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TMA4267 Linear statistical models
Recommended exercises 9–10 – solutions

Problem 1 Exam 2015 Spring, Problem 2

a) The least squares estimator of β is in general (XTX)−1XTY . Since the columns of X are
orthogonal, XTX is diagonal with xT

j xj as entry (j, j), where xj denotes the jth column
of X. So (XTX)−1 is diagonal with 1/(xT

j xj) as entry (j, j). The jth row of (XTX)−1XT

is then xT
j /(xT

j xj), and the jth entry of the estimator xT
j Y /(xT

j xj).

b) The interaction vector is (1 − 1 − 1 1)T. By the above, the coefficient estimate is
(1 − 1 − 1 1)(6 4 10 7)T/4 = (6− 4− 10 + 7)/4 = −1/4. The estimate of the effect
is 2 · (−1/4) = −1/2.

Problem 2 Factorial experiments

a) Output of summary(lm4) and of effects, followed by plots:

> summary(lm4)

Call:
lm.default(formula = y ~ .^4, data = plan)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.54375 NA NA NA
A1 4.41875 NA NA NA
B1 -1.25625 NA NA NA
C1 -0.54375 NA NA NA
D1 0.05625 NA NA NA
A1:B1 -0.38125 NA NA NA
A1:C1 0.50625 NA NA NA
A1:D1 0.10625 NA NA NA
B1:C1 0.50625 NA NA NA
B1:D1 0.13125 NA NA NA
C1:D1 -0.08125 NA NA NA
A1:B1:C1 0.10625 NA NA NA
A1:B1:D1 -0.01875 NA NA NA
A1:C1:D1 0.69375 NA NA NA
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B1:C1:D1 0.14375 NA NA NA
A1:B1:C1:D1 -0.13125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 15 and 0 DF, p-value: NA

> 2*lm4$coeff
(Intercept) A1 B1 C1 D1 A1:B1 A1:C1

35.0875 8.8375 -2.5125 -1.0875 0.1125 -0.7625 1.0125
A1:D1 B1:C1 B1:D1 C1:D1 A1:B1:C1 A1:B1:D1 A1:C1:D1

0.2125 1.0125 0.2625 -0.1625 0.2125 -0.0375 1.3875
B1:C1:D1 A1:B1:C1:D1

0.2875 -0.2625
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b) The corresponding regression model is

Y = β0 + βAA+ βBB + βCC + βDD

+ βABAB + βACAC + βADAD + βBCBC + βBDBD + βCDCD

+ βABCABC + βABDABD + βACDACD + βBCDBCD + βABCDABCD + ε,

with A, B, C and D being the covariates, taking values ±1, and βj the coefficients.

c) In the model in a), the column space of the design matrix is the entire R16, meaning
that we have a perfect fit of the data. The standard deviation estimates are all based on
the error sum of squares, SSE, which is zero. (In addition, the unbiased estimator of the
error term variance will have zero in the denominator.)
If we assume that the variance is known it is possible to make inference about the effects.
We know from the theory for two-level factorial designs that β̂i ∼ N(βi, σ2/n), where n
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is the number of observations. Thus 1 − α = P
(
−zα/2 < (β̂i − βi)/(σ/

√
n) < zα/2

)
=

P
(
β̂i − zα/2σ/

√
n < βi < β̂i + zα/2σ/

√
n
)
, where zα/2 is the upper α-quantile of N(0, 1).

Thus confidence intervals for the effects have bounds 2β̂i±2zα/2σ/
√
n = 2β̂i±1.960 with

n = 16, σ = 2 and α = 0.05.

