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                  An Introduction to Regression Analysis 

                                            By John Tyssedal 

Sir Francis Galton (1822-1911), a well-known British anthropologist and 

meteorologist, was the first to introduce the word regression. It appears in a publication in 

Nature in 1885 where it is used to describe a biological phenomenon, namely that the heights of 

descendants of tall ancestors tend to regress down towards a normal average, a phenomenon also 

known as regression towards the mean. To Francis Galton regression had a pure biological meaning, 

but the term regression soon came to be applied to relationships in situations other than the one from 

which it originally arose. Today the goal of performing a regression analysis is to find a 

relationship between a response variable and one or more regression variables or to make 

models for prediction. Regression analysis is one of the most widely used statistical 

techniques. You may find that for practitioners of statistics, regression analysis is the method 

they are most familiar with. In the simplest case there is only one regression variable to 

explain the response variable. This is called simple linear regression. 

 

Simple linear regression 

The model for simple linear regression is Y x  = + +   where  and    are 

constants. The response variable Y  (also called dependent variable) is a random variable 

while the regression variable x  (also called independent or explanatory variable) can be 

deterministic or stochastic.   is a noise variable assumed to have expected value 0 and 

constant variance, 2 . To fit a model, we need to have a certain number, say n,  of 

observation pairs ( )i ix , y of the regression and the response variable.  ( )1 2 ny , y , , y can then 

be considered to be realizations of ( )1 2 nY ,Y ,…,Y , where  

                                      1 2i i iY x , i , , ,n  = + + = .                                                  (1) 

and ( )1 2 n, , ,   are assumed to be uncorrelated. It is important to be aware of that by a 

linear model we mean linear in the coefficients such that 
ix  can be substituted by any 

transformation, for instance ( ) ( )  or 2

i i iln x , x sin x , as long as the transformation is allowed.  

While the response variables, 
1 2 nY ,Y ,…,Y are random variables, the regression variables 

1 2 nx ,x ,…,x  can be either deterministic or stochastic. This has some implications in the 

interpretation of the model. If 
1 2 nx ,x ,…,x are deterministic we have  

                                                          i iE Y x = + . 

If  1 2 nx ,x ,…,x are stochastic variables we have  

                                                      i i iE Y x = x x   = +  . 
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Hence, the parameter   is the expected response value when 0x= . Depending on whether 

1 2 nx ,x ,…,x  are deterministic or stochastic the parameter   is the expected change in the 

mean or the conditional mean respectively of the response when the regression variable 

changes with one unit.  

Now let us assume we have n observation pairs: ( ) ( ) ( )1 1 2 2 n nx , y , x , y ,…, x , y . If these satisfy 

(1), we should have:  
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*= +y X  .            

 

The least square estimates of ( ),  are the values ( )a,b  that minimizes    

                                             ( )
1

n
2

i i

i=

Q = y - a- bx  

with respect to a and b.     

These are known to be the ones that satisfies  

                                      ( )
1

0 2 0
n

i i

i=

dQ
y - a-bx

da
=  − =                                          (2)               
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                               ( )
1

0 2 0
n

i i i

i=

dQ
y - a- bx x

d b
=  − = .                                             (3) 

From (2) and (3) we obtain the two normal equations  

                                                       
1 1

n n

i i

i= i=

na+b x = y                                              (4) 

                                              
1 1 1

n n n
2

i i i i

i= i= i=

a x +b x = x y                                              (5)  

which gives 

                                  

( )

( )

1

1

n

i i

i=

n
2

i

i=

x - x y

b =

x - x




      and  a = y- bx                                               (6)  

with corresponding least squares estimators 

                                          

( )

( )

1

1

n

i i

i=

n
2

i

i=

x - x Y
ˆ =

x - x





 and ˆˆ = Y- x  .                                          (7)  

Estimated model (estimated expected regression line) is then: 

                                       ŷ = a+bx    or 
i iŷ = a+bx . 

The deviations  i=1,2, ,i i i
ˆe = y - y , n are called residuals. These are estimates of 

( )1 2 n, , ,    and should have approximately the same properties, i.e. uncorrelated with 

mean equal to zero and constant variance.  Figure 1 shows some pattern that may be observed 

when plotting the residuals. 

The plot of e1 against ŷ (”yhat”) shows an increase in the residual variance when ŷ  is 

increasing. The plot of e2 against ŷ  is u-shaped indicating the lack of a quadratic term. This 

is supported by the plot of e2 against x which has the same form. Finally, the plot off e 

against ŷ  shows a residual plot, where no specific pattern is observed. Such a plot will 

support our assumption about uncorrelated residuals with a constant variance. In addition, a 

normal plot should be used to check if a normal distribution is an appropriate assumption. 

Most procedures for statistical inference in regression analysis rely on such an assumption.  
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Transformations for constant variance. 

When a pattern as observed when e1 is plotted against ŷ occurs, the response should 

be transformed to obtain constant variance, otherwise our least squares estimators will not be 

optimal. The following calculations give a motivation for how the response should be 

transformed. Let ( )z = g y  be a transformation of y . A first order approximation with a 

Taylor series gives us: 

                      
( ) ( )( )z g g y   + −  where   is some constant.     

 

               Figure 1. Four residuals plots illustrating: increase in variance with increasing ŷ , 

two u-shaped residual plots illustrating lack of a seconds order term in the model  and finally  

a plot where the residuals have no particular pattern and thereby support our choice of model.    

  

Hence as an approximation it should be possible to write a random variable ( )Z = g Y  as:  
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                            ( ) ( )( )Z g g Y   + −   where ( )E Y = .    

Thereby we get           

                                ( ) ( ) ( )
2

Var Z g Var Y .  

For the variance of ( )Z = g Y to be (approximately) constant we must have: 

         ( ) ( )
2

g Var Y k =   or ( )
( )
k

g
SD Y

 = where  k  is a constant. 

