Problem 1 Exam 2015 Spring, Problem 2

a) The least squares estimator of $\boldsymbol{\beta}$ is in general $\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} \boldsymbol{Y}$. Since the columns of X are orthogonal, $X^{\mathrm{T}} X$ is diagonal with $\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}$ as entry (j, j), where \boldsymbol{x}_{j} denotes the j th column of X. So $\left(X^{\mathrm{T}} X\right)^{-1}$ is diagonal with $1 /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$ as entry (j, j). The j th row of $\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is then $\boldsymbol{x}_{j}^{\mathrm{T}} /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$, and the j th entry of the estimator $\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{Y} /\left(\boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}\right)$.
b) The interaction vector is $\left(\begin{array}{llll}1 & -1 & -1 & 1\end{array}\right)^{\mathrm{T}}$. By the above, the coefficient estimate is $\left(\begin{array}{llllll}1 & -1 & -1 & 1\end{array}\right)\left(\begin{array}{lll}6 & 4 & 10\end{array}\right)^{\mathrm{T}} / 4=(6-4-10+7) / 4=-1 / 4$. The estimate of the effect is $2 \cdot(-1 / 4)=-1 / 2$.

Problem 2 Factorial experiments

a) Output of summary (lm4) and of effects, followed by plots:

```
> summary(lm4)
Call:
lm.default(formula = y ~ .^4, data = plan)
```

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 17.54375 NA NA NA
A1 4.41875 NA NA NA
B1 -1.25625 NA NA NA
C1 -0.54375 NA NA NA
D1 0.05625 NA NA NA
A1:B1 -0.38125 NA NA NA
A1:C1 0.50625 NA NA NA
A1:D1 0.10625 NA NA NA
B1:C1 0.50625 NA NA NA
B1:D1 0.13125 NA NA NA
C1:D1 -0.08125 NA NA NA

A1:B1:C1	0.10625	NA	NA	NA
$\mathrm{A} 1: \mathrm{B} 1: \mathrm{D} 1$	-0.01875	NA	NA	NA

A1:C1:D1 0.69375 NA NA NA

$\mathrm{B} 1: \mathrm{C} 1: \mathrm{D} 1$	0.14375	NA	NA	NA
$\mathrm{A} 1: \mathrm{B} 1: \mathrm{C} 1: \mathrm{D} 1$	-0.13125	NA	NA	NA

Residual standard error: NaN on 0 degrees of freedom					
F-statistic: NaN on 15	0 DF ,	alue: NA	NaN		
> 2*lm4\$coeff					
(Intercept) A1	B1	C1	D1	A1: B1	A1: C1
$35.0875 \quad 8.8375$	-2.5125	-1.0875	0.1125	-0.7625	1.0125
A1:D1 B1:C1	B1:D1	C1:D1	A1: B1:C1	A1:B1:D1	A1:C1:D1
$0.2125 \quad 1.0125$	0.2625	-0.1625	0.2125	-0.0375	1.3875
B1:C1:D1 A1:B1:C1:D1					
$0.2875-0.2625$					

b) The corresponding regression model is

$$
\begin{aligned}
Y=\beta_{0} & +\beta_{\mathrm{A}} A+\beta_{\mathrm{B}} B+\beta_{\mathrm{C}} C+\beta_{\mathrm{D}} D \\
& +\beta_{\mathrm{AB}} A B+\beta_{\mathrm{AC}} A C+\beta_{\mathrm{AD}} A D+\beta_{\mathrm{BC}} B C+\beta_{\mathrm{BD}} B D+\beta_{\mathrm{CD}} C D \\
& +\beta_{\mathrm{ABC}} A B C+\beta_{\mathrm{ABD}} A B D+\beta_{\mathrm{ACD}} A C D+\beta_{\mathrm{BCD}} B C D+\beta_{\mathrm{ABCD}} A B C D+\epsilon
\end{aligned}
$$

