1.

a) Denote

$$
A=\left(\begin{array}{cc}
a & a_{1} \\
a_{1} & a
\end{array}\right)
$$

Then

$$
E Y=A E X=A\binom{1}{1}=\left(\begin{array}{cc}
a & a_{1} \\
a_{1} & a
\end{array}\right)\binom{1}{1}=\binom{a+a_{1}}{a_{1}+a}=\binom{1}{1}
$$

therefore $a_{1}=1-a$.
The covariance matrix of Y is

$$
\begin{aligned}
\operatorname{Cov}(Y)=A \Sigma A^{T} & =\left(\begin{array}{cc}
a & 1-a \\
1-a & a
\end{array}\right)\left(\begin{array}{cc}
13 / 5 & 1 \\
1 & 13 / 5
\end{array}\right)\left(\begin{array}{cc}
a & 1-a \\
1-a & a
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\frac{16}{5} a^{2}-\frac{16}{5} a+\frac{13}{5} & -\frac{16}{5} a^{2}+\frac{16}{5} a+1 \\
-\frac{16}{5} a^{2}+\frac{16}{5} a+1 & \frac{16}{5} a^{2}-\frac{16}{5} a+\frac{13}{5}
\end{array}\right) .
\end{aligned}
$$

Since components of Y are independent, this matrix must be diagonal, i.e.

$$
-\frac{16}{5} a^{2}+\frac{16}{5} a+1=0 .
$$

Solving this equation, we obtain two solutions $a=\frac{5}{4}$ and $a=-\frac{1}{4}$. Thus either

$$
A=\left(\begin{array}{cc}
5 / 4 & -1 / 4 \\
-1 / 4 & 5 / 4
\end{array}\right) \text { or } A=\left(\begin{array}{cc}
-1 / 4 & 5 / 4 \\
5 / 4 & -1 / 4
\end{array}\right)
$$

It is easy to check that both matrices satisfy conditions of the problem. In fact, they give the same $\operatorname{Cov}(Y)$.
b) The only matrix satisfying this condition is the zero matrix

$$
C=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Indeed, from the course we know that if X is normal, then $A X$ and $B X$ are independent (for some matrices A and B) iff

$$
\operatorname{Cov}(A X, B X)=A \Sigma B^{T}=0
$$

In our case $A=C, B=I$. Denote

$$
C=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)
$$

Then

$$
0=C \Sigma=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\left(\begin{array}{cc}
13 / 5 & 1 \\
1 & 13 / 5
\end{array}\right)=\left(\begin{array}{ll}
\frac{13}{5} c_{1}+c_{2} & c_{1}+\frac{13}{5} c_{2} \\
\frac{13}{5} c_{3}+c_{4} & c_{3}+\frac{13}{5} c_{4}
\end{array}\right)
$$

or

$$
\begin{aligned}
& \frac{13}{5} c_{1}+c_{2}=0, c_{1}+\frac{13}{5} c_{2}=0 \\
& \frac{13}{5} c_{3}+c_{4}=0, c_{3}+\frac{13}{5} c_{4}=0
\end{aligned}
$$

This is possible only if

$$
c_{1}=c_{2}=c_{3}=c_{4}=0
$$

2.

a) The covariance matrix of $\hat{\beta}$ is $\sigma^{2}\left(X^{T} X\right)^{-1}$. In our case

$$
\begin{aligned}
X^{T} X & =\left[\begin{array}{ccc}
30 & 20 & 20 \\
20 & 20 & 10 \\
20 & 10 & 20
\end{array}\right], \\
\left(X^{T} X\right)^{-1} & =\left[\begin{array}{ccc}
0.3 & -0.2 & -0.2 \\
-0.2 & 0.2 & 0.1 \\
-0.2 & 0.1 & 0.2
\end{array}\right],
\end{aligned}
$$

therefore the correlation coefficient between $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ is

$$
\frac{\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)} \sqrt{\operatorname{Var}\left(\hat{\beta}_{2}\right)}}=\frac{\sigma^{2} \cdot 0.1}{\sqrt{\sigma \cdot 0.2} \sqrt{\sigma \cdot 0.2}}=0.5
$$

b) Consider the followin matrix: $A=\left[\begin{array}{lll}0 & 1 & -2\end{array}\right]$. The null hypothesis and alternative can be written as

$$
H_{0}: A \beta=0 \text { vs. } H_{1}: A \beta \neq 0
$$

We use the general F-test. Test statistic is

$$
F=\frac{(A \hat{\beta})^{T}\left(A\left(X^{T} X\right)^{-1} A^{T}\right)^{-1} A \hat{\beta}}{\hat{\sigma}^{2}}
$$

