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Problem 1 Independent random variables

Assume that X is a bivariate normal random variable and that E(X) =
(

5
3

)
and

Cov(X) =
(

2 1
1 2

)
. Let Y =

(
1 −1

−1 1

)
X.

a) Find the distribution of Y .

Specify a, b such that Y and
(

2 a
b 1

)
X are independent random variables.

Justify your answer.

Problem 2 Plant stress

At the Department of Biology at NTNU researchers use the model plant Arabidop-
sis thaliana to study the response of a plant to different sources of stress. In an
experiment Arabidopsis thaliana seedlings were subject to a stress situation. The
following factors were fitted:

• D (damage): D = 1 means that the plant was damaged mechanically by
cutting into the leaves of the plant by a pair of scissors. D = −1 means
damage was not inflicted (no cutting).

• F (flagellin): F = 1 means that the pathogen-derived peptide flagellin was
sprayed on the leaves of the plant. F = −1 means water (not flagellin) was
sprayed.

• T (time): Plants were harvested at two different time points after the stress
situation. T = 1 means that the plant was harvested 60 minutes after the
stress situation and T = −1 means that the plant was harvested 30 minutes
after the stress situation.

Thus, we have three factors, D, F and T , each at two levels. In the study experi-
ments for all possible combinations of the three factors were performed four times
yielding 32 experiments in total.

The response measured in the experiment, was the observed gene activity level (a
continuous measurement) of each of around 40 000 genes. We will only focus on
the gene activity level of one of these genes, the AT1G32920 gene, and we denote
the gene activity level of this gene by Y . It is known that this gene is active in
response to wounding.
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For experiment number i (where i = 1, . . . , 32): Yi is the observed response, Di is
chosen value of D, Fi is chosen value of F , and Ti is chosen value of T . A multiple
regression model with all main effects, and two- and three-way interactions, was
considered,

Yi = β0 + βDDi + βFFi + βTTi

+ βD:FDiFi + βD:TDiTi + βF :TFiTi + βD:F :TDiFiTi + εi,

where i = 1, . . . , 32, and we assume εi independent and identically normally dis-
tributed with mean 0 and variance σ2. We refer to this as the full model. Note that
the interactions are simply products of the factors. The vector of regression pa-
rameters is β =

(
β0 βD βF βT βD:F βD:T βF :T βD:F :T

)T
, and the ith row

of the design matrix X is
(
1 Di Fi Ti DiFi DiTi FiTi DiFiTi

)
.

In Figure 1 you find R-commands and print-out from fitting the full model.

a) In the print-out from summary(fit) in Figure 1 four numerical values are
replaced by question marks. Calculate numerical values for each of these,
and explain what each of the values means.

A so called cube plot is given in the upper left panel of Figure 2. In the cube plot
the fitted values from the multiple regression for the possible 8 combinations of
the three factors are given. Plots of the main effects (upper right panel) and the
interaction effects (lower panel) are found in Figure 2. In Figure 3 you find residual
plots. See Figure 4 for the accompanying R-code and print-out.

b) How would you, based on Figures 2–4, evaluate the fit of the model?
How would you explain to a biologist what the estimated main effect of
damage means in practice? How would you explain the estimated interaction
effect between damage and flagellin?
Let γ = 2βF−βD be a new parameter of interest.
Suggest an estimator, γ̂, for γ. Use approximate methods to find the expected
value and variance of this estimator, that is, E(γ̂) and Var(γ̂). Use results in
Figure 1 to calculate numerical value for γ̂, and estimated numerical values
for E(γ̂) and Var(γ̂).
Hint: You may use that 2x = exp(x ln 2), where ln is the natural logarithm.