with A, B, C and D being the covariates, taking values ± 1, and β_{j} the coefficients.
c) In the model in a), the column space of the design matrix is the entire \mathbb{R}^{16}, meaning that we have a perfect fit of the data. The standard deviation estimates are all based on the error sum of squares, SSE, which is zero. (In addition, the unbiased estimator of the error term variance will have zero in the denominator.)
If we assume that the variance is known it is possible to make inference about the effects. We know from the theory for two-level factorial designs that $\hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma^{2} / n\right)$, where n
is the number of observations. Thus $1-\alpha=P\left(-z_{\alpha / 2}<\left(\hat{\beta}_{i}-\beta_{i}\right) /(\sigma / \sqrt{n})<z_{\alpha / 2}\right)=$ $P\left(\hat{\beta}_{i}-z_{\alpha / 2} \sigma / \sqrt{n}<\beta_{i}<\hat{\beta}_{i}+z_{\alpha / 2} \sigma / \sqrt{n}\right)$, where $z_{\alpha / 2}$ is the upper α-quantile of $N(0,1)$. Thus confidence intervals for the effects have bounds $2 \hat{\beta}_{i} \pm 2 z_{\alpha / 2} \sigma / \sqrt{n}=2 \hat{\beta}_{i} \pm 1.960$ with $n=16, \quad \sigma=2$ and $\alpha=0.05$.

```
> cbind(2*lm4$coeff-qnorm(.975), 2*lm4$coeff+qnorm(.975))
```

 [,1] [,2]
 (Intercept) 33.12753637 .047464
A1 $6.877536 \quad 10.797464$
B1 -4.472464 -0.552536
$\begin{array}{lll}\text { C1 } & -3.047464 & 0.872464\end{array}$
D1 $\quad-1.847464 \quad 2.072464$
A1:B1 $\quad-2.722464 \quad 1.197464$
A1:C1 $\quad-0.947464 \quad 2.972464$
A1:D1 $\quad-1.747464 \quad 2.172464$
B1:C1 $\quad-0.947464 \quad 2.972464$
$\begin{array}{lll}\text { B1:D1 } & -1.697464 \quad 2.222464\end{array}$
$\begin{array}{lll}\text { C1:D1 } & -2.122464 & 1.797464\end{array}$
A1:B1:C1 $\quad-1.747464 \quad 2.172464$
A1:B1:D1 $\quad-1.997464 \quad 1.922464$
A1:C1:D1 $\quad-0.572464 \quad 3.347464$
B1:C1:D1 $-1.672464 \quad 2.247464$
A1:B1:C1:D1 -2.222464 1.697464

The main effects of A and B are the ones significantly different from zero (zero is not in the confidence interval).
d) To assume that three-way and four-way interactions are zero, is the same as omitting them from the model.

```
> lm2 <- lm(y~.^2, data=plan)
> summary(lm2)
Call:
lm.default(formula = y ~ .^2, data = plan)
Residuals:
\begin{tabular}{rrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline-1.0562 & 0.7687 & -0.3313 & 0.6188 & 1.0937 & -0.8062 & 0.2938 & -0.5813 & 0.8437 \\
11 & 12 & 13 & 14 & 15 & 16 & & & \\
0.5438 & -0.8312 & -0.8812 & 0.5938 & -0.5063 & 0.7937 & & &
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr}(>|t|
(Intercept) 17.54375 0.32583 53.844 4.18e-08 ***
A1 4.41875 0.32583 13.562 3.91e-05 ***
B1 -1.25625 0.32583 -3.856 0.0119 *
C1 -0.54375 0.32583 -1.669 0.1560
```


