Problem 1 Orthogonally projecting matrices

An $n \times p$ matrix R always maps onto its column space $\operatorname{Col} R$, in the sense that $R \boldsymbol{y} \in \operatorname{Col} R$ for all $\boldsymbol{y} \in \mathbb{R}^{p}$, and the map is onto, since any linear combination of columns of R can be written Ry.

If R is $n \times n$, it makes sense to ask when R projects orthogonally onto $\operatorname{Col} R$, that is, when is $R \boldsymbol{y}$ the orthogonal projection of \boldsymbol{y} onto $\mathrm{Col} R$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$? By the orthogonal decomposition theorem (the projection theorem), this is equivalent to $\boldsymbol{y}-R \boldsymbol{y}=(I-R) \boldsymbol{y}$ being in the orthogonal complement of Col R for all \boldsymbol{y}, that is, $0=(R \boldsymbol{z})^{\mathrm{T}}(I-R) \boldsymbol{y}=\boldsymbol{z}^{\mathrm{T}} R^{\mathrm{T}}(I-R) \boldsymbol{y}$ for all $\boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{n}$, which is the case if and only if $R^{\mathrm{T}}(I-R)=O$, an $n \times n$ zero matrix.

Show that $R^{\mathrm{T}}(I-R)=O$ if and only if R is symmetric and idempotent.
(We have also seen in the lectures that if X is $n \times p$ and $\operatorname{rank} X=p$, then the symmetric and idempotent matrix $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ projects orthogonally onto $\operatorname{Col} X=\operatorname{Col} H$.)

Problem 2 Period of swing of pendulum

Exam TMA4267 2015 spring, Problem 1 - links in bokmål, nynorsk and English.
To get acces to data:

```
attach(read.table(
    "https://www.math.ntnu.no/emner/TMA4267/2018v/pendulum.txt"
))
```


Problem 3 Galápagos species

Exam TMA4267 2014 spring, Problem 2 - links in bokmål, nynorsk and English.

