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TMA4267 Linear statistical models
Recommended exercises 7 – solutions

Problem 1 Inference about a new observation in multiple linear regression

a) β̂ ∼ N(β, σ2(XTX)−1), so that the linear transformation xT
0 β̂ of β̂ has the distribution

N(xT
0 β, σ

2xT
0 (XTX)−1x0), which is univariate. So its expected value is the EY0 specified

by the model, and is thus unbiased.

b) U = (n − p)σ̂2/σ2 = SSE/σ2 ∼ χ2
n−p, where n is the length of Y and p is the length

of β, and it is independent of β̂ and thus of xT
0 β̂. Standardize xT

0 β̂ and divide it by√
U/(n− p) to get

T = xT
0 β̂ − EY0

σ̂
√
xT

0 (XTX)−1x0
∼ tn−p.

Solve the double inequality −tn−p ≤ T ≤ tn−p, where −tα/2 is the α/2-quantile of a tn−p
variable, to get a confidence interval having bounds

xT
0 β̂ ± tα/2σ̂

√
xT

0 (XTX)−1x0.

c) Since Y0 is independent of ε and thus of xT0 β̂, Y0−xT0 β̂ ∼ N(0, σ2(1 +xT0 (XTX)−1x0)).
Standardize Y0 − xT0 β̂ and proceed as in (b) to get a prediction interval having bounds

xT
0 β̂ ± tα/2σ̂

√
1 + xT

0 (XTX)−1x0.

d) acidrain <-
read.table("https://www.math.ntnu.no/emner/TMA4267/2018v/acidrain.txt",header=TRUE)

fit <- lm(y~.,data=acidrain) # lm: linear model
x <- model.matrix(fit)
n <- dim(x)[1]; p <- dim(x)[2]

# New observation:
x0 <- c(1,3,50,1,50,2,1,0) # remember intercept (first 1)
prediction <- sum(x0*fit$coefficients)
prediction

# Confidence interval:
halflength <-

qt(.025,n-p,lower.tail=FALSE)*summary(fit)$sigma*sqrt(x0%*%solve(t(x)%*%x)%*%x0)
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prediction-halflength
prediction+halflength

# Prediction interval:
halflength <-

qt(.025,n-p,lower.tail=FALSE)*summary(fit)$sigma*sqrt(1+x0%*%solve(t(x)%*%x)%*%x0)
prediction-halflength
prediction+halflength

# By R functions instead:
newdata <- data.frame(x1=3,x2=50,x3=1,x4=50,x5=2,x6=1,x7=0)
# or the following two lines
newdata <- data.frame(3,50,1,50,2,1,0)
names(newdata) <- names(coefficients(fit)[-1])
# In either case:
predict(fit, newdata, level=.95, interval="confidence")
predict(fit, newdata, level=.95, interval="prediction")

e) The design matrix in this case is

X =
(

1 · · · 1
x1 · · · xn

)T

,

and, with x0 = (1 x0)T, you can verify that

xT
0 (XTX)−1x0 =

∑
i(xi − x0)2

n
∑
i(xi − x̄)2 .

Next, write xi − x0 = (xi − x̄) + (x̄− x0) to get ∑i(xi − x0)2 = ∑
i(xi − x̄)2 + n(x̄− x0)2

(crossterms vanish). The bounds given follow.

Problem 2 Plant stress

a) t value in (Intercept) row: β̂0/

√
V̂ar β̂0 = 16.15942/0.04140 = 390.3. This is the

test statistic for testing the null hypothesis H0 : β0 = 0 vs. H1 : β0 6= 0, where β0 is the
intercept.

Std. Error in row named D:T: in general, tj = β̂j/

√
V̂ar β̂j, so that

√
V̂ar β̂j = β̂j/tj =

−0.00242/(−0.058) = 0.04. This is the estimated standard deviation for the coefficient
estimator.
Alternatively, we may conclude that Std. Error for β̂D:T is 0.04140 since we have or-
thogonal columns in our design matrix and the standard error estimates are the same for
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all estimated regression parameters in the model. This is the square root of the diagonal
entry corresponding to D : T of (XTX)−1σ̂2, where X is the design matrix and σ̂2 is the
estimate for the regression variance σ2. For our orthogonal design, XTX is a diagonal
matrix with all diagonal entries equal to 32. We read off σ̂ from the print-out, Residual
standard error: 0.2342. Thus, Std. Error = 0.2342/

√
32 = 0.04.