The following situations give raise to the most common transformations: 

( ) ( )
k

SD Y g
c

 


  =   and an appropriate transformation will be ( )g Y Y=  

( ) ( )
k

SD Y g
c

 


  =  and an appropriate transformation will be ( ) ( )g Y ln Y=  

( ) ( )2

2

k
SD Y g

c
 


  =  and an appropriate transformation will be ( )

1
g Y

Y
=  

There is a constant missing in the transformations but that is irrelevant since the goal is to 

obtain constant variance.  In general the transformation can be of the form Y   with   

arbitrary, where 0 = means the logarithm.  If none of the transformations above gives a 

satisfactory results, one can try the Box-Cox transformation. The steps are as follows: 

Suppose 0,  iY i  . 

1. Consider a value of   from a grid on a selected range for instance [-2,2], [-1,1]. 

2. For each value of   compute new responses: 

    ( )
( )

1
*

*

1
,  0

ln ,  0 

i

i

i

Y

YV

Y Y










−

 −


= 


=

 

where 

1

*

1

n n

i

i

Y Y
=

 
=  
 
  i.e. the geometric mean of 

1, , nY Y . Hence 

( ) ( )1 1, , , ,
T T

n nY Y V V→ =Y = V . 

3. Regress V on X  and find ( ) ( )
2

1

ˆ
n

E i i

i

SS v v
=

= −  for each  . 
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4. Plot ( )ESS   versus  . Draw a smooth curve and find * =  that gives the smallest 

ESS . If *  is close to values like , 2, 1.5, 1. 0.5,0,0.5,1,1.5,2,− − − −  , use these 

instead for easier interpretation.   

5. Use the transformation 
*

Y  . 

Transformations can also sometimes transfer a nonlinear model into a linear one as shown for 

the following three non-linear models below: 

                                 ( )i ix

i i i iY e ln Y ln x
    +

=  = + + , 

                                 ( ) ( ) ( )i i i i i iY x ln Y ln ln x ln    =  = + + , 

                                 
( )

1i
i i

i i i i

x
Y

x Y x


 

  
=  = + +

+ +
. 

After the transformation the model has become linear in the parameters  

( )( ) ( )( ) ( )  and ln , , ln , ,       respectively. These cases show that it may also be 

necessary to transform regression variables to obtain a linear model. Variance stabilized data 

will also normally have a distribution that is close to the normal distribution.  

 

An example  

The dataset below consists of 30 observation pairs of density and stiffness for a 

particular wood product. Since data for density are more easily obtainable than stiffness, it is 

of interest to find a relationship between stiffness and density such that given a density one is 

able to estimate or predict the stiffness. Therefore, stiffness will be taken to be the response 

variable and density to be the regression variable.  

i  ( )i ix , y  i  ( )i ix , y  i  ( )i ix , y  

1 (9.5, 14184) 11 (17.4, 43243) 21 (25.6, 96305) 

2 (8.4, 17502) 12 (15.0, 25319) 22 (23.4, 104170) 

3 (9.8, 14007) 13 (15.2, 28028) 23 (24.4, 72594) 

4 (11, 19443) 14 (16.4, 41792) 24 (23.3, 49512) 

5 (8.3, 7573) 15 (16.7, 49499) 25 (19.5, 32207) 

6 (9.9, 14194) 16 (15.4, 25312) 26 (21.2, 48218) 

7 (8.6, 9714) 17 (15.0, 26222) 27 (22.8, 70453) 

8 (6.4, 8076) 18 (14.5, 22148) 28 (21.7, 47661) 

9 (7.0, 5304) 19 (14.8, 26751) 29 (19.8, 38138) 

10 (8.2, 10728) 20 (13.6, 18036) 30 (21.3, 53045) 
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We always start by plotting the response variable against the regression variable. The plot is 

shown in Figure 2.  It seems like stiffness increases with increasing density. 

 

Figure 2.   A plot of stiffness against density 

 

Below is the result of a least square analysis performed with R. We shall comment on this 

analysis in greater detail later. Now we notice that   is estimated to -25513.3 and   to 

3888.8 and that both are highly significant. The estimated value for   is 11620.  

 

Coefficients: 

             Estimate   Std. Error t value   Pr(>|t|)     

(Intercept) -25513.3     6101.6    -4.181   0.000258 *** 

x             3888.8      369.8    10.515   3.14e-11 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 --- 

Residual standard error: 11620 on 28 degrees of freedom 
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                      Figure 3.  Plot of residuals against ŷ . 

The plot of the residuals shows that the variance is increasing when ŷ or the estimated mean 

is increasing. This calls upon a transformation. A plot of the log transformed stiffness against 

density is given in Figure 4.  

 

With ( )log y as the response we get the following least squares estimates 

 
Coefficients: 

            Estimate  Std. Error t value  Pr(>|t|)     

(Intercept)  8.25193    0.12819   64.37   < 2e-16 *** 

x            0.12518    0.00777   16.11   1.08e-15 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2441 on 28 degrees of freedom 

 

 

The plot of the residuals against ŷ  with the log transformed response indicates a far better fit 

as can be seen in Figure 5, and the normal plot indicates that their distribution is not too far 

away from a normal distribution.   
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Figure 4. Plot of the logarithm of stiffness against density. 

 
 

 

Figure 5. Plot of residuals against ŷ  for the model with the log transformed response 

together with a Normal Q-Q plot of the residuals.  
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Approximation of the expectation and variance for functions of random 

variables.  

 
The technique used to find appropriate transformations can be used to find an approximation 

of expectation and variance for non-linear functions of random variable. 

 

An example.  

The estimated simple regression model can be written as ( )ŷ y b x- x .= +  Suppose we are 

interested in the x-value for which the regression line crosses the x-axis. Simple calculations  

will suggest this value to be estimated with = −
y

x x
b

. Now suppose we are interested in the 

uncertainty in this estimate. An estimator for the crossing value is
Y

x
̂

− . The random 

variables here are Y and ̂ . 

Both these have known variances given as 
2

n


 and 

( )

2

1

n
2

i

i=

x - x




 respectively. They can also 

be shown to be uncorrelated random variables. However, we have no formal way to find the 

exact value of 
Y

Var
̂

 
 
 

 by calculations.  