> cbind(2*lm4$coeff-qnorm(.975), 2*lm4$coeff+qnorm(.975))
[,1] [,2]

(Intercept) 33.127536 37.047464
A1 6.877536 10.797464
B1 -4.472464 -0.552536
C1 -3.047464 0.872464
D1 -1.847464 2.072464
A1:B1 -2.722464 1.197464
A1:C1 -0.947464 2.972464
A1:D1 -1.747464 2.172464
B1:C1 -0.947464 2.972464
B1:D1 -1.697464 2.222464
C1:D1 -2.122464 1.797464
A1:B1:C1 -1.747464 2.172464
A1:B1:D1 -1.997464 1.922464
A1:C1:D1 -0.572464 3.347464
B1:C1:D1 -1.672464 2.247464
A1:B1:C1:D1 -2.222464 1.697464

The main effects of A and B are the ones significantly different from zero (zero is not in
the confidence interval).

d) To assume that three-way and four-way interactions are zero, is the same as omitting
them from the model.

> lm2 <- lm(y~.^2, data=plan)
> summary(lm2)

Call:
lm.default(formula = y ~ .^2, data = plan)

Residuals:
1 2 3 4 5 6 7 8 9 10

-1.0562 0.7687 -0.3313 0.6188 1.0937 -0.8062 0.2938 -0.5813 0.8437 -0.5562
11 12 13 14 15 16

0.5438 -0.8312 -0.8812 0.5938 -0.5063 0.7937

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.54375 0.32583 53.844 4.18e-08 ***
A1 4.41875 0.32583 13.562 3.91e-05 ***
B1 -1.25625 0.32583 -3.856 0.0119 *
C1 -0.54375 0.32583 -1.669 0.1560
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D1 0.05625 0.32583 0.173 0.8697
A1:B1 -0.38125 0.32583 -1.170 0.2947
A1:C1 0.50625 0.32583 1.554 0.1810
A1:D1 0.10625 0.32583 0.326 0.7576
B1:C1 0.50625 0.32583 1.554 0.1810
B1:D1 0.13125 0.32583 0.403 0.7037
C1:D1 -0.08125 0.32583 -0.249 0.8130
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.303 on 5 degrees of freedom
Multiple R-squared: 0.9765, Adjusted R-squared: 0.9296
F-statistic: 20.81 on 10 and 5 DF, p-value: 0.001849

An estimate of the variance of the error is σ̂2 = 1.3032 = 1.70. An estimate of the variance
of the coefficient estimators is σ̂2/16 = 0.106. An estimate of the variance of the effect
estimators is 4σ̂2/16 = 0.42.
We also know from the theory of two-level factorial designs that the estimated vari-
ance of the coefficient estimators is the mean of the squares of the omitted coefficient
estimates from the full model of a),

(
0.106252 + (−0.01875)2 + 0.693752 + 0.143752 +

(−0.13125)2
)
/5 = 0.106 again.

At the 0.05 level, the significant effects are the main effects of A and B.

e) > design1 <- FrF2(16, 4, blocks=2, randomize=FALSE)
> summary(design1)
Call:
FrF2(16, 4, blocks = 2, randomize = FALSE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8

Factor settings (scale ends):
A B C D

1 -1 -1 -1 -1
2 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D

$‘generators for design itself‘
[1] full factorial

$‘block generators‘
[1] ABCD
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no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] none

The design itself:
run.no run.no.std.rp Blocks A B C D

1 1 2.1.1 1 -1 -1 -1 1
2 2 3.1.2 1 -1 -1 1 -1
3 3 5.1.3 1 -1 1 -1 -1
4 4 8.1.4 1 -1 1 1 1
5 5 9.1.5 1 1 -1 -1 -1
6 6 12.1.6 1 1 -1 1 1
7 7 14.1.7 1 1 1 -1 1
8 8 15.1.8 1 1 1 1 -1

run.no run.no.std.rp Blocks A B C D
9 9 1.2.1 2 -1 -1 -1 -1
10 10 4.2.2 2 -1 -1 1 1
11 11 6.2.3 2 -1 1 -1 1
12 12 7.2.4 2 -1 1 1 -1
13 13 10.2.5 2 1 -1 -1 1
14 14 11.2.6 2 1 -1 1 -1
15 15 13.2.7 2 1 1 -1 -1
16 16 16.2.8 2 1 1 1 1
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