Under H_{0} this statistic has F-distribution with 1 and $n-p$ degrees of freedom. In our case $n=30, p=3, \hat{\beta}_{1}=2.579, \hat{\beta}_{2}=1.196, \hat{\sigma}=2.243$,

$$
\begin{gathered}
A\left(X^{T} X\right)^{-1} A^{T}=0.6 \\
\left(A\left(X^{T} X\right)^{-1} A^{T}\right)^{-1}=\frac{10}{6}=1.67, \\
A \hat{\beta}=\hat{\beta}_{1}-2 \hat{\beta}_{2}=0.187
\end{gathered}
$$

Thus the observed value of the test statistic is $F=0.012$. Since $f_{0.05,1,27}=4.21$, the null hypothesis is not rejected.
c)

Estimate

is $\hat{\beta}_{j}(j=0,1,2)$;
Std. Error
is $\sqrt{\widehat{\operatorname{Var}}_{\beta}}$;
t value
is $t_{j}=\hat{\beta}_{j} / \sqrt{\operatorname{Var}_{j}}$.
For the first question mark

$$
\hat{\beta}_{0}=t_{0} \sqrt{\widehat{\operatorname{Var} \hat{\beta}_{0}}}=0.776 \cdot 1.228=0.953
$$

For the second question mark

$$
\sqrt{\widehat{\operatorname{Var} \hat{\beta}_{1}}}=\hat{\beta}_{1} / t_{1}=2.579 / 2.571=1.003
$$

For the third question mark

$$
t_{2}=\hat{\beta}_{2} / \sqrt{\widehat{\operatorname{Var} \hat{\beta}_{2}}}=1.196 / 1.003=1.193
$$

Thus the output is in fact as follows

```
Call:
lm(formula = Y ~ x1 + x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-4.1806 & -1.2880 & 0.3316 & 1.3483 & 4.7308
\end{tabular}
Coefficients:
```



```
Residual standard error: 2.243 on 27 degrees of freedom
Multiple R-squared: 0.197, Adjusted R-squared: 0.1375
F-statistic: 3.312 on 2 and 27 DF, p-value: 0.05172
```

d) The Bonferroni method should be chosen because the Šidák method is based on the assumption of independence of hypotheses. In the considered case, the hypotheses are mostly likely dependent. H_{0} is rejected if the corresponding p-value is less than $\alpha_{\text {loc }}$ which is equal to the family wise error rate (FWER) devided by the number of hypotheses. In our case

$$
\alpha_{\mathrm{loc}}=\frac{0.05}{3}=0.017
$$

Thus the first two null hypotheses are rejected while the third one is not rejected.
3.
a) Since $E X=0$, using the trace formula, we obtain

$$
E Q=\operatorname{tr}\left(\Sigma^{-1} \Sigma\right)=\operatorname{tr}\left(I_{p}\right)=p
$$

4.

a) These matrices are idempotent. This is known from our course or can be easily obtained directly. But the only invertible idempotent matrix is the
identity matrix. Indeed, let A be an invertible idempotent matrix. Multiplying both sides of the equality

$$
A A=A
$$

by A^{-1}, we obtain

$$
A=I .
$$

If H is invertible and therefore $H=I$, then the two matrices coincide.
5.
a) Multiplying both sides of the equality $X_{1}+X_{2}+X_{3}=0$ by X_{1} and taking the expectation, we obtain

$$
E\left[X_{1}\left(X_{1}+X_{2}+X_{3}\right)\right]=0
$$

i.e.

$$
1+\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)=0
$$

Similarly (multiplying by X_{2} and X_{3}) we obtain two more equations:

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}, X_{2}\right)+1+\operatorname{Cov}\left(X_{2}, X_{3}\right)=0, \\
& \operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)+1=0 .
\end{aligned}
$$

Solving these three equations, we obtain

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{3}\right)=\operatorname{Cov}\left(X_{2}, X_{3}\right)=-\frac{1}{2}
$$

Hence, the covariance matrix of X is

$$
\Sigma=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right)
$$

b) Y is normal (linear transformation of the normal vector X), $E Y=0$, the covariance matrix is
$\operatorname{Cov}(Y)=A \Sigma A^{T}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & -\frac{1}{2} \\ -\frac{1}{2} & 1\end{array}\right)$,
therefore the characteristic function is

$$
\phi\left(t_{1}, t_{2}\right)=e^{-\frac{1}{2}\left(t_{1}^{2}-t_{1} t_{2}+t_{2}^{2}\right)} .
$$

