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TMA4267 Linear statistical models 2024 spring
Compulsory exercises 2

Problem 1 Diabetes progression

For Problems (a) and (b), you may answer all questions based on the supplied information (as
you will at the written exam). For the very last part of (c) you need to use R to fit the reduced
model that you choose, and you need R for (d) .

In a medical study, the aim was to explain the etiology of diabetes progression. Data was
collected from n = 442 diabetes patients, and from each patient the following measurements
were available:

age (in years) at baseline (start of study)

sex (0=female and 1=male) at baseline

bmi body mass index at baseline

map mean arterial blood pressure at baseline

tc, ldl, hdl, tch, ltg, glu six blood serum measurements: total cholesterol, ldl cholesterol,
hdl cholesterol, . . . , glucose, all at baseline

prog a quantitative measurement of disease progression one year after baseline

All measurements except sex are continuous.

A multiple linear regression model is fitted to the data set with prog as response and all the
other measurements as covariates. We call this the full model.

a) Refer to the print-out from summary(full) in Figure 1 and briefly answer the following
questions:

1. For each column Estimate, Std. Error, t value, Pr(>|t|), write down the for-
mula that the numerical values are based on, and explain all quantities used (e.g.,
what is Y ?).

2. How do you interpret the estimate for the intercept? (That is, which values of the
covariates would give this as the predicted response?)
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3. How would you explain to someone unfamiliar with linear regression how the esti-
mated regression coefficient for bmi can be interpreted?

4. Where (in the print-out) can you find the estimated error variance? What is the
formula for the estimated error variance?

5. Which of the covariates are found to be significant at level 0.05? Write down the null-
and alternative hypotheses associated with one such test. What are the assumptions
needed for the p-value to be valid?

b) How would you, based on Figures 1 and 2 evaluate the fit of the full model?
Is the regression significant? Write down the null- and alternative hypotheses for this
test.
Explain what the number called Multiple R-squared in Figure 1 means.

The researchers also want to use the data to fit a prediction model, and want to consider
reduced versions of the full model based on best subset model selection.

c) Why might a reduced model have better performance than a full model when the aim is
prediction?
Explain briefly what is done in the best subset model selection, and give the reasoning
behind the R2

adj and BIC criteria. In particular, explain how the 10 models presented in
Figure 3 was found.
Results from using the R2

adj and the BIC criteria are presented in Figures 3 and 4. Based
on these results, choose a reduced regression model, fit this reduced model in R, and
write down the fitted regression model for the model you choose.
Compare the estimated regression parameters and the estimated standard deviations for
the full model (Figure 1) and the reduced model that you choose. Explain what you
observe.

One possible reduced model in (c) is the model including the five covariates sex, bmi, map,
hdl, ltg and an intercept. This means that the five covariates age, tc, ldl, tch, glu from the
full model is not included in the reduced model. We want to investigate whether hypothesis
testing in the full model would confirm that the reduced model is preferable.

d) Perform the test

H0 : βage = βtc = βldl = βtch = βglu = 0 versus H1 : at least one ̸= 0

in the full model. Report a p-value of the test. Comment on the result. Would you prefer
the full or the reduced model?



TMA4267 2024 – Compulsory exercises 2 Page 3 of 7

> ds <-
+ read.csv("https://web.stanford.edu/~hastie/CASI_files/DATA/diabetes.csv",
+ sep = ",")
> apply(ds, 2, summary)

age sex bmi map tc ldl hdl tch ltg glu prog
Min. 19.0000 0.0000000 18.00000 62.00000 97.0000 41.6000 22.00000 2.000000 1.410000 58.00000 25.0000
1st Qu. 38.2500 0.0000000 23.20000 84.00000 164.2500 96.0500 40.25000 3.000000 1.860000 83.25000 87.0000
Median 50.0000 0.0000000 25.70000 93.00000 186.0000 113.0000 48.00000 4.000000 2.005000 91.00000 140.5000
Mean 48.5181 0.4683258 26.37579 94.64661 189.1403 115.4391 49.78846 4.070249 2.015747 91.26018 152.1335
3rd Qu. 59.0000 1.0000000 29.27500 105.00000 209.7500 134.5000 57.75000 5.000000 2.170000 98.00000 211.5000
Max. 79.0000 1.0000000 42.20000 133.00000 301.0000 242.4000 99.00000 9.090000 2.650000 124.00000 346.0000
> pairs(ds, pch = ".")
> full <- lm(prog ~ ., data = ds)
> summary(full)

Call:
lm(formula = prog ~ ., data = ds)