ABCD is the only effect confounded with the block effect.

f) > design2 <- FrF2(16, 4, blocks=4, alias.block.2fis=TRUE, randomize=FALSE)
> summary(design2)
Call:
FrF2(16, 4, blocks = 4, alias.block.2fis = TRUE, randomize = FALSE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 4 blocks of size 4

Factor settings (scale ends):
A B C D

1 -1 -1 -1 -1
2 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D
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$‘generators for design itself‘
[1] full factorial

$‘block generators‘
[1] ACD BCD

no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] AB

The design itself:
run.no run.no.std.rp Blocks A B C D

1 1 1.1.1 1 -1 -1 -1 -1
2 2 4.1.2 1 -1 -1 1 1
3 3 14.1.3 1 1 1 -1 1
4 4 15.1.4 1 1 1 1 -1

run.no run.no.std.rp Blocks A B C D
5 5 5.2.1 2 -1 1 -1 -1
6 6 8.2.2 2 -1 1 1 1
7 7 10.2.3 2 1 -1 -1 1
8 8 11.2.4 2 1 -1 1 -1

run.no run.no.std.rp Blocks A B C D
9 9 6.3.1 3 -1 1 -1 1
10 10 7.3.2 3 -1 1 1 -1
11 11 9.3.3 3 1 -1 -1 -1
12 12 12.3.4 3 1 -1 1 1

run.no run.no.std.rp Blocks A B C D
13 13 2.4.1 4 -1 -1 -1 1
14 14 3.4.2 4 -1 -1 1 -1
15 15 13.4.3 4 1 1 -1 -1
16 16 16.4.4 4 1 1 1 1
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

ACD and BCD were suggested as block generators, so the four combinations of values
of ACD and BCD are used to identify the four blocks. Now the third-order interac-
tions ACD and BCD are confounded with the block effects, and also the second-order
interaction ACD·BCD = AB. But no main effects are confounded with the block effects.
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Problem 3 Process development – from Exam TMA4255 2012 Summer

a) The coefficient estimate for B is β̂B = 1
n

∑8
i=1 Biyi, where yi is the response in run i, and

the effect estimate B̂ = 2β̂B. In the language of two-level factorial designs:

B̂ = mean response when B is high−mean response when B is low
= 1

4(y3 + y4 + y7 + y8)− 1
4(y1 + y2 + y5 + y6)

= 1
4(633 + 642 + 1075 + 729)− 1

4(550 + 669 + 1037 + 749)
= 769.75− 751.25 = 18.5.
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The main effects plot for B shows that the mean response at the low B level is at 751.25,
and going from the low to the high B level, the mean response increases with 18.5 to
769.75. The increase from the low to the high mean level of B is the B main effect.

b) The “Std. Error” column gives the estimated standard deviation of the regression coef-
ficients. Let σ̂2 be the estimate of the variance σ2 of the regression model. Due to the
orthogonality of the DOE design, all estimated standard deviations are σ̂/

√
n, where

n = 16. From the printout we see that σ̂ = 47.46 (residual standard error) and Std.Error
is then 47.46/

√
16 = 11.865 for all regression coefficients.

