1.

a) 1) The probability density function of X is

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{\pi} I_{\left\{x_{1}^{2}+x_{2}^{2} \leq 1\right\}}\left(x_{1}, x_{2}\right)
$$

where I is the indicator function. To obtain the marginal density of X_{1}, we integrate the joint density with respect to x_{2}. Let $-1 \leq x_{1} \leq 1$ (otherwise $\left.f\left(x_{1}, x_{2}\right)=0\right)$. Then

$$
\begin{gathered}
f_{1}\left(x_{1}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} I_{\left\{x_{1}^{2}+x_{2}^{2} \leq 1\right\}}\left(x_{1}, x_{2}\right) d x_{2}=\frac{1}{\pi} \int_{-\infty}^{\infty} I_{\left(-\sqrt{1-x_{1}^{2}}, \sqrt{1-x_{1}^{2}}\right)}\left(x_{2}\right) d x_{2}= \\
=\frac{1}{\pi} \int_{-\sqrt{1-x_{1}^{2}}}^{\sqrt{1-x_{1}^{2}}} d x_{2}=\frac{2 \sqrt{1-x_{1}^{2}}}{\pi} .
\end{gathered}
$$

If $\left|x_{1}\right|>1$, then $f_{1}\left(x_{1}\right)=0$.
In the same way $f_{2}\left(x_{2}\right)=\frac{2 \sqrt{1-x_{2}^{2}}}{\pi}$ if $\left|x_{2}\right| \leq 1$ and $f_{2}\left(x_{2}\right)=0$ if $\left|x_{2}\right|>1$.
Similarly (by integration)
2) $f_{k}\left(x_{k}\right)=1 / 2$ if $\left|x_{k}\right| \leq 1$ and $f_{k}\left(x_{k}\right)=0$ if $\left|x_{k}\right|>1, k=1,2$. Note that in this case

$$
f\left(x_{1}, x_{2}\right)=I_{\left\{\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\}}\left(x_{1}, x_{2}\right)=I_{\left\{\left|x_{1}\right| \leq 1\right\}}\left(x_{1}\right) I_{\left\{\left|x_{2}\right| \leq 1\right\}}\left(x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
$$

3) $f_{k}\left(x_{k}\right)=1-\left|x_{k}\right|$ if $\left|x_{k}\right| \leq 1$ and $f_{k}\left(x_{k}\right)=0$ if $\left|x_{k}\right|>1, k=1,2$.
b) 1)

$$
\begin{gathered}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{-\infty}^{\infty} x_{1}\left(\int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1}= \\
=\int_{-\infty}^{\infty} x_{1}\left(\int_{-\infty}^{\infty} x_{2} I_{\left\{x_{1}^{2}+x_{2}^{2} \leq 1\right\}}\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1}= \\
=\int_{-\infty}^{\infty} x_{1}\left(\int_{-\infty}^{\infty} x_{2} I_{\left[-\sqrt{1-x_{1}^{2}}, \sqrt{1-x_{1}^{2}}\right]}\left(x_{2}\right) d x_{2}\right) d x_{1}=\int_{-\infty}^{\infty} x_{1}\left(\int_{-\sqrt{1-x_{1}^{2}}}^{\sqrt{1-x_{1}^{2}}} x_{2} d x_{2}\right) d x_{1}=0
\end{gathered}
$$

because the inner integral equals zero (odd function, symmetric interval).
2) Since $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, the variables X_{1} and X_{2} are independent.