For a function ( )g x, y  a first order Taylor expansion gives: 

 

                                     ( ) ( ) ( )( ) ( )( )
dg dg

g x, y g a,b a,b x- a + a,b y-b
dx d y

 + . 

 

Then expanding a random variable ( )Z = g X,Y around ( ) ( )1 2 and E X E Y = = gives 

              ( ) ( ) ( )( ) ( )( )1 2 1 2 1 1 2 2

dg dg
g X,Y g , , X- + , Y-

dx dy
        +                                  (8)

 

 

 

From this expression we have:  

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2 1 2 1 2 1 22
dg dg dg dg

Var g X,Y , Var X , Var Y , , Cov X,Y
dx d y dx d y

       
 

 + +  
 

 
 

If the two random variable X and Y are uncorrelated the last term vanishes.  

 

 

Applied to our crossing problem we get:  

 

            
( )

( )

( )

( )

2 22 2 2

2 4 2
22

1 1

1 1

=

 
 + + 
   +  = + 
  
 
 

 
n n

2

i i

i= i

x xY
Var

ˆ n n
x - x x - x

     

  


. 
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In practice estimates of   and   will be used to get an approximate value for the variance.  

 

The general approximation formula for the variance of a random variable ( )1 2 ng X ,X ,…,X is:  

 

( )( ) ( ) ( )
( ) ( )

( )
2 1 1

1 2 1

1

2
n n

n n

n n i i j

i i ji i j

dg , , dg , ,dg
Var g X ,X ,…,X , , Var X Cov X ,X

dx dx dx

   
 

= 

 +    

 

Using the Taylor expansion, it is also possible to find an approximation to the expected value 

of a function of random variables. By taking the expected value of the linearized expression 

in (8) we get:  

  

                                                       ( ) ( )1 2E g X,Y g ,     

and in general 

 

                                ( ) ( )1 2 1 2n nE g , , , g , , ,    X X X . 

 

For the approximation formulas to work well the variances of the respective variables should 

be small. However, simulation shows that the approximation formula for the variance works 

well in most situations.  

 

The reader should be aware of how many times these approximation formulas are needed 

when working with measured data. For instance, we measure length, width, height, radius, 

current, resistance etc. and may want to calculate, area, volume or voltage. In each case we 

have expressions that are not linear in the variables we measure. It is also often the case that 

our measurements of the different variables may be assumed to be uncorrelated and hence the 

covariance terms in the expression for the variance vanish.  

 

One more example 

 

Sometimes measurements are given with a relative uncertainty. Let us assumed that the 

height of a cylinder is measured with a relative uncertainty of 2% and that the radius is 

measured with a relative uncertainty of 1%. 

As an approximation: 

                                  ( ) ( ) ( )
1

ln X ln Xx x

x

 


 + − . 

And hence  

                                  
( )

X

ln X

X





 , the coefficient of variation or relative uncertainty. 

The volume of a cylinder is given by 2V = r h . Taking the logarithm, we get: 

 

                                  ( ) ( ) ( ) ( )2ln V ln ln r ln h= + + , 

and a direct calculation gives ( ) ( ) ( )
2 24

ln V ln r ln h
  = + . 
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The relative uncertainty in V is  
( ) ( ) ( )

2 2
4 0 01 0 02 0 028V

ln V

V

. . .





 = + = or 2.8%. 

 

Multiple linear regression.  Least squares estimators and their covariance 

matrix. 

An example. Sour precipitation.  

To study the influence of sour precipitation in Norwegian lakes, SFT in 1986 carried through 

an investigation where data from 1005 lakes were collected.  In this example 26 random 

lakes, 16 from Telemark and 10 from Trøndelag are chosen out. The variables and the data 

are given below. 

 

  y = Measured pH-value 

x1 = Content of 
4OS  

x2 = Content of 
3ON  

x3 = Content of Ca 

x4 = Content of latent aluminum 

x5 = Content of organic material 

x6 = Area of water 

x7 = Location (0 – Telemark, 1-Trøndelag) 

 

    y    x1 x2  x3   x4  x5  x6   x7 

1  5.38 4.9 39 1.54  78 2.02 0.30  0 

2  5.68 4.1 75 1.55  17 2.98 1.85  0 

3  5.04 3.5 80 0.83 157 3.40 0.25  0 

4  4.81 3.8 75 0.53 163 3.42 0.30  0 

5  4.92 3.8 90 0.82 105 3.41 0.25  0 

6  5.34 2.6 49 0.62 114 1.90 0.65  0 

7  5.74 2.7 79 1.08  15 2.53 1.15  0 

8  5.17 2.6 90 0.67  90 1.89 0.91  0 

9  5.02 2.4 64 0.41 107 0.97 0.60  0 

10 5.88 2.8 27 1.15  12 3.04 0.37  0 

11 5.36 3.4 13 0.89  93 2.95 0.58  0 

12 5.26 2.7 14 0.74  72 2.75 0.15  0 

13 5.69 3.2 13 1.03  99 3.34 0.53  0 

14 5.51 2.5 79 0.67  80 0.78 0.56  0 

15 5.25 1.5 77 0.33  72 0.11 1.08  0 

16 6.06 3.7 15 1.94   4 5.53 0.72  0 

17 6.08 1.9 16 1.05   0 5.63 0.48  1 

18 6.08 1.3  2 0.81   0 3.84 0.25  1 

19 6.20 2.2 32 1.40   7 3.77 1.87  1 

20 5.64 2.2 21 0.75  13 5.62 0.53  1 
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21 5.75 1.6  7 0.79   2 3.95 0.35  1 

22 5.43 2.0 27 0.47  16 2.39 1.03  1 

23 5.82 1.8 17 0.74   3 3.08 0.32  1 

24 5.50 2.0  6 0.49  10 2.82 0.28  1 

25 5.62 1.5  3 0.36   7 1.71 0.10  1 

26 5.41 1.7  7 0.54   9 6.48 0.21  1 

 

We notice that there are seven potential regression variables that may affect the response. Our 

modeling goal is to find a functional relationship between the response y and those regression 

variables that really can explain the variation in y. Let us first find out how we can obtain the 

least squares estimators in a multiple regression model. 