An estimate of the variance of the error is $\hat{\sigma}^{2}=1.303^{2}=1.70$. An estimate of the variance of the coefficient estimators is $\hat{\sigma}^{2} / 16=0.106$. An estimate of the variance of the effect estimators is $4 \hat{\sigma}^{2} / 16=0.42$.
We also know from the theory of two-level factorial designs that the estimated variance of the coefficient estimators is the mean of the squares of the omitted coefficient estimates from the full model of a), $\left(0.10625^{2}+(-0.01875)^{2}+0.69375^{2}+0.14375^{2}+\right.$ $\left.(-0.13125)^{2}\right) / 5=0.106$ again.
At the 0.05 level, the significant effects are the main effects of A and B.
e) > design1 <- FrF2(16, 4, blocks=2, randomize=FALSE)
> summary(design1)
Call:
FrF2 (16, 4, blocks = 2, randomize = FALSE)
Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8
Factor settings (scale ends):
A B C D
$\begin{array}{lllll}1 & -1 & -1 & -1 & -1\end{array}$
$\begin{array}{lllll}2 & 1 & 1 & 1 & 1\end{array}$
Design generating information:
\$legend
[1] $A=A \quad B=B \quad C=C \quad D=D$
\$'generators for design itself"
[1] full factorial
\$'block generators'
[1] ABCD
no aliasing of main effects or $2 f$ is among experimental factors
Aliased with block main effects:
[1] none
The design itself:
run.no run.no.std.rp Blocks A B C D
$1 \begin{array}{llllllll}1 & 1 & 2.1 .1 & 1 & -1 & -1 & -1 & 1\end{array}$
$2 \quad 2 \quad 3.1 .2 \quad 1-1-1 \quad 1-1$
$3 \quad 3 \quad 5.1 .3 \quad 1-1 \quad 1-1-1$
$4 \quad 4 \quad 8.1 .4 \quad 1 \begin{array}{llllll}4 & -1 & 1 & 1 & 1\end{array}$
$5 \quad 5 \quad 9.1 .5 \quad 1 \quad 1-1-1-1$
$\begin{array}{llllllll}6 & 6 & 12.1 .6 & 1 & 1 & -1 & 1 & 1\end{array}$
$\begin{array}{llllllll}7 & 7 & 14.1 .7 & 1 & 1 & 1 & -1 & 1\end{array}$
run.no run.no.std.rp Blocks A B C D
$9 \quad 9 \quad 1.2 .1 \quad 2-1-1-1-1$
$10 \quad 10 \quad 4.2 .2 \quad 2-1-1 \quad 1 \quad 1$
$11 \begin{array}{lllllll}11 & 6.2 .3 & 2 & -1 & 1 & -1 & 1\end{array}$
$12 \quad 12 \quad 7.2 .4 \quad 2-1 \quad 1 \quad 1-1$
$13 \quad 13 \quad 10.2 .5 \quad 2 \begin{array}{lllll}1 & -1 & -1 & 1\end{array}$
$14 \quad 14 \quad 11.2 .6 \quad 2 \quad 1-1 \quad 1-1$
$\begin{array}{lllllll}15 & 15 & 13.2 .7 & 2 & 1 & 1 & -1\end{array}-1$
$\begin{array}{llllllll}16 & 16 & 16.2 .8 & 2 & 1 & 1 & 1 & 1\end{array}$
class=design, type $=$ FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
$A B C D$ is the only effect confounded with the block effect.
f) > design2 <- FrF2(16, 4, blocks=4, alias.block.2fis=TRUE, randomize=FALSE)
> summary(design2)
Call:
FrF2(16, 4, blocks = 4, alias.block.2fis = TRUE, randomize = FALSE)
Experimental design of type FrF2.blocked
16 runs
blocked design with 4 blocks of size 4
Factor settings (scale ends):
A B C D
$\begin{array}{lllll}1 & -1 & -1 & -1 & -1\end{array}$
$\begin{array}{lllll}2 & 1 & 1 & 1 & 1\end{array}$