The researchers want to test the hypothesis
H0 : βD:T = βF :T = βD:F :T = 0 vs.
H1 : at least one of βD:T , βF :T , βD:F :T is different from 0.

c) Perform the hypothesis test at a significance level of your own choice. All
the numerical values you need for the calculations are found in Figure 1.
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# data is in "standard order" in data frame with name "ds"
> ds %showing only rows 1-6 and 27-32 for space considerations

Y D F T
1 15.45169 -1 -1 -1
2 15.15908 -1 -1 -1
3 14.93064 -1 -1 -1
4 15.06569 -1 -1 -1
5 14.51032 -1 -1 1
6 14.76922 -1 -1 1
...
27 18.23645 1 1 -1
28 17.70327 1 1 -1
29 16.66523 1 1 1
30 16.96046 1 1 1
31 16.73133 1 1 1
32 16.57248 1 1 1
> fit=lm(Y~D*F*T,data=ds)
> model.matrix(fit)%only showing rows 1-6 and 27-32

(Intercept) D F T D:F D:T F:T D:F:T
1 1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 1 1 1 -1
3 1 -1 -1 -1 1 1 1 -1
4 1 -1 -1 -1 1 1 1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 -1 -1 1 1 -1 -1 1
...
27 1 1 1 -1 1 -1 -1 -1
28 1 1 1 -1 1 -1 -1 -1
29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04140 ? < 2e-16
D 0.93739 0.04140 22.644 < 2e-16
F 0.28546 0.04140 6.896 3.93e-07
T -0.52354 0.04140 -12.647 4.18e-12
D:F -0.08878 0.04140 -2.145 0.04231
D:T -0.00242 ? -0.058 0.95386
F:T -0.12614 0.04140 -3.047 0.00555
D:F:T 0.09099 0.04140 2.198 ?
Residual standard error: 0.2342 on 24 degrees of freedom
Multiple R-squared: ?, Adjusted R-squared: 0.9594
F-statistic: 105.6 on 7 and 24 DF, p-value: < 2.2e-16

Figure 1: Printout from R-commands and statistical analyses for the plant stress
data set. Four numbers are replaced by question marks.
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Figure 2: Cube plot (upper left panel), main effects plot (upper right panel) and
interaction effects plot (lower panel) for the full model fitted to the plant stress
data set.
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Figure 3: Residual plots (studentized residual versus fitted values in the left panel,
normal plot based on studentized residuals in the right panel) for the full model
fitted to the plant stress data set.

> library(FrF2)
> MEPlot(fit)
> IAPlot(fit)
> cubePlot(fit,"D","F","T",round=1,size=0.33,main="")
> plot(fit$fitted,rstudent(fit),pch=20)
> qqnorm(rstudent(fit),pch=20)
> qqline(rstudent(fit))
> ad.test(rstudent(fit))

Anderson-Darling normality test
data: rstudent(fit)
A = 0.43191, p-value = 0.2869

Figure 4: Print-out from R-commands and statistical analyses for the full model
fitted to plant stress data set.



Page 6 of 10 TMA4267 Linear Statistical Models, 4 June 2016 – English

The researchers want to use the data to fit a prediction model, and want to con-
sider reduced versions of the full model. First best subset model selection is used.
Secondly, the researchers fit a lasso regression to the data. Results are presented
in Figures 5 and 6.

d) Explain briefly what is done in the best subset model selection, and choose
a good model based on the R2

adj-criterion. Write down the fitted regression
model for the model you choose.
Explain briefly what is done in the lasso regression, and write down the fitted
regression model.
Compare the results from the best subset model selection and the lasso re-
gression.

The researchers choose to use the following reduced model for prediction:

Yi = β0 + βDDi + βFFi + βTTi + βD:FDiFi + εi,

where i = 1, . . . , 32, and we assume εi independent and identically normally dis-
tributed with mean 0 and variance σ2. Output from fitting the reduced model is
given in Figure 7.

e) Compare the estimated regression parameters and the estimated standard
deviations of the estimated regression parameters for the full model (Figure
1) and the reduced model (Figure 7), and explain what you observe.
Based on the reduced model (Figure 7), provide a prediction and a 95%
prediction interval for the gene activity level for the factor combination D =
1, F = 1, T = −1.
Hint: In a multiple linear regression with n × p design matrix X, esti-
mated regression coefficients β̂ and unbiased estimated error variance s2,
a (1 − α)100% prediction interval at x0 is given as

xT0 β̂ ± tα
2 ,n−p s

√
1 + xT0 (XTX)−1x0,

where tα/2,n−p denotes the value in the t-distribution with n − p degrees of
freedom that has area α