The model for multiple linear regression is:  

                                            
0 1 1 k kY x x   = + + + + , 

where again Y is the response, 
1 kx ,…,x the regression variables and   the error term.  

Alternatively, we have   

                               
0 1 1i i k ik iY x x   = + + + + .    

Here ( ) ( ) ( )20  Var , =1,2, ,  and 0  i i i jE , i n E , i j    = = =  . 

We observe  

                                ( )1 2  =1,2, ,i i , i i ky ,x x ,…,x , i n  

Which according to the model must satisfy: 

                              

1 0 1 11 2 12 1k 1

2 0 1 21 2 22 2k 2

0 1 1 2 2 k

*

k

*

k

*

n n n k n n

y x x x

y x x x

y x x x

    

    

    

= + + + + +

= + + + + +

= + + + + +

 

where *

i  is a realization of 
i .  Written in matrix form this becomes: 

                                            *= +y X   

Estimates for ( ) ( )0 1 0 1 
t t

k k= , , , , b ,b ,…,b   ,  are obtained by minimizing 

                                ( )
2

0 1 1 2 2 k

1

n

i i i k i

i

Q y b b x b x b x
=

= − − − − −  

with respect to 0 1 kb ,b ,…,b . Note that  Q  can be shown to be a convex function in 0 1 kb ,b ,…,b . 
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The estimated model becomes: 

                                     
0 1 1i i k ikŷ = b +b x + +b x . 

Setting the partial derivatives equal to zero gives the normal equations:  

                

( ) ( )

( ) ( )

( ) ( )

0 1 1 2 2

1 1

1 0 1 1 2 2 1

1 1

0 1 1 2 2

1 1

2 2 0

2 2 0

2 2 0

n n

i i i k i k i i

i= i=

n n

i i i i k i k i i i

i= i=

n n

i k i i i k i k i k i i

i= i=

ˆy - b - b x - b x - - b x    = y - y =

ˆx y - b - b x - b x - - b x = x y - y =

ˆx y - b - b x - b x - - b x = x y - y =

− −

− −

− −

 

 

 

 

which can be written as:  

                    ( ) ( )

1

11 21 1 2

1 2

1 1 1

n t t

k k nk n n

ˆy - y

ˆx x x y - y
ˆ or 

ˆx x x y - y

   
   
    = − = − =
   
   
   

0 X y y X y Xb 0  

or 

                      ( ) ( )
1 1

 which implies =  if exists.t t t t tX Xb X y b X X X y X X
− −

=  

The least squares estimator is therefore: ( )
1

t tˆ = X X X Y
−

 .  Notice that the first normal 

equation guarantees that the sum of the residuals is zero.  If there is no constant term in the 

model, we have no such guarantee.  

 

Expectation and Covariance matrix of the estimators. 

The least square estimator is given by:   

                          ( ) ( ) ( )
1 1

t t t tˆ = X X X Y X X X X
− −

= +    

which implies ( ) ( ) ( )
1 1

t t t tˆ = +X X X X X X X
− −

+ =     . 

Since ( )E 0=  we have that ( )ˆE =   i.e. the least square estimator is unbiased. 

The covariance matrix of ̂  is: 
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                              ( )

0 0

1 1
0 0 1 1 k k

k k

ˆ

ˆ
ˆ ˆ ˆ ˆCov E , , ,

ˆ

 

 
     

 

  −
  

−    = − − −    
  
  −  

  

            = 

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

2

0 0 0 0 1 1 0 0

2

1 1 0 0 1 1 1 1

2

0 0 1 1

k k

k k

k k k k k k

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
E

ˆ ˆ ˆ ˆ ˆ

         

         

         

 − − − − −
 
 

− − − − − 
 
 
 

− − − − −  

 

                 = 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 1 0

1 0 1 1

0 1

k

k

k k k

ˆ ˆ ˆ ˆ ˆVar Cov , Cov ,

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,

ˆ ˆ ˆ ˆ ˆCov , Cov , Var

    

    

    

 
 
 
 
 
 
 
 

. 

 

We get : 

                     
( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1 1 1
2 2

t
t t t t

t t t t t t t t

ˆ ˆE E

E . 

− −

− − − − −

   − − =
     

= = =

X X X X X X

X X X X X X X X X IX X X X X

    



 

 

An example. Simple linear regression. 

The model can be written as:  

                                  

1 11 1

2 21 2

1

1

1

1n n n

Y x

Y x

Y x









     
     

      = +       
     
     

 

We get:  

( )

11

1

121

11 21 1 2

1 1

1 11

1

1 1 1 1

1

n

i

i=t

n n
n

i i

i= i=n

x
n x

x

x x x
x x

x

   
        = =      
   

  



 
X X   
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1

1

1

n

i

it

n

i i

i

Y

x Y

=

=

 
 
 =
 
 
 




X Y  

and ( )

2

1 1
1 1 1

2

2
11 1

11 1

1

n n

i i

i i

nn n

ii i
ii i

x x

x nn x x

− = =

== =

 
− 

 =
  
−−   
  

 

 

t
X X   

such that  

                         

( )1 1

1
1 1

2 2 2 21 1
1 1 1 1

1 1

1

n

i in n
i

i i in n
i i

i i

i= i

Y x - x
ˆ x Y x Y

x n x x nx

 =

= =

=

 
= − + = 

 − −


 

 
 

   and  

                          2

1 1 1 1 1 1
2 2 1 1
1 1

1

1 n n
2

i i in
i= i

i

i

ˆˆ Y x nx x nYx x Y Y x

x nx

 
=

=

    
= − + − = −    

    −
 


. 

                             

1

1

2 22 2
1 11 12

11

1

2 2 2 2

1 1 1 1

1 1

1

n
2

i

i=1

nn

ii
ii

n n

i i

i i

x
x

ˆ x n xn x n x
Cov

ˆ
x

x n x x n x





==

= =

 
 
 −

  −−    =   
  
 
− 

− − 
 





 

. 