Therefore

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=0
$$

3) Denote

$$
Q=\left\{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 1,-1-x_{1} \leq x_{2} \leq 1-x_{1}, x_{1} \leq x_{2} \leq x_{1}+1\right\}
$$

Then

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2} I_{Q}\left(x_{1}, x_{2}\right)
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\frac{1}{2} \int_{-1}^{1} x_{1}\left(\int_{-\infty}^{\infty} x_{2} I_{Q}\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1}= \\
& \quad=\frac{1}{2} \int_{-1}^{0} x_{1}\left(\int_{-\left(1+x_{1}\right)}^{1+x_{1}} x_{2} d x_{2}\right) d x_{1}+\frac{1}{2} \int_{0}^{1} x_{1}\left(\int_{-\left(1-x_{1}\right)}^{1-x_{1}} x_{2} d x_{2}\right) d x_{1}=0
\end{aligned}
$$

because the two inner integrals equal zero (odd function, symmetric intervals).
X_{1} and X_{2} are independent in the second case: the joint density equals the product of marginal densities. In two other cases X_{1} and X_{2} are dependent. Indeed, in both cases $P\left(X_{1}>0.9\right)>0, P\left(X_{2}>0.9\right)>0$, but $P\left(X_{1}>0.9, X_{2}>\right.$ $0.9)=0$.
2.
a) Since $p=3$ and $n-p$ (the number of degrees of freedom) is $117, n=120$.

$$
\begin{gathered}
t_{1}=\hat{\beta}_{1} / \sqrt{\widehat{\operatorname{Var} \hat{\beta}_{1}}}=1.3596 / 0.4548=2.989 \\
\sqrt{\widehat{\operatorname{Var} \hat{\beta}_{2}}}=\hat{\beta}_{2} / t_{2}=(-0.3780) /(-0.831)=0.4548 \\
R_{\mathrm{adj}}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-k-1}=1-(1-0.1213) \frac{119}{117}=0.1063 .
\end{gathered}
$$

Thus the output is in fact as follows

```
Call:
lm(formula = Y ~ x1 + x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-4.7169 & -1.1809 & 0.0742 & 1.2974 & 4.3071
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7662 0.5571 6.761 5.7e-10 ***
\begin{tabular}{lllll}
x 1 & 1.3596 & 0.4548 & 2.989 & 0.00341 **
\end{tabular}
x2 -0.3780 0.4548 -0.831 0.40758
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.034 on 117 degrees of freedom
Multiple R-squared: 0.1213, Adjusted R-squared: 0.1063
F-statistic: 8.074 on 2 and 117 DF, p-value: 0.0005193
```

b) Denote elements of $\left(X^{T} X\right)^{-1}$ by $c_{i j}$:

$$
\left(X^{T} X\right)^{-1}=\left[c_{i j}\right]_{i, j=0,1, \ldots, k}
$$

In our case $k=2$ and we have to find $c_{j j}, j=0,1,2$. The following equalities hold (known from the course):

$$
{\widehat{\operatorname{Var}} \hat{\beta}_{j}}=\hat{\sigma}^{2} c_{j j}
$$

therefore

$$
c_{j j}=\frac{\widehat{\operatorname{Var} \hat{\beta}_{j}}}{\hat{\sigma}^{2}} .
$$

Thus

$$
\begin{gathered}
c_{00}=\frac{0.5571^{2}}{2.034^{2}}=0.075 \\
c_{11}=c_{22}=\frac{0.4548^{2}}{2.034^{2}}=0.05
\end{gathered}
$$

c) $(1-\alpha)$-confidence interval for $\beta_{j}(j=0,1,2)$ is

$$
\left[\hat{\beta}_{j}-t_{\frac{\alpha}{2}, n-p} \sqrt{\widehat{\operatorname{Var}} \hat{\beta}_{j}}, \hat{\beta}_{j}+t_{\frac{\alpha}{2}, n-p} \sqrt{\widehat{\operatorname{Var}}_{j}}\right]
$$

In our case

$$
\hat{\beta}_{1}=1.3596, \sqrt{\widehat{\operatorname{Var} \hat{\beta}_{1}}}=0.4548, t_{0.025,117}=1.98
$$

therefore 95% confidence interval for β_{1} is $[0.4596,2.2596]$.
d) The first and second null hypotheses are rejected becuase the corresponding p-values are smaller than $\alpha_{\text {loc }}$ which is 0.17 . The third null hypothesis is not rejected.
3.
a) The design matrix and the vector of parameters of the true model are

$$
X=\left(\begin{array}{cccc}
1 & x_{11} & x_{12} & x_{13} \\
1 & x_{21} & x_{22} & x_{23} \\
\cdots & & & \\
1 & x_{n 1} & x_{n 2} & x_{n 3}
\end{array}\right), \beta=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right) .
$$

