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TMA4267 Linear statistical models
Recommended exercises 8 – solutions

Problem 1 One- and two-way ANOVA – and the linear model

## a

income <- c(300, 350, 370, 360, 400, 370, 420, 390,
400, 430, 420, 410, 300, 320, 310, 305,
350, 370, 340, 355, 370, 380, 360, 365)

gender <- c(rep("Male", 12), rep("Female",12))
place <- rep(c(rep("A",4), rep("B",4), rep("C",4)),2)
data <- data.frame(income, gender, place)
data

pairs(data)
plot(income~place, data=data)
plot(income~gender, data=data)
interaction.plot(data$gender, data$place, data$income)
plot.design(income~place+gender, data = data)

## b

X <- cbind(rep(1,length(data$income)),data$place=="A",
data$place=="B",data$place=="C")

X
XtX <- t(X)%*%X
qr(XtX)$rank

# We need full rank to invert XtX. Find a design matrix of full rank having
# the same column space:

## c

model <- lm(income~place-1, data=data, x=TRUE)
model$x # design matrix
summary(model)
anova(model)
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# This is a parametrization without intercept, and with three estimated
# effects for place.

## d

options(contrasts=c("contr.treatment", "contr.poly"))
model1 <- lm(income~place, data=data, x=TRUE)
model1$x
summary(model1)
anova(model1)

# Treatment contrast parametrization codes the factor at the lowest level
# (which is A here) as 0, so that the value of the intercept will be the
# estimate for the level \texttt{A}. Compare this with the model above.
model$coeff
model1$coeff

options(contrasts=c("contr.sum", "contr.poly"))
model2 <- lm(income~place, data=data, x=TRUE)
model2$x
summary(model2)
model2$coeff
data$place
# Sum-to-zero contrast parametrization puts the coefficient of C as minus the
# sum of the coefficients for A and B, so that the sum of the coefficients
# for A, B and C is zero.

## e

# Using linear hypothesis - starting with model 1:
r <- 2
C <- cbind(rep(0,r), diag(r))
d <- matrix(rep(0,r), ncol=1)
n <- length (data$income)

betahat <- matrix(model1$coefficients, ncol=1)
sigma2hat <- summary(model1)$sigma^2
X <- model.matrix(model1)

F1 <- (t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)
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F1
1-pf(F1,r,n-length(betahat))
# Same as anova(model1) above

betahat <- matrix(model2$coefficients, ncol=1)
sigma2hat <- summary(model2)$sigma^2
X <- model.matrix(model2)

F2 <- (t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)

F2
1-pf(F2,r,n-length(betahat))
# Same result of hypothesis test.

# What about the no intercept that was in b) (not asked for)?
r <- 2
C <- matrix(c(1,-1,0,0,1,-1), ncol=3, byrow=TRUE)
C
d <- matrix(rep(0,r), ncol=1)

betahat <- matrix(model$coefficients, ncol=1)
sigma2hat <- summary(model)$sigma^2
X <- model.matrix(model)

F <- (t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)

F
1-pf(F,r,n-length(betahat))
# This also gives the same result.

## f

options(contrasts=c("contr.treatment", "contr.poly"))
model3 <- lm(income~place+gender, data=data, x=TRUE)
model3$x
anova(model3)
summary(model3)

options(contrasts=c("contr.sum", "contr.poly"))
model4 <- lm(income~place+gender, data=data, x=TRUE)
model4$x
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summary(model4)
anova(model4)

# Testing the place effect in model 4, and then the gender effect:
betahat <- matrix(model4$coefficients,ncol=1)
sigma2hat <- summary(model4)$sigma^2
X <- model.matrix(model4)

r <- 2
Cplace <- cbind(rep(0,r), diag(r), rep(0,r)) # gender coeff. last column
d <- matrix(rep(0,r), ncol=1)

Fplace <- (t(Cplace%*%betahat-d)%*%
solve(Cplace%*%solve(t(X)%*%X)%*%t(Cplace))%*%
(Cplace%*%betahat-d))/(r*sigma2hat)

Fplace
1-pf(Fplace,r,n-length(betahat))

# There’s no need to test the significance of gender, since only one
# parameter can be read off of the summary. This gives the same result as
# using anova(model4).
options(contrasts=c("contr.sum", "contr.poly"))
model5 <- lm(income~place*gender, data=data, x=TRUE)
summary(model5)
X <- model5$x
anova(model5)
# The interaction is not significant. Now perform the same test (significance
# of place:gender interaction, given that all main effects are in the model)
# using the C beta = d approach:
r <- 2
Cinteract <- cbind(rep(0,r),rep(0,r),rep(0,r),rep(0,r),diag(r))
d <- matrix(rep(0,r),ncol=1)

betahat <- model5$coefficients
betahat
Cinteract%*%betahat
sigma2hat <- summary(model5)$sigma^2
Finteract <- (t(Cinteract%*%betahat-d)%*%solve(Cinteract%*%

solve(t(X)%*%X)%*%t(Cinteract))%*%
(Cinteract%*%betahat-d))/(r*sigma2hat)