Design generating information:
\$legend
[1] $A=A \quad B=B \quad C=C \quad D=D$

```
$'generators for design itself`
[1] full factorial
$'block generators`
[1] ACD BCD
no aliasing of main effects or 2fis among experimental factors
Aliased with block main effects:
[1] AB
The design itself:
    run.no run.no.std.rp Blocks A B C D
1 1 1 1.1.1 1 1 - 1 -1 -1 -1
2 2 4.1.2 1 1 -1 -1 1 1
3 3 14.1.3 
4 4 15.1.4 1 1 1 1 1 - 1
    run.no run.no.std.rp Blocks A B C D
5 5 5.2.1 2 -1 1 -1 -1
6 6 6 8.2.2 
7 7 7 10.2.3 
8 11.2.4 2 1 -1 1-1
    run.no run.no.std.rp Blocks A B C D
9 9 6.3.1 3 -1 1 -1 1
\(10 \quad 10 \quad 7.3 .2 \quad 3-1 \quad 1 \quad 1-1\)
11 11 9.3.3 3 1 -1 -1 -1
12 12 12.3.4 3
    run.no run.no.std.rp Blocks A B C D
13 13 2.4.1 4 -1 -1 -1 1
14 14 3.4.2 4 -1 -1 1 -1
15 15 13.4.3 4 4 1 1 - 1 -1
16 16 16.4.4 
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
```

$A C D$ and $B C D$ were suggested as block generators, so the four combinations of values of $A C D$ and $B C D$ are used to identify the four blocks. Now the third-order interactions $A C D$ and $B C D$ are confounded with the block effects, and also the second-order interaction $A C D \cdot B C D=A B$. But no main effects are confounded with the block effects.

Problem 3 Process development - from Exam TMA4255 2012 Summer

a) The coefficient estimate for B is $\hat{\beta}_{\mathrm{B}}=\frac{1}{n} \sum_{i=1}^{8} B_{i} y_{i}$, where y_{i} is the response in run i, and the effect estimate $\hat{B}=2 \hat{\beta}_{\mathrm{B}}$. In the language of two-level factorial designs:

$$
\begin{aligned}
\hat{B} & =\text { mean response when } B \text { is high }- \text { mean response when B is low } \\
& =\frac{1}{4}\left(y_{3}+y_{4}+y_{7}+y_{8}\right)-\frac{1}{4}\left(y_{1}+y_{2}+y_{5}+y_{6}\right) \\
& =\frac{1}{4}(633+642+1075+729)-\frac{1}{4}(550+669+1037+749) \\
& =769.75-751.25=18.5
\end{aligned}
$$

The main effects plot for B shows that the mean response at the low B level is at 751.25 , and going from the low to the high B level, the mean response increases with 18.5 to 769.75. The increase from the low to the high mean level of B is the B main effect.
b) The "Std. Error" column gives the estimated standard deviation of the regression coefficients. Let $\hat{\sigma}^{2}$ be the estimate of the variance σ^{2} of the regression model. Due to the orthogonality of the DOE design, all estimated standard deviations are $\hat{\sigma} / \sqrt{n}$, where $n=16$. From the printout we see that $\hat{\sigma}=47.46$ (residual standard error) and Std.Error is then $47.46 / \sqrt{16}=11.865$ for all regression coefficients.
The estimated effect for B is by definition twice the estimated coefficient for B.
The t statistic is the coefficient estimate divided by its estimated standard error. For B is is $3.688 / 11.865=0.311$. The p-value given is for the test of the null hypothesis that
the coefficient for the covariate B is zero, against the alternative that it is different from zero. A p-value of 0.76 implies that we do not reject the null hypothesis at significance level 0.05 .
At the 005 level, the significant covariates are A, C and $A C$ (and the intercept).
c) Since we have an orthogonal design, coefficient estimates will stay unchanged in any submodel. But the regression model has influence on the estimate of the error variance σ^{2} and thus on estimates of coefficient estimator standard deviations.

Just looking at the estimated coefficients in the reduced model we see that the etching rate will increase with C and decrease with A. This would suggest to keep A at the low level and C at the high level. The interaction effect between A and C is negative, so with A at low level and C at high level the net effect is positive.
We may also calculate the estimated response (predictions) with the four combinations of A and C, which confirms that A low and C high is optimal:

$$
\begin{aligned}
& A \text { low and } C \text { low: } \hat{y}=776.062+50.812-153.062-76.812=597 \\
& A \text { low and } C \text { high: } \hat{y}=776.062+50.812-153.062+76.812=1056.75 \\
& A \text { high and } C \text { low: } \hat{y}=776.062-50.812-153.062+76.812=649 \\
& A \text { high and } C \text { high: } \hat{y}=776.062-50.812+153.062-76.812=801.5
\end{aligned}
$$