( )
22 2

1 1 1 1

1 1

 can be written as 
n n

i i

i i

x n x x x
= =

− −  . This follows because  

   ( )
2 2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 1

2
n n n n

i i i i

i i i i

x x x x x nx x n x
= = = =

− = − + = −    . 

 

Partitioning of variation 

A measure of the total variance in the response is given by ( )
2

1

n

i

i

y - y
=

 . We can split up this as 

follows:  
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First write  

                                
i i i i

ˆ ˆy - y y - y y y= + −  

such that 

        ( ) ( ) ( )( ) ( )
2 2 2

1 1 1 1

2
n n n n

i i i i i i i

i i i i

ˆ ˆ ˆ ˆy - y y - y y - y y y y - y
= = = =

= + − +    . 

Now 

       ( )( ) ( ) ( )
1 1 1

0
n n n

i i i i i i i i

i i i

ˆ ˆ ˆ ˆ ˆy - y y y y - y y y - y y
= = =

− = − =   . 

This follows because the two last expressions are zero, since the normal equations have to be 

fulfilled.  

Thereby we have 

                           ( ) ( ) ( )
2 2 2

1 1 1

n n n

i i i i

i i i

ˆ ˆy - y y - y y - y
= = =

= +   . 

This can also be written as:  

                                               
T E RSS SS SS= + . 

Or the total sum of squares equals the error sum of squares + the regression sum of squares.  

This partitioning of the total variation in the response is only true if the normal equations are 

fulfilled. In models with no constant term this partitioning is normally not valid.  

 

Some results about idempotent matrices and distribution of quadratic 

forms and their application to multiple linear regression. 

Most of the necessary theory behind procedures in regression analysis and in linear models in 

general relies upon properties of idempotent matrices and the spectral decomposition of 

symmetric matrices. In fact, in this course you will find these two mathematical topics 

involved in most of the theory we are building up.  

Idempotent matrices 

First define 
n n

J  to be a n n matrix with all entries equal to 1.  Let 

1

n

Y

Y

 
 

=
 
  

Y  be a vector of 

random variables.  We have: 
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1

2

1 1 1

1 1 11 1

1 1 1 n

YY

YY

n n

YY

    
    
    = = =
    
    

    

Y JY .  

Now
1

n n
n



 
 
 

I - J  is obviously symmetric.  Therefore 
1

n n
n



 
=  
 

Y-Y I - J Y  and 

( ) ( )
1 1t

T
SS

n n

  
− − = − − =  

  

ty y y y y I J I J y . 

Further ( )
1

t t
−

= = =̂Ŷ X X X X X Y HY  where ( )
1-

t tH = X X X X  is the often referred to 

hat matrix in linear regression theory. ( )n n n n 
−I H  is symmetric and we obtain  

( )n n n n 
− = −ˆY Y I H Y  and ( ) ( ) ( )( )

t t

E
SS− − = − − =ˆ ˆy y y y y I H I H y  

Also 
1

n

 
− 

 
H J  is symmetric and

1

n

 
− = − 

 
Ŷ Y H J Y  . Hence 

( ) ( )
1 1t t

R
SS

n n

  
− − = − − =  

  
ˆ ˆy y y y y H J H J y . 

For the matrices 
n n

J  and 
n n

H  we have: 

1 1 1

n n n
=J J J  and ( ) ( ) ( )

1 1 1
t t t t t t

− − −

= = =HH X X X X X X X X X X X X H  

Matrices that remain unchanged regardless of how many times we multiply them together are 

called idempotent. 

 

We further get  

1 1 1 1 1 1 1 1 1 1

n n n n n n n n n n

  
− − = − − + = − − + = −  

  
I J I J I J J J J I J J J I J  and  

( )( ) 2− − = − − + = − − + = −I H I H I H H H I H H H I H . 

The following property of the hat matrix is useful:  

R1. ( )
1

t t
−

= =HX X X X X X X .  

This means that  
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1 1
1 1

1 1

1 1

k k   
   
   =
   
   
   

x x x x

H where 
i

x , 1 2i k= , , , , is the column of observed 

values for the i’th regression variable. In particular we get =H 1 1 or 
1 1

1
n n

ij ij

j i

h h
= =

= =   since 

the hat matrix is symmetric. In other words, the elements in any row and columns in the hat 

matrix sum to 1.  

Then we obtain 

21 1 1 1 1 1 1 1 1 1

n n n n n n n n n n

  
− − = − − + = − − + = −  

  
H J H J H J H H J J J H J J J H J  since 

= =JH HJ J . 

A matrix A  that satisfies A A = A  is called idempotent. If A  also is symmetric it is also 

called a projection matrix. 

R2. 
1 1 1

  , and 
n n n

−H, J, I- H I- J H J  are all idempotent matrices and also projection 

matrices. 

Let  A  and B be two matrices such that their product AB is defined. Then  

rank(AB) ( ) ( )( )min rank rank A , B . 

This follows since the columns of AB are linear combinations of the columns of A and the 

rows in AB are linear combinations of the rows of B.  

For a symmetric matrix 
n n

A  we have t=A P P  where  1 2 n
=P e ,e , ,e , the matrix of 

eigenvectors and 

1

2

1

0 0

0 0

0 0







 
 
 =
 
 
 

  is a diagonal matrix of eigenvalues. This is known 

as the spectral decomposition of the matrix A .  

 

R3. 
n n

A  symmetric implies ( )rank =A  the number of nonzero eigenvalues 

Proof.  

We have 
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 ( ) ( ) ( ) ( )( ) ( )rank =rank rank rank rankt t t tmin   A P P P , P P  

and ( )trank ΔP = ( ) ( ) ( )( ) ( )rank    rank rank rankt t t t tmin   P P P P , P P P P =

( )rank A .  Also ( ) ( ) ( )( ) ( )rank rank rank rankt tmin   P , P ( ) ( )t trank rank=  P P P .  

Hence ( ) ( ) ( )rank =rank rankt = A P .  

 

R4. 
n n

A  symmetric and idempotent with rank r implies r eigenvalues are 1 and n-r are zero.  

