chi^2_{n-p}$$

But $(I - H)X\beta = 0$, since HX = X, and the above simplifies to

$$\frac{1}{\sigma^2} SSE = \frac{1}{\sigma^2} \boldsymbol{Y}^{\mathrm{T}} (I - H) \boldsymbol{Y} \sim \chi^2_{n-p},$$

which is the distributional result for SSE that is asked for.

In the following, we use that the expected value of a χ_r^2 -variable is r and its variance 2r. Then $E(\text{SSE}/\sigma^2) = n - p$, and $\sigma^2 = E(\text{SSE})/(n - p)$, suggesting the unbiased estimator SSE/(n - p) for σ^2 . Its variance is

$$\operatorname{Var}\frac{\operatorname{SSE}}{n-p} = \operatorname{Var}\left(\frac{\sigma^2}{n-p}\frac{\operatorname{SSE}}{\sigma^2}\right) = \frac{\sigma^4}{(n-p)^2}\operatorname{Var}\frac{\operatorname{SSE}}{\sigma^2} = \frac{\sigma^4}{(n-p)^2} \cdot 2(n-p) = \frac{2\sigma^4}{n-p}.$$

c) Since X^{T} , and thus $(X^{\mathrm{T}}X)^{-1}$, has p rows, and X^{T} has n columns, $A = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}$ is a $p \times n$ matrix. B = I - H is an $n \times n$ matrix.

 $\begin{aligned} \operatorname{Cov}(A\boldsymbol{Y},B\boldsymbol{Y}) &= A(\operatorname{Cov}\boldsymbol{Y})B^{\mathrm{T}} = A \cdot \sigma^{2}IB^{\mathrm{T}} = \sigma^{2}AB^{\mathrm{T}} = \sigma^{2}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}(I-H) = \\ \sigma^{2}(X^{\mathrm{T}}X)^{-1}(X^{\mathrm{T}}-X^{\mathrm{T}}H) &= O, \text{ since } X^{\mathrm{T}}H = (HX)^{\mathrm{T}} = X^{\mathrm{T}}. \text{ Since } (A^{\mathrm{T}} B^{\mathrm{T}})^{\mathrm{T}}\boldsymbol{Y} \text{ is multivariate normal, } \operatorname{Cov}(A\boldsymbol{Y},B\boldsymbol{Y}) = O \text{ implies } A\boldsymbol{Y} \text{ and } B\boldsymbol{Y} \text{ independent. Then } A\boldsymbol{Y} = \hat{\boldsymbol{\beta}} \\ \text{and } (B\boldsymbol{Y})^{\mathrm{T}}(B\boldsymbol{Y}) = \boldsymbol{Y}^{\mathrm{T}}(I-H)\boldsymbol{Y} = \text{SSE are independent. This independence is used in the construction of t-tests for the components } \beta_{j} \text{ of } \boldsymbol{\beta}. \end{aligned}$