Residuals:
Min 1Q Median 3Q Max

-156.308 -38.402 -0.727 38.003 151.606

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -356.64395 67.01983 -5.321 1.66e-07 ***
age -0.03529 0.21705 -0.163 0.870910
sex -22.79233 5.83657 -3.905 0.000109 ***
bmi 5.59548 0.71746 7.799 4.75e-14 ***
map 1.11589 0.22526 4.954 1.05e-06 ***
tc -1.08286 0.57294 -1.890 0.059428 .
ldl 0.73914 0.53032 1.394 0.164108
hdl 0.36783 0.78274 0.470 0.638648
tch 6.54048 5.95956 1.097 0.273045
ltg 157.17606 36.04811 4.360 1.63e-05 ***
glu 0.28148 0.27332 1.030 0.303661
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.16 on 431 degrees of freedom
Multiple R-squared: 0.5176,Adjusted R-squared: 0.5065
F-statistic: 46.25 on 10 and 431 DF, p-value: < 2.2e-16

> plot(full$fitted, rstudent(full), pch = 20)
> qqnorm(rstudent(full), pch = 20)
> qqline(rstudent(full), col = 2)
> library(nortest)
> ad.test(rstudent(full))

Anderson-Darling normality test

data: rstudent(full)
A = 0.37292, p-value = 0.4176

Figure 1: R code and print-out for fitting the full model, for (a) and (b).
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Figure 2: Scatter plots of all variables in the data set (top). Studentized residuals versus fitted
values (bottom left). Normal Q–Q plot based on studentized residuals (bottom right).
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> library(leaps)
> allsubs <- regsubsets(prog ~ . , data = ds , nvmax = 10)
> allsummary <- summary(allsubs)
> allsummary$outmat

age sex bmi map tc ldl hdl tch ltg glu
1 ( 1 ) " " " " "*" " " " " " " " " " " " " " "
2 ( 1 ) " " " " "*" " " " " " " " " " " "*" " "
3 ( 1 ) " " " " "*" "*" " " " " " " " " "*" " "
4 ( 1 ) " " " " "*" "*" "*" " " " " " " "*" " "
5 ( 1 ) " " "*" "*" "*" " " " " "*" " " "*" " "
6 ( 1 ) " " "*" "*" "*" "*" "*" " " " " "*" " "
7 ( 1 ) " " "*" "*" "*" "*" "*" " " "*" "*" " "
8 ( 1 ) " " "*" "*" "*" "*" "*" " " "*" "*" "*"
9 ( 1 ) " " "*" "*" "*" "*" "*" "*" "*" "*" "*"
10 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
> plot(allsummary$bic,
+ xlab = "Number of Variables",
+ ylab = "BIC",
+ type = "l")
> allsummary$bic
[1] -174.1108 -253.6898 -264.7696 -268.9392 -277.4512 -276.9716 -272.1793 -267.1786 -261.3082 -255.2440

> which.min(allsummary$bic)
[1] 5
> plot(allsubs, scale = "bic")
> plot(allsummary$adjr2,
+ xlab = "Number of Variables",
+ ylab = "R2adj",
+ type = "l")
> allsummary$adjr2
[1] 0.3424327 0.4570604 0.4765560 0.4873974 0.5029191 0.5080619 0.5083754 0.5084543 0.5075628 0.5064505

> which.max(allsummary$adjr2)
[1] 8
> plot(allsubs, scale = "adjr2")
>

Figure 3: R code and print-out for finding a reduced model in (c).
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Figure 4: Plots from best subsets model selection. Upper row is for BIC and lower for R2
adj. In

the left panels, the values for the selection criteria are plotted as a function of the number of
covariates in the chosen models and the right panels summarize chosen covariates sorted by
the model criteria (white areas = not in model, grey areas = in model).
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Problem 2 Multiple testing

In genome-wide association studies, the aim is to test if there is an association between a
genetic marker and a trait. We have data from 1000 markers, and for each marker, we perform
a hypothesis test,

H0 : βj = 0 versus H1 : βj ̸= 0,

j = 1, . . . , 1000, where βj = 0 means that there is no association between the marker and trait
(βj might be a coefficient in a multiple regression model). From hypothesis test j, we calculate
a p-value pj (based on some continuous test statistic). P -values are available to read into R as

pvalues <-
scan("https://www.math.ntnu.no/emner/TMA4267/2018v/pvalues.txt")

a) Assume that we reject all null-hypotheses with corresponding p-values below 0.05. How
many null-hypotheses do we reject? What is a false positive finding (type I error)? Do
we know the number of false positive findings in our data?

b) What is the definition of the familywise error rate, FWER?
What does it mean to control the FWER at level 0.05?
What cut-off on p-values (significance level) should we use if we want to control the
FWER at level 0.05 for our data with the Bonferroni method? How many null-hypotheses
will we reject with this new cut-off?

c) To see the effect of choosing different cut-offs on p-value on the number of false positive
findings we need to know which null hypotheses are true and which are false. Let us
assume that the first 900 null hypotheses are true and the last 100 are false. What does
this imply about the number of type I and type II errors in (a) and (b)?