Proof.  

=Ax x  and 2 = =t t t tx x = x Ax x AAx x x . Hence ( )1 0  − =tx x  which implies 

1 or 0 = = . Since the number of nonzero eigenvalues are r , r eigenvalues are 1 and n-r 

are zero.  

 

R5. 
n n

A  symmetric and idempotent implies ( )tr A = rank( A ). 

Proof . 

( ) ( ) ( ) ( ) ( )tr tr tr tr rankt= = = =tA P P P P A   .  

 

Distribution of Quadratic forms 

R6. Let 
n n

A  be a symmetric and idempotent matrix of rank r and let 
1 2 n

Y Y Y, , ,  be 

independent normally distributed with expectation 
1 2 n
  , , , respectively and equal 

variance 2 . Define 

1 1

  

n n

Y

and

Y







   
   

= =
   
      

Y .  Then 
( ) ( )( )

( )2

2
  

t

is r
 




− −Y A Y
. 

Proof . t=A P P . Let 

1

n

U

U

 
 

=
 
  

U  where  =1,2, ,i i
i

Y
U i n





−
= , . 

1 2 n
U U U, , ,  are 

independent random variables. Also ( ) 0
i

E U =  and ( ) 1  =1,2, ,
i

SD U i n= , . We get: 

( ) ( )
2

2
1

t
r

t t t t

i

i

Z
 

 =

− −
= = = =

Y A Y
U AU U P P U Z Z  where t=Z P U . 
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Further ( ) ( ) ( ) ( )t t t t t tCov Cov E E= = = = =Z P U P UU P P UU P P IP I . 

Obviously ( ) ( )t tE E= =P U P U 0 . Therefore, ( )0 1 1 2
i

Z N i n=~ , , , , ,  and independent 

which implies that ( )2 2

1

 is 
r

i

i

Z r
=

 .  

R7. Let A  and B be symmetric and idempotent matrices such that =AB 0 . Assume further 

that 
1 2 n

Y Y Y, , ,  are independent normally distributed with expectation 
1 2 n
  , , ,  

respectively and equal variance 2 . Let 

1 1

  

n n

Y

and

Y







   
   

= =
   
      

Y . Then ( ) ( )
t

 − −Y A Y  

and ( ) ( )
t

 − −Y B Y  are independent.  

Proof. 

Let = −U Y . Then ( ) ( ) 2 and Cov =  E =U U I .0 Further t t t= =U AU U AAU Z Z  where 

tZ = A U , and t t t= =U BU U BBU V V where tV = B U .   and Z V are independent if 

( )tE =ZV 0 . 

( ) ( ) ( )t t tE E E  = = = = =tZV A UU B A UU B A I B AB2 2 0 .  

 

Some specific results for multippel linear regression models.  

Theorem 12.1 

In the linear regression model  += XY =

1

n





 
 
 
  

 with ( )


 =

=
elles, 0

 ,2 ji
E ji


  an estimator for 

2  is given by 
( )

( )
= +−

−
=

n

i

ii

kn

YY

1

2

2

1

ˆ
ˆ  where k  is the number of regression variables. 

Proof. 

( ) ( ) ( ) .ˆˆŶYŶYˆ  tt
n

i

ii YY =−−=−
=

2

1

  

( ) ( ) ( )( ) XYHIYHIYXXXXYˆXYˆ
.t −−=−=−=−= t1

 

since ( ) .XXXHI 0=−=−   
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Hence ( )( ) HIHIˆˆ −−= tt , 

and ( ) ( )( )( ) ( ) ( ) ( )2

1 1 1

n n n
t t

i j iij ii
j i i

E E E E
= = =

 
= − − = − = − 

 
 ˆ ˆ I H I H I H I H        

( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( )( ) ( )

1
2 2 2 2 2 t

1

1
2 2 t 2 2

1 1

I H I H I H X X X X

X X X I 1 .

n
t

ii
i

t

k k

tr tr tr n tr

n tr X n tr n k

    

   

−

=

−

+  +

= − = − = − = −

= − = − = − −


. 

R8. In the linear regression model  += XY =

1

n





 
 
 
  

, with ( )I,~ 2  0N  ,  

 
( ) ( )

( )2

2 2
   -1

t

E
SS

is n - k
 


 

− −
=

ˆ ˆY X Y X
. 

Proof 

( )( ) .ˆXYXXˆXYXYHI  −=+−−=−−  

Hence 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) XYHIXYXYHIHIXYˆXYˆXY −−−=−−−−=−−
tttt

 

Rank ( ) ( ) ( )1+−=−=− kntr HIHI .  

Hence  
( ) ( )( )

( )( )2

2
  is  1

t

n k


− − −
− +

Y Xβ I H Y X
. 

 

Now assume
1 2

0 i.e.  
k i o i

Y    = = = = = + , 1,2, ,i n= . Let  1 1,1, ,1
t

n1 =   

Then ( ) 0 0

1 1

n n
    

 
− − = − − + = − − + = − 

 
1 1I J Y X Y X Y JX Y Y Y Y . 

and ( ) YŶJXXYˆXXYJH −=+−−=−







− 

nn

11
. 

Therefore =
2
TSS

( ) ( ) ( ) ( ) ( )
( )

2

21

2 2 2

1

 is 1

n
t

t
i

i

Y Y
n

n
  

=

 
− − −−  − −  = = −

 Y Xβ I J Y Xβ
Y Y Y Y
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since 1
n

1
tr- 

1
tr −=








=








− nn

n
JJI  and  

=
2
RSS

( ) ( ) ( ) ( ) ( )
( )

2

21

2 2 2

1

 is 

n
tt

i

i

Y Y
n

k

 


  

=

   
− − −−    − −

   = =
 
 
 

 ˆ Y X H J Y Xˆ ˆY Y Y Y
 

since rank ( ) kk
n

=−+=







−=








− 11

n

1
trtr

1
JHJH . 

We also have ( ) 0=







− JHHI

n

1
-  from which it follows that  and E RSS SS are independent.  