Finteract
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1-pf(Finteract,r,n-length(betahat))
# This gives the same result as above. Finally, repeat the same test using
# dummy variable coding (contr.treatment).
options(contrasts=c("contr.treatment", "contr.poly"))
model5 <- lm(income~place*gender, data=data, x=TRUE)
summary(model5)
X <- model5$x
anova(model5)
r <- 2
Cinteract <- cbind(rep(0,r),rep(0,r),rep(0,r),rep(0,r),diag(r))
d <- matrix(rep(0,r),ncol=1)

betahat <- model5$coefficients
betahat
Cinteract%*%betahat
sigma2hat <- summary(model5)$sigma^2
Finteract <- (t(Cinteract%*%betahat-d)%*%

solve(Cinteract%*%solve(t(X)%*%X)%*%t(Cinteract))%*%
(Cinteract%*%betahat-d))/(r*sigma2hat)

Finteract
1-pf(Finteract,r,n-length(betahat))
# This also gives the same result.

Problem 2 Teaching reading

a) Let µA, µB and µC be the expected reading scores for each of the three methods. Then
the null hypothesis is H0 : µA = µB = µC, and the alternative H1: at least one differs
from the others.
For one-way ANOVA, the treatment sum of squares (what we have called the regres-
sion sum of squares in general) is in the present case (with obvious notation) SSR =
nA(x̄A − x̄)2 +nB(x̄B − x̄)2 +nC(x̄C − x̄)2 = 22 · (41.05 − 44.02)2 + 22 · (46.73 − 44.02)2 +
22 · (44.27 − 44.02)2 = 357.005, and the error sum of squares is SSE = (nA − 1)s2

A +
(nB − 1)s2

B + (nC − 1)s2
C = 21 · 5.6362 + 21 · 7.3882 + 21 · 5.7672 = 2511.712.

The model under the null hypothesis is a model with only an intercept. The error sum of
squares in this model, SSE0, is the same as the total sum of squares, SST, so SSE0−SSE =
SST − SSE = SSR, and the usual test statistic for testing H0 in terms of the restricted
model defined by H0 becomes

F = (SSE0 − SSE)/r
SSE/(n− p) = SSR/r

SSE/(n− p) ,
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which is F -distributed with r and n− p degrees of freedom under H0. We get the value

357.005/2
2511.712/(66 − 3) = 178.50

39.87 = 4.477,

since we have n = 66 observations, and p = 3 covariates in a full-rank design matrix,
and H0 can be described in the form Cβ = 0 with r = rankC = 2. The p-value is
P (F ≥ 4.477) = 0.015 (df = 2 and 63), so at the 0.05 level we reject the null hypothesis
and conclude that the teaching method matters (the expected reading score is not the
same for all the methods).
Note: Traditionally, the computations for such a test is summarized in a so-called ANOVA table:

Source of variation Sum of squares Degrees of freedom Mean square Computed f
Treatments 357.005 2 178.50 4.477
Error 2511.712 63 39.87
Total 2868.717 65

The assumptions made is that Xij = µ + αi + εij for i = 1, 2, 3 and j = 1, 2, . . . , 22,
where Xij is the reading score for subject j receiving teaching method i (where i = 1, 2, 3
correspond to method A, B, C, respectively), where µ, α1, α2 and α3 are parameters and
the εij are independent and normally distributed with mean zero and the same variance
for all observations.

b) A natural estimator for γ is γ̂ = X̄B/X̄C, where X̄B is the mean of the sample receiving
method B and X̄C the mean of the sample receiving method C.
Let h be the function defined by h(x, y) = x/y. The first-order Taylor approximation of
h at (µB, µC) is then given by

x

y
= h(x, y) ≈ h(µB, µC) +D1h(µB, µC)(x− µB) +D2h(µB, µC)(y − µC)

= µB

µC
+ 1
µC

(x− µB) − µB

µ2
C

(y − µC),

where D1 and D2 denote partial differentiation with respect to the first and the second
variable, respectively.
At (X̄B, X̄C) this gives

γ̂ = X̄B

X̄C
≈ µB

µC
+ 1
µC

(X̄B − µB) − µB

µ2
C

(X̄C − µC),
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so that

Eγ̂ ≈ µB

µC
+ 1
µC

(EX̄B − µB) − µB

µ2
C

(EX̄C − µC) = µB

µC
,

Var γ̂ ≈ 1
µ2

C
Var X̄B + µ2

B
µ4

C
Var X̄C = 1

µ2
C

σ2
B
nB

+ µ2
B
µ4

C

σ2
C
nC
,

SD γ̂ = 1
µC

√√√√σ2
B
nB

+ µ2
B
µ2

C

σ2
C
nC
.

(We still assume that the two random samples are independent, but we allow the corre-
sponding teaching methods to have different variances.) We have estimates

Êγ̂ = x̄B

x̄C
and ŜD γ̂ = 1

x̄C

√√√√ s2
B
nB

+ x̄2
B
x̄2

C

s2
C
nC
.

With numbers from the table we get

γ̂ = Êγ̂ = 46.73
44.27 = 1.06 and ŜD γ̂ = 1

44.27

√
7.3882

22 + 46.732

44.272 · 5.7672

22 = 0.046.


