
1 Multivariate normal

a) X1 − 2X2 is (univariate) normal with mean

E(X1 − 2X2) = 1− 2(−2) = 5

and variance
Var(X1 − 2X2) = 1 · 1 + (−2)2 · 2 + 2 · 1 · (−2) · 1 = 5.

b) X1|X2 = x2 is normal with mean

µ1 +Σ12Σ
−1
22 (x2 − µ2) = 1 +

1

2
(x2 + 2) = 2 +

x2

2

and variance

Σ11 − Σ12Σ
−1
22 Σ21 = 1− 1

2
=

1

2
.

c) Use Cov(AX,BY) = ACov(X,Y)BT . Define A = [1 0] and B = [1 c], so that AX = X1

and BX = X1 + cX2. Then,

Cov(X1, X1 + cX2) = Cov(AX,BX) = AΣBT = Σ11 + cΣ12 = 1 + c

Setting c = −1 gives Cov(X1, X1 + cX2) = 0 which implies independence.

2 Regression

a)

The missing entries are (1) the Std. Error for β̂3 which is −1.0141/ − 3.377 = 0.3003, (2) the
R2 value which we can find from R2

adj = 1− n−1
n−p (1−R2) where R2

adj = 0.4597, n− 1 = 64, and

n− p = 60, giving R2 = 0.4935, (3) the degrees of freedom for the F-statistic which is p− 1 = 4.

95% CI for βj: Let tα,n−p be a critical value such that P (Tj > tα,n−p) = α. Then

P (|Tj | > t0.025,60) = 1− 2 · 0.025 = 0.95

P (−t0.025,60 <
β̂j − βj

ŜE(β̂j)
< t0.025,60) = 0.95

P (−β̂j − t0.025,60 · ŜE(β̂j) < −βj < −β̂j + t0.025,60 · ŜE(β̂j)) = 0.95

P (β̂j − t0.025,60 · ŜE(β̂j) < βj < β̂j + t0.025,60 · ŜE(β̂j)) = 0.95

Using t0.025,60 = 2, the 95% CI is[
β̂j − 2 · ŜE(β̂j), β̂j + 2 · ŜE(β̂j)

]
.
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For β1 we have β̂1 = 2.4094 and ŜE(β̂1) = 0.4262. The 95% confidence interval is therefore
[1.557, 3.262].

Models A and B can be compared using R2
adj . Since model B has the highest R2

adj we prefer
model B over model A.

b)

The distribution of β̂ is multivariate normal with mean β and covariance matrix σ2(XTX)−1.

For some new point x0, Ŷ0 = xT
0 β̂ is (univariate) normal with mean xT

0 β and variance σ2xT
0 (X

TX)−1x0.

The prediction error ε̂0 is univariate normal with mean 0 and variance σ2 + σ2xT
0 (X

TX)−1x0.
The latter follows from Y0 and Ŷ0 independent.

The prediction is 3.5642 + 3 · 1.2523 = 7.3211. The 95% prediction interval is given by[
ŷ0 − t61,0.025

√
σ̂2 + σ̂2xT

0 (X
TX)−1x0, ŷ0 + t61,0.025

√
σ̂2 + σ̂2xT

0 (X
TX)−1x0

]
.

We use t61,0.025 ≈ 2, and note that σ̂2(XTX)−1 = Ĉov(β̂) which is given in the exercise. Further
σ̂ = 3.857 can be found in the R output. The solution is

[7.3211− 2
√
14.87645 + 1.2, 7.3211 + 2

√
14.87645 + 1.2] ≈ [−0.698, 15.340].

3 Partial F test

a)

We know that for some random vector Y which is multivariate normal with mean µ and covari-
ance σ2I, and for some symmetric and idempotent matrix A with rank q, then

1

σ2
(Y − µ)TA(Y − µ) ∼ χ2

q.

For some symmetric and idempotent matrix B with rank r such that AB = 0, we also know
that

(Y − µ)TA(Y − µ)/q

(Y − µ)TB(Y − µ)/r
∼ Fq,r.

These two results will be used to solve the exercise.

The difference in error sums of squares is

SSE0 − SSE = YT (I−H0)Y −YT (I−H)Y = YT (H−H0)Y.

We know that for any column xj of X, Hxj = xj , and so HX0 = X0 . Then,

HH0 = HX0(X
T
0 X0)

−1X0 = X0(X
T
0 X0)

−1X0 = H0.
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Furthermore, since both H and H0 are symmetric

HT
0 = (HH0)

T = H0H = H0.