Pr(>|t|) in row named D:F:T: The probability that the absolute value of a t-
distributed variable with 24 degrees of freedom is greater than the observed t-statistic,
2.198. Using R, we find
> 2 * pt(2.198, 24, lower.tail = FALSE)
[1] 0.03783603

This is the p-value when testing H0 : βD:F :T = 0 vs. H1: βD:F :T 6= 0. Reject the null
hypothesis if the p-value is smaller than the chosen significance level. Using only the
statistical tables, Tabeller og formler i statistikk, we cannot find a precise value, but
from the table on page 4, we see that the critical value in the t-distribution with 24
degrees of freedom is 2.064 for α = 0.025 and 2.492 for α = 0.01. This means that the
p-value is between 0.02 and 0.05.
Multiple R-squared: R2 = 1 − SSE/SST, so we need SSE and SST. We find SSE
from σ̂, SSE = (n − p)σ̂2 = 24 · 0.23422 = 1.32. The F -test for the null hypothesis
that all regression coefficients (except the intercept) equals zero gives test statistic F =
(SST−SSE)/(31−24)

SSE/24 = 105.6, and SSE in the full model we found above to be 1.32. Solving
for SST yields 39.2. Finally, R2 = 1− SSE/SST = 1− 1.32/39.2 = 0.97.
We can also find R2 from the adjusted R2 (Adjusted R-squared). R2

adj = 1− SSE/(n−p)
SST/(n−1) ,

which gives R2 = 1− SSE
SST = 1− n−p

n−1(1−R2
adj) = 1− 31

24(1− 0.9594) = 0.97.

b) A natural estimator for γ is
γ̂ = 2β̂F −β̂D

where β̂F and β̂D are the appropriate entries of the vector of parameter estimates β̂ =
(XTX)−1XTY , were the X is the design matrix and Y is the vector of responses.

The first-order Taylor approximation of h(β̂F , β̂D) = 2β̂F −β̂D is, noting that d 2x/dx =
d exp(x ln 2)/dx = 2x ln 2,

2β̂F −β̂D = h(β̂F , β̂D) ≈ h(βF , βD) + hβ̂F
(βF , βD)(β̂F − βF ) + hβ̂D

(βF , βD)(β̂D − βD)
= 2βF −βL + 2βF −βL(β̂F − βF ) ln 2− 2βF −βL(β̂D − βD) ln 2,

where hβ̂F
and hβ̂D

denote partial derivatives with respect to the first and second variable,
respectively, so that

E 2β̂F −β̂D ≈ 2βF −βL ,
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since Eβ̂F = βF and Eβ̂D = βD, and

Var 2β̂F −β̂D ≈ (2βF −βL ln 2)2 Var β̂F + (2βF −βL ln 2)2 Var β̂L
= (ln 2)2 22(βF −βL)(Var β̂F + Var β̂D).

Then we have estimates

̂E2β̂F −β̂D = 2β̂F −β̂D = 20.28546−0.93739 = 0.636

and

̂Var 2β̂F −β̂D = (ln 2)2 22(β̂F −β̂L)(Var β̂F + Var β̂D)
= (ln 2)2 22(0.28546−0.93739)(0.041402 + 0.041402) = 6.67 · 10−4.

c) The hypothesis test can be performed as

H0 : Cβ = d vs. H1 : Cβ 6= d

with

C =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 , d =

0
0
0

 .
and β = (β0 βD βF βT βD:F βD:T βF :T βD:F :T )T. We can use the test statistic

F = (Cβ̂ − d)TC(XTX)−1CT)−1(Cβ̂ − d)/(rσ̂2),

where r is the number of hypotheses being tested (here r = 3), σ̂2 is the unbiased
estimator for σ2 and β̂ is the least squares estimator for β (in the full model, where we
have p = 8 regression parameters). When the null hypothesis is true, F ∼ Fr,n−p. The
design matrix has orthogonal columns, and thus XTX is a diagonal 8×8 matrix with
all diagonal entries equal to n = 32, and (XTX)−1 is a diagonal 8×8 matrix with all
diagonal entries equal to 1/32. Further, C(XTX)−1CT is a diagonal 3 × 3 matrix with
all diagonal entries 1/32, and finally (C(XTX)−1CT)−1 a diagonal 3× 3 matrix with all
diagonal entries 32. This means that F will involve a sum of three terms – one for each
regression parameter to be tested,