The estimated effect for B is by definition twice the estimated coefficient for B.
The t statistic is the coefficient estimate divided by its estimated standard error. For B
is is 3.688/11.865 = 0.311. The p-value given is for the test of the null hypothesis that
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the coefficient for the covariate B is zero, against the alternative that it is different from
zero. A p-value of 0.76 implies that we do not reject the null hypothesis at significance
level 0.05.
At the 005 level, the significant covariates are A, C and AC (and the intercept).

c) Since we have an orthogonal design, coefficient estimates will stay unchanged in any
submodel. But the regression model has influence on the estimate of the error variance
σ2 and thus on estimates of coefficient estimator standard deviations.
Just looking at the estimated coefficients in the reduced model we see that the etching
rate will increase with C and decrease with A. This would suggest to keep A at the low
level and C at the high level. The interaction effect between A and C is negative, so with
A at low level and C at high level the net effect is positive.
We may also calculate the estimated response (predictions) with the four combinations
of A and C, which confirms that A low and C high is optimal:

A low and C low: ŷ = 776.062 + 50.812− 153.062− 76.812 = 597
A low and C high: ŷ = 776.062 + 50.812− 153.062 + 76.812 = 1056.75
A high and C low: ŷ = 776.062− 50.812− 153.062 + 76.812 = 649
A high and C high: ŷ = 776.062− 50.812 + 153.062− 76.812 = 801.5

A 100(1−α)% prediction interval for a new response of an observation having covariates
x0 has bounds xT

0 β̂ ± tα/2σ̂
√

1 + xT
0 (XTX)−1x0 (see Recommended exercises 7, Prob-

lem 1). Here, x0 = (1 − 1 1 − 1)T (intercept, A low, C high and thus AC low).
β̂ = (776.06 − 50.81 153.06 − 76.81)T is the vector of coefficient estimates. Because of
the orthogonal design, (XTX)−1 is 1

16I with I a 4×4 identity matrix. The error standard
deviation estimate σ̂ = 41.69 is read off the printout. With α = 0.05 we find the critical
value t0.025 = 2.179 (df = n− 4 = 12).

Then xT
0 β̂ ± tα/2σ̂

√
1 + xT

0 (XTX)−1x0 = xT
0 β̂ ± tα/2σ̂

√
1 + xT

0 x0/16 = 776.06 −
(−50.81) + 153.06 − (−76.81) ± 2.179 · 41.69

√
1 + 4/16 = 1056.7 ± 101.6, and we get

the prediction interval (955, 1158).

d) This is a half fraction of a 23 experiment, thus a 23−1 experiment. The generator for the
design is AB = −C, and the defining relation is thus I = −ABC. The alias stucture is:
A = −BC, B = −AC, C = −AB. The defining relation has three letters, and thus
this is a resolution III experiment.



TMA4267 – Recommended exercises 9–10 – solutions Page 9 of 9

Problem 4 Blocking

We first try using BC, CD and DE as block generators, thereby avoiding A. Then the block
effects are confounded by the three mentioned two-factor interactions, and also with BC ·CD =
BD, BC ·DE = BCDE, CD ·DE = CE, and BC · CD ·DE = BE. The requirements are
thus met.

There are other choices, e.g. block generators BD, CE and CD also satisfy the requirements.
You can check by yourself.

But, actually also block generators including A may work: Let ABC, ACD and ADE be block
generators. They are confounded by these three three-factor interactions, and with ABC ·
ACD = BD, ABC ·ADE = BCDE, ACD ·ADE = CE, and ABC ·ACD ·ADE = ABE.

You can actually find many other choices that satisfy the requirements.

Problem 5 Fractional factorial design

a) D = ABC, so 1 = ABCD, and the resolution (the minimum number of factors in the
defining relation, which can consist of several equalities in general) is IV.

b) We have generators E = ABC, F = ABD, G = ACD and H = BCD. Then we have
the defining relation

1 = ABCE (first generator)
= ABDF = CDEF (second generator and product with previous)
= ACDG = BDEG

= BCFG = AEFG (third generator and product with previous)
= BCDH = ADEH = ACFH = BEFH = ABGH = CEGH = DFGH

= ABCDEFG (fourth generator and product with previous)

The minimum length of the words is four, which means that the design is of resolution IV.

c) With AB a blocking factor, the two-factor interactions CE, DF and GH are confounded
with the block effect in addition to some four-factor interactions and a six-factor inter-
action.