It follows that

(H−H0)(H−H0) = HH−HH0 −H0H+H0H0 = H−H0.

Thus, H−H0 is an n× n symmetric and idempotent matrix. The rank of H−H0 is tr(H)−
tr(H0) = p− r. Finally, when H0 is true and µ = X0β0, then

(H−H0)(Y −X0β0) = (H−H0)Y − (H−H0)X0β0) = (H−H0)Y.

Then, if H0 is true,

1

σ2
(SSE0 − SSE) =

1

σ2
YT (H−H0)Y =

1

σ2
(Y − µ)T (H−H0)(Y − µ) ∼ χ2

p−r.

Next, SSE = YT (I−H)Y, with (I−H) symmetric, idempotent and with rank n− p. Further
(I−H)Y = (I−H)(Y −Xβ) since IXβ = Xβ and HXβ = Xβ. Then,

1

σ2
SSE =

1

σ2
YT (I−H)Y =

1

σ2
(Y − µ)T (I−H)(Y − µ) ∼ χ2

n−p.

Finally, (H −H0)(I −H) = H −H0 −HH +H0H = H −H0 −H +H0 = 0. It follows that
F1 ∼ Fp−r,n−p when H0 is true.

b)

Our null hypothesis H0 : β1 = 0 can be expressed as a general linear hypothesis Cβ = d with
d = 0 and

C =


0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0

. . .

0 · · · 0 0 0 · · · 1

 .

Then Cβ̂ − d = β̂1. By left-multiplying both sides of the equation of the hint by Y, we obtain

YT (I−H0)Y = YT (I−H)Y +YTX(XTX)−1CT (C(XTX)−1CT )−1Cβ̂

↓

SSE0 = SSE + (Cβ̂)T (C(XTX)−1CT )−1Cβ̂

↓

SSE0 − SSE = β̂1(C(XTX)−1CT )−1β̂1

We use thatCov(AY) = ACov(Y)AT for some random vectorY. Here, Cov(β̂) = σ2(XTX)−1.
Then

Cov(β̂1) = Cov(Cβ̂) = σ2C(XTX)−1CT .
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Futher, Ĉov(β̂1) = σ̂2C(XTX)−1CT , where σ̂2 = SSE/(n− p). Therefore,

F1 =
(SSE0 − SSE)/(p− r)

SSE/(n− p)
=

σ̂2β̂1Ĉov(β̂1)
−1β̂1/(p− r)

σ̂2
=

1

p− r
β̂1Ĉov(β̂1)

−1β̂1 = F2.

4 2-level fractional factorial designs

a)

Since ABCD = E, then BCD = AE etc so that 2-factor interactions are aliased with 3-factor
interactions. The resolution is five, R = V since no p-factor effect is aliased with an effect with
less than R − p factors, e.g. 1-factor effects aliased with 5 − 1 = 4 and 2-factor effects aliased
with 5− 2 = 3.

b)

Model:

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β12x1x2 + β13x1x4 + β14x1x4 + β15x1x5 + ε,

where xi ∈ {−1, 1} for factor A at low and high level, etc. The effect of factor A is 2β1, while 2β12

is the interaction between A and B etc. The error term ε is normal with mean 0 and variance
σ2. The intercept β0 represents a global mean. The response Y represents a measurement taken
at set levels of the factors.

c)

We do 9 tests, so 0.05/9 = 0.00556 is our local significance level. Then, effects A, D and AE are
significant.

To draw the sketch, we can calculate estimated expected outcomes at various settings;

Ê(Y |A and E low level) = β̂0 − β̂1 − β̂5 + β̂15 = 26.2

Ê(Y |A high, E low level) = β̂0 + β̂1 − β̂5 − β̂15 = 33.5

Ê(Y |A low, E high level) = β̂0 − β̂1 + β̂5 − β̂15 = 29.3

Ê(Y |A and E high level) = β̂0 + β̂1 + β̂5 + β̂15 = 30.2

The sketch is given below.

The interaction coefficient β̂15 is the difference in slopes between the two lines in the figure. We
observe that when E is at high level, the level of A is ‘irrelevant’, while when E is at low level,
a high level of A results in a greater expected outcome than if A is at low level.
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We have that SSR = nβ̂2
1 + nβ̂2

2 + · · · . And so the propotion of the total sums of squares that
is accoutned for by the main effect A in the model is

nβ̂2
1/SST = 16 · 2.030322/205.0 ≈ 0.32.
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