
Solutions (TMA4267 2023 August)

1.
a) 1) The probability density function of X is

f(x1, x2) =
1

π
I{x2

1+x2
2≤1}(x1, x2),

where I is the indicator function. To obtain the marginal density of X1, we
integrate the joint density with respect to x2. Let −1 ≤ x1 ≤ 1 (otherwise
f(x1, x2) = 0). Then

f1(x1) =
1

π

∫ ∞

−∞
I{x2

1+x2
2≤1}(x1, x2)dx2 =

1

π

∫ ∞

−∞
I(−√1−x2

1,
√

1−x2
1

)(x2)dx2 =

=
1

π

∫ √
1−x2

1

−
√

1−x2
1

dx2 =
2
√

1− x2
1

π
.

If |x1| > 1, then f1(x1) = 0.

In the same way f2(x2) =
2
√

1−x2
2

π if |x2| ≤ 1 and f2(x2) = 0 if |x2| > 1.
Similarly (by integration)
2) fk(xk) = 1/2 if |xk| ≤ 1 and fk(xk) = 0 if |xk| > 1, k = 1, 2. Note that

in this case

f(x1, x2) = I{|x1|≤1,|x2|≤1}(x1, x2) = I{|x1|≤1}(x1)I{|x2|≤1}(x2) = f1(x1)f2(x2).

3) fk(xk) = 1− |xk| if |xk| ≤ 1 and fk(xk) = 0 if |xk| > 1, k = 1, 2.
b) 1)

Cov(X1, X2) =

∫ ∞

−∞

∫ ∞

−∞
x1x2f(x1, x2)dx2dx1 =

∫ ∞

−∞
x1

(∫ ∞

−∞
x2f(x1, x2)dx2

)
dx1 =

=

∫ ∞

−∞
x1

(∫ ∞

−∞
x2I{x2

1+x2
2≤1}(x1, x2)dx2

)
dx1 =

=

∫ ∞

−∞
x1

(∫ ∞

−∞
x2I[−√1−x2

1,
√

1−x2
1

](x2)dx2

)
dx1 =

∫ ∞

−∞
x1

(∫ √
1−x2

1

−
√

1−x2
1

x2dx2

)
dx1 = 0

because the inner integral equals zero (odd function, symmetric interval).
2) Since f(x1, x2) = f1(x1)f2(x2), the variables X1 and X2 are independent.

Therefore
Cov(X1, X2) = 0

.
3) Denote

Q = {(x1, x2) : −1 ≤ x1 ≤ 1,−1− x1 ≤ x2 ≤ 1− x1, x1 ≤ x2 ≤ x1 + 1}.
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Then

f(x1, x2) =
1

2
IQ(x1, x2),

and

Cov(X1, X2) =

∫ ∞

−∞

∫ ∞

−∞
x1x2f(x1, x2)dx2dx1 =

1

2

∫ 1

−1

x1

(∫ ∞

−∞
x2IQ(x1, x2)dx2

)
dx1 =

=
1

2

∫ 0

−1

x1

(∫ 1+x1

−(1+x1)

x2dx2

)
dx1 +

1

2

∫ 1

0

x1

(∫ 1−x1

−(1−x1)

x2dx2

)
dx1 = 0

because the two inner integrals equal zero (odd function, symmetric intervals).
X1 and X2 are independent in the second case: the joint density equals the

product of marginal densities. In two other cases X1 and X2 are dependent.
Indeed, in both cases P (X1 > 0.9) > 0, P (X2 > 0.9) > 0, but P (X1 > 0.9, X2 >
0.9) = 0.

2.
a) Since p = 3 and n−p (the number of degrees of freedom) is 117, n = 120.

t1 = β̂1/

√
V̂arβ̂1 = 1.3596/0.4548 = 2.989.√

V̂arβ̂2 = β̂2/t2 = (−0.3780)/(−0.831) = 0.4548.

R2
adj = 1− (1−R2)

n− 1

n− k − 1
= 1− (1− 0.1213)

119

117
= 0.1063.