A $100(1-\alpha) \%$ prediction interval for a new response of an observation having covariates \boldsymbol{x}_{0} has bounds $\boldsymbol{x}_{0}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm t_{\alpha / 2} \hat{\sigma} \sqrt{1+\boldsymbol{x}_{0}^{\mathrm{T}}\left(X^{\mathrm{T}} X\right)^{-1} \boldsymbol{x}_{0}}$ (see Recommended exercises 7, Problem 1). Here, $\boldsymbol{x}_{0}=\left(\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right)^{\mathrm{T}}$ (intercept, A low, C high and thus $A C$ low). $\hat{\boldsymbol{\beta}}=\left(\begin{array}{lll}776.06 & -50.81 \quad 153.06-76.81\end{array}\right)^{\mathrm{T}}$ is the vector of coefficient estimates. Because of the orthogonal design, $\left(X^{\mathrm{T}} X\right)^{-1}$ is $\frac{1}{16} I$ with I a 4×4 identity matrix. The error standard deviation estimate $\hat{\sigma}=41.69$ is read off the printout. With $\alpha=0.05$ we find the critical value $t_{0.025}=2.179(\mathrm{df}=n-4=12)$.
Then $\boldsymbol{x}_{0}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm t_{\alpha / 2} \hat{\sigma} \sqrt{1+\boldsymbol{x}_{0}^{\mathrm{T}}\left(X^{\mathrm{T}} X\right)^{-1} \boldsymbol{x}_{0}}=\boldsymbol{x}_{0}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm t_{\alpha / 2} \hat{\sigma} \sqrt{1+\boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{x}_{0} / 16}=776.06-$ $(-50.81)+153.06-(-76.81) \pm 2.179 \cdot 41.69 \sqrt{1+4 / 16}=1056.7 \pm 101.6$, and we get the prediction interval $(955,1158)$.
d) This is a half fraction of a 2^{3} experiment, thus a 2^{3-1} experiment. The generator for the design is $A B=-C$, and the defining relation is thus $I=-A B C$. The alias stucture is: $A=-B C, B=-A C, C=-A B$. The defining relation has three letters, and thus this is a resolution III experiment.

Problem 4 Blocking

We first try using $B C, C D$ and $D E$ as block generators, thereby avoiding A. Then the block effects are confounded by the three mentioned two-factor interactions, and also with $B C \cdot C D=$ $B D, B C \cdot D E=B C D E, C D \cdot D E=C E$, and $B C \cdot C D \cdot D E=B E$. The requirements are thus met.

There are other choices, e.g. block generators $B D, C E$ and $C D$ also satisfy the requirements. You can check by yourself.

But, actually also block generators including A may work: Let $A B C, A C D$ and $A D E$ be block generators. They are confounded by these three three-factor interactions, and with $A B C$. $A C D=B D, A B C \cdot A D E=B C D E, A C D \cdot A D E=C E$, and $A B C \cdot A C D \cdot A D E=A B E$.

You can actually find many other choices that satisfy the requirements.

Problem 5 Fractional factorial design

a) $D=A B C$, so $1=A B C D$, and the resolution (the minimum number of factors in the defining relation, which can consist of several equalities in general) is IV.
b) We have generators $E=A B C, F=A B D, G=A C D$ and $H=B C D$. Then we have the defining relation

$$
\begin{array}{rrr}
1= & A B C E & \text { (first generator) } \\
=A B D F=C D E F & \text { (second generator and product with previous) } \\
=A C D G=B D E G & \\
& =B C F G=A E F G & \text { (third generator and product with previous) } \\
=B C D H=A D E H=A C F H=B E F H=A B G H=C E G H=D F G H \\
& =A B C D E F G & \text { (fourth generator and product with previous) }
\end{array}
$$

The minimum length of the words is four, which means that the design is of resolution IV.
c) With $A B$ a blocking factor, the two-factor interactions $C E, D F$ and $G H$ are confounded with the block effect in addition to some four-factor interactions and a six-factor interaction.

