1. Multivariate normal

Let $\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ be a bivariate normal random vector with mean $\boldsymbol{\mu} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and covariance $\Sigma = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

- (a) Find the distribution of $X_1 2X_2$.
- (b) Let x_2 be a real number. Find the conditional distribution of X_1 given $X_2 = x_2$.
- (c) Find a constant c such that X_1 and $X_1 + cX_2$ are independent

2. Multiple linear regression

We consider the multiple linear regression model (model A)

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma^2)$, for i = 1, ..., n and all ε -s independent.

The model summary (R output for model A) for n = 65 observations is given on page 2.

We also consider a reduced model, model B,

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon_i$$

where the covariate x_4 from model A is not included.

The model summary for the 65 observations is given on page 3.

(a) Fill in the missing values (3 question marks) in the R output for model A. Use the t_{n-p} - distributed statistic

$$T_j = \frac{\hat{\beta}_j - \beta_j}{\widehat{SE}(\hat{\beta}_i)}$$

to derive the expression for a $(1 - \alpha) \cdot 100\%$ confidence interval for a coefficient β_j . Calculate a 95% confidence interval for β_1 using the R output for model A.

Which model do you prefer, model A or model B? Justify your answer.

We continue with model B and consider a new point \mathbf{x}_0 , where the first element of the vector corresponds to the intercept, then x_1, x_2, x_3 . Let Y_0 denote a new observation at \mathbf{x}_0 , independent of previous observations Y_1, \ldots, Y_{65} .

(b) What is the distribution of the prediction $\hat{Y}_0 = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}$? Use $Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^T X)^{-1}$, where X is the 65 × 4 design matrix.

And what is the distribution of the prediction error $\hat{\varepsilon}_0 = Y_0 - \hat{Y}_0$?

Calculate the prediction \hat{y}_0 at $\mathbf{x}_0 = (1, 0, 3, 0)^T$ using the R output for model B, and also calculate a 95% prediction interval using

$$\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}) = \begin{bmatrix} 1.8 & 0.0 & -0.4 & -0.3 \\ 0.1 & 0.2 & 0.0 & 0.0 \\ -0.4 & 0.0 & 0.2 & 0.0 \\ -0.3 & 0.0 & 0.0 & 0.1 \end{bmatrix}.$$

Call:

lm(formula = y ~ x1 + x2 + x3 + x4)

Residuals:

Min 1Q Median 3Q Max -6.2067 -2.2215 -0.1877 3.0400 9.3978

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.9807	1.8846	2.112	0.03884	*
x1	2.4094	0.4262	5.653	4.64e-07	***
x2	1.2718	0.4808	2.645	0.01040	*
x3	-1.0141	?	-3.377	0.00129	**
x4	-0.1014	0.3236	-0.313	0.75519	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.885 on 60 degrees of freedom Multiple R-squared: ?, Adjusted R-squared: 0.4597 F-statistic: 14.61 on ? and 60 DF, p-value: 2.172e-08

Call:

lm(formula = y ~ x1 + x2 + x3)

Residuals:

Min 1Q Median 3Q Max -6.3124 -2.2275 -0.2984 3.0837 9.4508

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5642 1.3256 2.689 0.009235 **
x1 2.4355 0.4149 5.870 1.93e-07 ***
x2 1.2523 0.4732 2.647 0.010331 *
x3 -1.0280 0.2948 -3.487 0.000913 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.857 on 61 degrees of freedom Multiple R-squared: 0.4926, Adjusted R-squared: 0.4677 F-statistic: 19.74 on 3 and 61 DF, p-value: 4.625e-09

3. Partial F-test

Consider a linear regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim \text{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ and $\boldsymbol{\beta}$ is a vector of length p. Let \mathbf{X}_0 denote the design matrix corresponding to only the first r columns of \mathbf{X} . Divide $\boldsymbol{\beta}$ into $\boldsymbol{\beta}_0$ of length r (including the intercept) and $\boldsymbol{\beta}_1$ of length p-r so that the full model can be written as

$$\mathbf{Y} = \mathbf{X}_0 \boldsymbol{\beta}_0 + \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\varepsilon}.$$

We will test $H_0: \boldsymbol{\beta}_1 = \mathbf{0}$ against $H_1: \boldsymbol{\beta}_1 \neq \mathbf{0}$ using a partial F-test.