Thus the output is in fact as follows

Call:

lm(formula = Y ~ x1 + x2)

Residuals:

Min 1Q Median 3Q Max

-4.7169 -1.1809 0.0742 1.2974 4.3071

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7662 0.5571 6.761 5.7e-10 ***

x1 1.3596 0.4548 2.989 0.00341 **

x2 -0.3780 0.4548 -0.831 0.40758

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.034 on 117 degrees of freedom

Multiple R-squared: 0.1213, Adjusted R-squared: 0.1063

F-statistic: 8.074 on 2 and 117 DF, p-value: 0.0005193

b) Denote elements of (XTX)−1 by cij :

(XTX)−1 = [cij ]i,j=0,1,...,k.

In our case k = 2 and we have to find cjj , j = 0, 1, 2. The following equalities
hold (known from the course):

V̂arβ̂j = σ̂2cjj
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therefore

cjj =
V̂arβ̂j

σ̂2
.

Thus

c00 =
0.55712

2.0342
= 0.075,

c11 = c22 =
0.45482

2.0342
= 0.05.

c) (1− α)-confidence interval for βj (j = 0, 1, 2) is[
β̂j − tα

2 ,n−p

√
V̂arβ̂j , β̂j + tα

2 ,n−p

√
V̂arβ̂j

]
.

In our case

β̂1 = 1.3596,

√
V̂arβ̂1 = 0.4548, t0.025,117 = 1.98,

therefore 95% confidence interval for β1 is [0.4596, 2.2596].
d) The first and second null hypotheses are rejected becuase the correspond-

ing p-values are smaller than αloc which is 0.17. The third null hypothesis is
not rejected.

3.
a) The design matrix and the vector of parameters of the true model are

X =


1 x11 x12 x13

1 x21 x22 x23

...
1 xn1 xn2 xn3

 , β =


β0

β1

β2

β3

 .

The design matrix and the vector of parameters of the underfitted model are

Xu =


1 x11 x12

1 x21 x22

...
1 xn1 xn2

 , βu =

 β0

β1

β2

 .

Then
Xβ = Xuβu +Xaβ3

where

Xa =


x13

x23

...
xn3

 .

Denote

β̂u =

 β̂0

β̂1

β̂2

 .

Then
β̂u = (XT

u Xu)
−1XT

u Y,

and, since EY = Xβ,

Eβ̂u = (XT
u Xu)

−1XT
u EY = (XT

u Xu)
−1XT

u (Xuβu +Xaβ3) =
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= βu + (XT
u Xu)

−1XT
u Xaβ3.

The expectation of the estimator is not equal to the vector of parameters, i.e.
the estimator is biased.

4.
a) It is easy to see that

Esign(Y ) = 0

and
E(sign(Y )|Y |) = EY = 0,

therefore

Cov(|Y |, sign(Y )) = Esign(Y )|Y | − E(sign(Y )) · E|Y | = 0.

Note that X1 and X2 are not only uncorrelated but independent. Indeed,
since |Y | is positive, and sign(Y ) takes two values 1 and −1, the independence
will be proved if we show that

P (|Y | ≤ y, sign(Y ) = 1) = P (|Y | ≤ y)P (sign(Y ) = 1),

P (|Y | ≤ y, sign(Y ) = −1) = P (|Y | ≤ y)P (sign(Y ) = −1)

for any positive y. Let y > 0. Then

P (|Y | ≤ y, sign(Y ) = 1) = P (|Y | ≤ y, Y ≥ 0) = P (0 ≤ Y ≤ y) =
1

2
P (−y ≤ Y ≤ y) =

=
1

2
P (|Y | ≤ y) = P (sign(Y ) = 1)P (|Y | ≤ y).

The second equality is proved in the same way.
Note also that X1 and X2 are independent not only for standard normal Y

but for any Y with symmetric about 0 density.

5.
a) Denote

Σ =

(
1 ρ
ρ 1

)
.

Since AX and X are independent, we have AΣ = 0, i.e.(
1 1
1 1

)(
1 ρ
ρ 1

)
=

(
1 + ρ ρ+ 1
1 + ρ ρ+ 1

)
= 0

or ρ = −1. Thus

Σ =

(
1 −1
−1 1

)
.

b) Since the correlation coefficient between X1 and X2 is −1, we have

X1 = −X2

with probability 1 or P (X1 +X2 = 0) = 1. Hence P (X1 +X2 > 1) = 0.
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