 

R9.  Assume ( )20N ~ , I . Then ̂  is independent of 2̂ . 

Proof. ( ) ( ) ( )( ) ( )( )Cov =
t tE E− − − = −

)ˆ ˆ ˆ,Y X , Y HY ,        

( ) ( ) ( )( ) ( ) ( )( )1 1
t t t tE E

− −

= − − = −t tX X X Y X I H X X X I H    

= ( ) ( ) ( )( ) ( ) ( ) 0212 =−=−
−−−−

)XXXXXXXXXXHIIXXX
1tt1t1tt ttt  . 

 

The Fisher (F) distribution and the analysis of variance table for linear 

regression. 

R10. Assume the random variable X is chi-squared distributed with 
1  degrees of freedom, 

writes ( )2

1  , and ( )2

2Y ~    and that X  and Y are independent. Then 1

2

X

Y




is Fisher 

distributed with 
1  and 

1 degrees of freedom, writes
1 2,F  .  

  Note   
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1 2 2 1

1
, ,F ~ F ~ F

F
      

Now define   by        

                                       ( )
1 2 1 2, , ,P F f      =

  
and since  

         
1 2 1 2

1 2 1 2

1
2 2

1
2 2

1 1 1
1 1

, , , ,

, , , ,

P f F f P
f F f

 
   

 
   

 
−

−

 
   

  = −    = −   
   

 

 

we have 
2 1

1 2

1
2

2

1

, ,

, ,

f
f


 


 

−
= and 

1 2

2 1

1
2

2

1

, ,

, ,

f
f


 


 

−
=

 

 

The density function in the F distribution is given by: 

                                     ( )

1 2

1

1 2

21
12

2

1 0,f x k x x ,x

 


 





+
−

−  
=  +  

 
  

where 

1

1 2

1 2

2
1

1 2 2

2

2 2

,k



 

 



  



 

+ 
    =  

        
   

 

( ) 1

2 2
E F




=

−
 and ( )

( )

( ) ( )1 2

2

2 1 2

2

1 2 2

2 2

2 4
,Var F 

  

  

+ −
=

− −
 provided 

2 4.   

 

Some examples of how the density function in the Fisher distribution looks like is given in 

Figure 6.  
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Figure 6.  

 

Inference in multippel linear regression 

A test on whether the regression is significant (or if the regression equation differs from a 

constant) is given by:  

0 1 2 1: 0 against : at least one , =1,2,  is different from 0.k iH H i ,k,   = = = =  

With ( )I,~ 2  0N , we know that ( )2

2
   -1E

SS
is n - k


. Under 

0H  we also have that  

R

2

SS


( )2is k  and since they are independent, we get R E

1

SS SS

1
k,n-k~ F

k n- k
−

−
. Since the 

denominator is independent of 
0H  and 

RSS under 
1H  is greater than under 

0H  a natural test 

for  
0H  can be built on 

1k,n-kF −
.   

 We reject  ( )0 11
 if  where is the observed value of k,n-k-,k,n- k

H f f f F .
 +

  

It is normal to collect the sum of squares values from a regression analysis in a variance of 

analysis table as follows:  
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Table. The analysis of variance table for regression analysis 

Source Sum of squares Df Mean sum of squares F 

Regression 
( )

2

1

n

R i

i

ˆSS y y
=

= −  
k  R

R

SS
MSS

k
=  R

E

MSS
f =

MSS
 

Error 
( )

2

1

n

E i i

i

ˆSS y y
=

= −  
( )1n k− +  

( )1

E
E

SS
MSS

n k
=

− +
 

 

Total 
( )

2

1

n

T i

i

SS y y
=

= −  
1n−    

 

The partial F-test. 

The partial F-test is useful if we want to test the significance of a group of regression 

variables. Assume we want to test the following hypothesis. 

0 +1, 2
: 0

r r k
H   

+
=, ,  

1 +1
: at least one of  are 0

r k
H   , , . 

Let    1
 and 

r k r
= =

1 2 1 2
1 1X , x , x , , x , , x X , x , x , , x  and define 

1
 and H H  by  

( ) ( )
1 1

1 1 1 1 1
 and t t

- -
t tH = X X X X H = X X X X . We get for all y : 

1 1

1 1 1 1 1 1
0 0

   
= = = = =   

   

b b
HH y HX b HX X X b H y . Thereby 

1 1
=HH H  and by transposing 

it we get 
1 1

=H H H .Therefore ( )
2 2

1 1 1 1 1
− = − − + = −H H H HH H H H H H  i.e. ( )1

H- H  is 

idempotent.  

Let  =

0

k





 
 
 
  

 and 
1

 = 

0

r





 
 
 
  

.  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1

tt t t

r r T T
SS SS SS SS− = − − + = =

1 1
Y I- H Y Y I- H Y Y H- H Y Y- X H- H Y- X   

since ( )1 1 1 1 1 1 1
= −H- H X X X   . 

Rank ( ) ( ) ( ) ( )1 1
tr tr 1 1k r k r− = − = + − + = −H H H H . Therefore under 

0
H  

( ) ( ) ( ) ( )( )
( )1 1 1 1 1 2

2 2
 is 

t

r r
SS SS

k r
−

= −
1

Y- X H- H Y- X   


 
. 
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Also ( )( )1 1 1
= − − + =H- H I- H H H H H 0  which implies 

( ) 2

1
 and are independent.t − ̂Y H H Y  

The test statistic for 
0

H is 

( ) ( )

( )
( )

( ) ( )

1

1

1

r r

k r n k

E

SS SS

k rF F
SS

n k

− − −

−

−=

− +

,
~

 


 , 

and we reject 
0

H  if 
( )( )1obs k r n k

f f
− − −


,

.


 Note that a partial F-test can be used to test on single 

variables given that the rest of the variables are in the model,  on groups of variables given  

that the rest of the variables are in the model and if the regression is significant. 

Testing a general linear hypothesis 

Suppose   0 1 1 2 2 3 3E Y x x x   = + + +  and we want to test the hypothesis  

1 2

0

2 3

0
:

0
H

 

 

−   
=   −   

 or equivalently 
0 1 2 3:H    = = = . 