The restricted model (under H_0) is

$$\mathbf{Y} = \mathbf{X}_0 \boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}.$$

Define projection matrices $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}$ for the full model and $\mathbf{H}_0 = \mathbf{X}_0(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{X}_0$ for the restricted model. The residual vector from fitting the full model is then $(\mathbf{I} - \mathbf{H})\mathbf{Y}$ and for the restricted model $(\mathbf{I} - \mathbf{H}_0)\mathbf{Y}$.

(a) A statistic for the partial F-test can be expressed in terms of the differences in error sums of squares between the full (SSE) and restricted (SSE₀) model;

$$F_1 = \frac{(SSE_0 - SSE)/(p - r)}{SSE/(n - p)}.$$

Show that, when H_0 is true, $(SSE_0 - SSE)/\sigma^2$ is χ^2 -distributed with p - r degrees of freedom.

Show that, when H_0 is true, the test statistic F_1 has an F-distribution with (p-r, n-p) degrees of freedom.

(b) Another statistic for the partial F-test is constructed from the estimator $\hat{\boldsymbol{\beta}}_1$ (the last p-r elements of the estimator $\hat{\boldsymbol{\beta}}=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$) and its estimated covariance $\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}_1)=\frac{\hat{\sigma}^2}{\sigma^2}\text{Cov}(\hat{\boldsymbol{\beta}}_1)$;

$$F_2 = \frac{1}{p-r} \hat{\boldsymbol{\beta}}_1^T \widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}_1)^{-1} \hat{\boldsymbol{\beta}}_1.$$

Show that $F_1 = F_2$. You may use that for a null hypothesis $H_0 : \mathbf{C}\beta = \mathbf{d}$, the residuals for the restricted model can be expressed as

$$(\mathbf{I} - \mathbf{H}_0)\mathbf{Y} = (\mathbf{I} - \mathbf{H})\mathbf{Y} + \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{C}^T(\mathbf{C}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{C}^T)^{-1}(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}).$$

4. 2-level fractional factorial designs

Consider a 2^{5-1} fractional factorial design with generator ABCD = E.

(a) In this design, main effects are aliased with 4-factor interaction effects. Which effects are the 2-factor interaction effects aliased with? What is the resolution of the design?

We will assume that all 3-factor interactions and higher are negligible. Furthermore, we will only estimate two-factor interaction effects including the factor A.

(b) Write down the regression model one would use for estimation of main effects and the relevant two-factor interactions.

Explain briefly all the components of the model and the model assumptions.

The R output from fitting the regression model with n = 16 observations collected from one experimental run of the 2^{5-1} fractional factorial design is given on page 6.

(c) Using a Bonferroni correction to control the FWER at 5%, which effects are significant? Do not perform a test of the intercept.

Sketch an interaction effects plot for the 2-factor interaction between factors A and E. Use the levels of A on the x-axis. Show calculations. Use your sketch to give a brief interpretation of the interaction effect.

The total sums of squares (SST) is 205.09. Use the R output to calculate the proportion of the total sums of squares that is accounted for by the main effect A in the model.

Call:

```
lm(formula = y ~ A + B + C + D + E + A * B + A * C + A * D + A * E)
```

Residuals:

Min 1Q Median 3Q Max -1.5366 -0.1178 -0.1011 0.4016 1.1023

Coefficients:

	Estimate	Std. Err	or	t value	Pr(> t)	
(Intercept)	29.78024	0.290	19	102.623	5.77e-11	***
A	2.03032	0.290	19	6.997	0.000425	***
В	-0.72472	0.290	19	-2.497	0.046693	*
C	0.98461	0.290	19	3.393	0.014622	*
D	1.75879	0.290	19	6.061	0.000915	***
E	-0.07614	0.290	19	-0.262	0.801810	
A:B	1.02634	0.290	19	3.537	0.012267	*
A:C	-0.20709	0.290	19	-0.714	0.502249	
A:D	0.03434	0.290	19	0.118	0.909669	
A:E	-1.58100	0.290	19	-5.448	0.001590	**

Signif. codes:

0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.161 on 6 degrees of freedom Multiple R-squared: 0.9606, Adjusted R-squared: 0.9015 F-statistic: 16.25 on 9 and 6 DF, p-value: 0.001479