F = 32
3σ̂2 (β̂2

D:T + β̂2
F :T + β̂2

D:F :T )

= 32
3 · 0.23422

(
(−0.00242)2 + (−0.12614)2 + (0.09099)2

)
= 4.705

The F3,24 distribution has critical value 3.01 for α = 0.05 and 3.72 for α = 0.025, so we
reject the null hypothesis at level 0.025.
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d) The design matrix of both the full and the reduced model has orthogonal columns (the
experiment is what we in the last part of the course will call a full factorial 23 design
done in four replications). This means that XTX is a diagonal matrix with all diagonal
entries equal to n = 32, so that the jth entry of β̂ = (XTX)−1XTY is β̂j = 1

n
xT
j Y ,

where xj is the jth column of X, i.e., β̂j is a function only of xj and Y . This is the
reason why the coefficient estimates are the same in the full and reduced model.
Further, Var β̂j = σ2/n and Cov(β̂j, β̂k) = 0 for j 6= k. You may be surprised that the
standard error estimates are greater for the reduced model than for the full model. What
we know, is that the true standard errors for a reduced model is at most those of the
full. In the current models with orthogonal design, they are in fact equal, σ2/n, and the
estimate of σ was somewhat higher for the reduced model than for the full: The two
models give different predictions and also different residuals, and thus different estimates
for the error variance.
In the reduced model the coefficient vector is (β0 βD βF βT βD:F )T.The prediction is to
be made at D = 1, F = 1, T = −1, which gives covariate vector x0 = (1 1 1 −1 1)T.
The prediction is xT

0 β̂ = (1 1 1 − 1 1)(16.16 0.94 0.29 − 0.52 − 0.09)T =
16.16 + 0.94 + 0.29 + 0.52− 0.09 = 17.82.
For the prediction interval, we need (XTX)−1, which is a 5 × 5 diagonal matrix with
all diagonal entries 1/32, and xT

0 (XTX)−1x0 = 5/32. The t critical value is found from
Figure 2 to be tα/2 = 2.05 (n − p = 32 − 5 = 27), and we have σ̂ = 0.2782, also from
Figure 2. The 95% predicition interval has bounds

xT
0 β̂ ± tα/2σ̂

√
1 + xT

0 (XTX)−1x0 = 17.82± 2.05 · 0.2782 ·
√

1 + 5
32 = 17.82± 0.61,

and we have the prediction interval [17.2, 18.4].

Problem 3 Multiple testing with plant stress

a) We are testing m hypotheses and we select a cut-off on p-values that leads to rejecting
R hypotheses. Out of these R rejected hypotheses, let V be the number of Type I errors
(true hypotheses rejected).
FWER is the probability of one or more false positive finding, P (V > 0).
FDR is the expected proportion of false positive findings among the rejections, E(V/R)
(or 0, if R = 0).

b) Using Bonferroni’s method, we choose αloc = α/m = 0.05/10000 = 5 · 10−6. We reject 19
null hypotheses.
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Bonferroni’s method can always be used, for any dependency structure between the p-
values.
Bonferroni’s method is often called conservative, but what is most often meant is that
FWER is a very strict criterion. Controlling the probability of one or more Type I error
when m is large may be very strict.
Another reason for saying that Bonferroni’s rule, is that the rule is valid for all types of
dependency structures, also when the p-values from the m hypotheses are independent.
Often, the tests performed are dependent on each other, meaning that the “effective”
number of tests is less than m. In genetical applications, tests can be dependent because
the genes or genetic markers tested are correlated. Then more elaborate methods that
take into account this dependency structure (such as the multivariate distribution of the
test statistics) can give a much higher value for the p-value cut-off, while still controlling
the FWER.

c) The filled-in table:
H0 not rejected H0 rejected Total

H0 true 9000 0 9000
H0 false 981 19 1000
Total 9981 19 10000

There are none false positives. When we do not know which hypotheses are true and
false, as in a normal multiple hypothesis testing situation, only m = 10000 and R = 10
(in the last row) are known.

d) Without correcting for multiple testing:
H0 not rejected H0 rejected Total

H0 true 8572 428 9000
H0 false 178 822 1000
Total 8750 1250 10000

We have 428 false positives.