2 to the right. See Figure 7 for some possible values
for tα/2,n−p.
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> x <- model.matrix(fit)[,-1]; dim(x)
[1] 32 7
> y <- ds$Y
> library(leaps)
> bests <- regsubsets(x,y)
> sumbests=summary(bests)
> sumbests
1 subsets of each size up to 7
Selection Algorithm: exhaustive

D F T D:F D:T F:T D:F:T
1 ( 1 ) "*" " " " " " " " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " " " "*" " "
5 ( 1 ) "*" "*" "*" " " " " "*" "*"
6 ( 1 ) "*" "*" "*" "*" " " "*" "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
> plot(bests,scale="adjr2",col=gray(seq(0.6,0.9,length=20)))
> round(sumbests$adjr2,3)
[1] 0.661 0.874 0.938 0.950 0.955 0.961 0.959
# LASSO
> library(glmnet)
> fit.lasso=glmnet(x,y,lambda=c(seq(1,0.01,length=60),0.001))
> plot(fit.lasso,xvar="lambda",label=TRUE)
> cv.lasso=cv.glmnet(x,y)
> log(cv.lasso$lambda[which.min(cv.lasso$cvm)])
[1] -4.716347
> coef(cv.lasso,s="lambda.min")
8 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 16.15941869
D 0.92843876
F 0.27651524
T -0.51459006
D:F -0.07983558
D:T .
F:T -0.11719275
D:F:T 0.08204094

Figure 5: Print-out from R performing best subset selection and lasso regression
on the plant stress data.
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Figure 6: Figure (upper panel) from model selection and lasso regression (lower
panel), with R-code in Figure 5. Coding for lines in lasso figure is 1=β̂D, 2=β̂F ,
3=β̂T , 4=β̂D:F , 5=β̂D:T , 6= β̂F :T and 7=β̂D:F :T .
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> fitRED=lm(Y~D+F+T+D:F,data=ds)
> summary(fitRED)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.15942 0.04919 328.528 < 2e-16
D 0.93739 0.04919 19.057 < 2e-16
F 0.28546 0.04919 5.804 3.56e-06
T -0.52354 0.04919 -10.644 3.66e-11
D:F -0.08878 0.04919 -1.805 0.0822
Residual standard error: 0.2782 on 27 degrees of freedom
Multiple R-squared: 0.95, Adjusted R-squared: 0.9426
F-statistic: 128.4 on 4 and 27 DF, p-value: < 2.2e-16
> qt(0.025,32,lower.tail=FALSE)
[1] 2.036933
> qt(0.025,27,lower.tail=FALSE)
[1] 2.051831
> qt(0.025,24,lower.tail=FALSE)
[1] 2.063899

Figure 7: Print-out from R performing linear regression on the reduced model for
the plant stress data set.
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Problem 3 Properties of estimator for σ2

Let Y be an n×1 random vector with mean µ1 and covariance matrix σ2I, where
1 is an n× 1 vector with all elements equal to 1 and I is an n×n identity matrix.
Further, denote by Yi element i of Y , and let Ȳ = 1

n

∑n
i=1 Yi = 1

n
1TY .

An estimator for σ2 is

S2 = 1
n− 1

n∑
i=1

(Yi − Ȳ )2 = 1
n− 1Y

T
(
I − 1

n
11T

)
Y .

We give the following useful result. Let X be an n× 1 random vector with mean
η and covariance matrix Σ, and let C be an n × n symmetric constant matrix.
Then,

E(XTCX) = tr(CΣ) + ηTCη. (1)

a) First, write down the value of 1T1, and the matrices 11T and I − 1
n
11T for

n = 4.
What are key characteristics of the matrix I − 1

n
11T (symmetric or not,

idempotent or not, rank)?
Use Equation (1) to find E(S2).

Let us now assume that Y is multivariate normally distributed with the mean and
covariance given above.

b) Show that 1
σ2Y

T(I − 1
n
11T)Y follows a χ2-distribution, and also derive the

number of degrees of freedom.
Use this result to find the variance of S2.
Is the random variable 1

n
1TY and the random vector (I− 1

n
11T)Y indepen-

dent? Justify your answer.
Finally, find the distribution of

n( 1
n
1TY − µ)2

1
n−1Y

T(I − 1
n
11T)Y

.

Justify your answer.