The design matrix and the vector of parameters of the underfitted model are

$$
X_{u}=\left(\begin{array}{ccc}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} \\
\ldots & & \\
1 & x_{n 1} & x_{n 2}
\end{array}\right), \beta_{u}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)
$$

Then

$$
X \beta=X_{u} \beta_{u}+X_{a} \beta_{3}
$$

where

$$
X_{a}=\left(\begin{array}{c}
x_{13} \\
x_{23} \\
\ldots \\
x_{n 3}
\end{array}\right) .
$$

Denote

$$
\hat{\beta}_{u}=\left(\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{1} \\
\hat{\beta}_{2}
\end{array}\right)
$$

Then

$$
\hat{\beta}_{u}=\left(X_{u}^{T} X_{u}\right)^{-1} X_{u}^{T} Y,
$$

and, since $E Y=X \beta$,

$$
E \hat{\beta}_{u}=\left(X_{u}^{T} X_{u}\right)^{-1} X_{u}^{T} E Y=\left(X_{u}^{T} X_{u}\right)^{-1} X_{u}^{T}\left(X_{u} \beta_{u}+X_{a} \beta_{3}\right)=
$$

$$
=\beta_{u}+\left(X_{u}^{T} X_{u}\right)^{-1} X_{u}^{T} X_{a} \beta_{3} .
$$

The expectation of the estimator is not equal to the vector of parameters, i.e. the estimator is biased.
4.
a) It is easy to see that

$$
E \operatorname{sign}(Y)=0
$$

and

$$
E(\operatorname{sign}(Y)|Y|)=E Y=0,
$$

therefore

$$
\operatorname{Cov}(|Y|, \operatorname{sign}(Y))=E \operatorname{sign}(Y)|Y|-E(\operatorname{sign}(Y)) \cdot E|Y|=0 .
$$

Note that X_{1} and X_{2} are not only uncorrelated but independent. Indeed, since $|Y|$ is positive, and $\operatorname{sign}(Y)$ takes two values 1 and -1 , the independence will be proved if we show that

$$
\begin{gathered}
P(|Y| \leq y, \operatorname{sign}(Y)=1)=P(|Y| \leq y) P(\operatorname{sign}(Y)=1) \\
P(|Y| \leq y, \operatorname{sign}(Y)=-1)=P(|Y| \leq y) P(\operatorname{sign}(Y)=-1)
\end{gathered}
$$

for any positive y. Let $y>0$. Then

$$
\begin{gathered}
P(|Y| \leq y, \operatorname{sign}(Y)=1)=P(|Y| \leq y, Y \geq 0)=P(0 \leq Y \leq y)=\frac{1}{2} P(-y \leq Y \leq y)= \\
=\frac{1}{2} P(|Y| \leq y)=P(\operatorname{sign}(Y)=1) P(|Y| \leq y)
\end{gathered}
$$

The second equality is proved in the same way.
Note also that X_{1} and X_{2} are independent not only for standard normal Y but for any Y with symmetric about 0 density.
5.
a) Denote

$$
\Sigma=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

Since $A X$ and X are independent, we have $A \Sigma=0$, i.e.

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)=\left(\begin{array}{ll}
1+\rho & \rho+1 \\
1+\rho & \rho+1
\end{array}\right)=0
$$

or $\rho=-1$. Thus

$$
\Sigma=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

b) Since the correlation coefficient between X_{1} and X_{2} is -1 , we have

$$
X_{1}=-X_{2}
$$

with probability 1 or $P\left(X_{1}+X_{2}=0\right)=1$. Hence $P\left(X_{1}+X_{2}>1\right)=0$.