The hypothesis can be formulated as: 
0 1:  vs :H H= 0 0 C C  , where 

0 1 1 0

0 0 1 1

− 
=  

− 
C  and  

1

2

3

4









 
 
 =
 
 
 

 . We have thus r (in this case 2) constraints on  .
   

With the assumption of normally distributed errors,                 

           ( )( )1
2ˆ T

−

   X X  and ( )( )1
2ˆ T T

−

  C C C X X C . 

Hence, under 
0H ,  ( ) ( )( ) ( ) ( )

1
1

2 2ˆ ˆ
T

T T r 
−

−

 C C X X C C  . 

Since ̂  and 
ESS  (full model) are independent and ( )2

2
1ESS

n k


− − , we get 

( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )

1 1
1 1

2

, 12

ˆ ˆ ˆ ˆ

1 1

T T
T T T T

r n k

E E

r r
F F

SS n k SS n k





− −
− −

− −= =
− − − −

   C C X X C C C C X X C C
.
 

 

We reject
0H  if F is large.  

If we want to test 0 1:  vs :  H H=  C d C d , we just substitute ˆ ˆ with in F− C C d .
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Test on single coefficients, intervals and regions. 

 

We will now be mainly concerned with how regression analysis can be performed in practice. 

Assume that 
1 2 n, , ,    is a sequence of independent, normally distributed random variables 

with expectation equal to zero and constant variance 2 .
 

 

In multiple linear regression we have: 

 

                                 ( ) 0 1 1 k kE Y x x  = + + + . 

Thus  1 2i , i , , ,k =  is the change in ( )E Y if 
ix  is changed with one unit and all the rest of 

the variables are kept unchanged. 

We want a test for: Does a variable have a significant impact on the response given that the 

other variables are in the model.  

Such a test for 1 2jx , j = , , ,k is: 

                            0 1: 0 against : 0j jH H =   

We know that ̂  is independent of 

( )

( )

2

2 1

1

n

i i

i

ˆY -Y

S
n k

==
− +


 . 

Now let  jjc  be the ( )1j th+ diagonal element in ( )
1

tX X
−

. Then                    

j

jjj

jj

ˆ

c
T

SS c







= =   and hence the enumerator is ( )0 1N ,  and since 
( )

2

12S n- k-


is 

( )2 1n- k − the denominator can be written as a variable that is: 
( )2 1

1

n- k

n- k

 −

−
. Therefore T  

is t-distributed with ( )1n- k− degrees of freedom and we reject 
0H  if 

( )1
2

obs
,n- k+

t t .  For the 

test  

0 0 1 0:   against :j j j jH H   



= =



, we use 
0j j

jj

ˆ
T

S c

 −
=  the same way except that 

2


is 

substituted by   if the test is one-sided.  

Individual confidence intervals for each , 1,2, ,j j k = , can be deduced using T. 
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We get 
, 1 , 1

2 2

ˆ ˆ 1j jj j j jj
n k n k

P t S c t S c    
− − − −

 
−   + = − 

 
. 

The confidence ellipsoid 

A confidence ellipsoid may be useful if several parameters are to be studied jointly.  

Exploiting that ( )2N  , 0 I ( )( )1
2ˆ t

−

   X X  we get  

( ) ( ) ( )2

2
ˆ ˆ 1

tt

k


+ −   − 
X X

. We also know that ( )2

2
1ESS

n k


− − and 

2

1

ESS
S

n k
=

− −
. Therefore, 

( )
( )

2

2

2

1
1

S n k
n k



− −
− − . Thereby 

( ) ( )
( )

( )
( )

2

2

2

ˆ ˆ

1

1

1

t
t

k

n k S

n k





+

− −

− −

 −   − X X

 and a ( )100 1 %−  confidence region for   is given by those   

that satisfy  ( ) ( ) ( ) 2

, 1, 12
1

t
t

k n kk s f


+ − − +−  − 
X X

b b .  Here b and 2s  are estimates.   

Confidence intervals for expected response and predictions. 

We will now construct a confidence interval for the expected response given values 

10 20 0 1 2 for k kx ,x , x x ,x , x .  

Since ̂  is independent  of 2S we have that ˆŶ X=   also must be independent of 2S . 

Further  

( )  
10 0

0

1

10 20 0 0 1 10 0 10 20 0 01 =
k

t

k k k k Y x , x

k

E Y x ,x , ,x x x ,x ,x , ,x




   



 
 
 = + + + = =
 
 
 

x  .  Also 

10 0
0 0

k

t

Y x , x
ˆ ˆˆ Yx = =

K
  . 

( ) ( )( ) ( )( ) ( )
1

2

0 0 0 0 0 0 0

t t
t t t tVar Y E E 

−   
= = =

      

ˆ ˆ ˆ ˆˆ x x x x x X X xβ - β β - β β - β β - β  

Since ̂  and 2S are independent we get:  
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( )

10 20 0
0

1

0 0

kY x x x

t

Y
T

S



−

−
=

, , ,

t

ˆ

x X X x

K
is t-distributed with ( )1n- k− degrees of freedom. 

Hence a ( )100 1 − % confidence interval for expected response when 
0

=x x is:         

                                              ( )( )1

0 0 0
1

2

t t

n k
y t s

−

− −


,

ˆ x X X x

 

Prediction interval for a new value of the response when 
0

=x x .  

Let 
0

Y be the new value. Then 

0 0 0 0 0 0
0t t t tE Y Y E E     − = − = − =    

 +    ˆ x x x x .

 

  ( )
1

2 2

0 0 0 0 0 0

t tVar Y Y Var Y Var Y  
−

   − = + = −
   

ˆ ˆ x X X x  

such that  

                            

( )
0 0

1

0 0
1 t

Y Y
T

S
−

−
=

+ t

ˆ

x X X x

 

is t-distributed with ( )1n- k− degrees of freedom. Hence a ( )100 1 − %
 
prediction interval 

for Y given 
0

=x x is:  

                                 ( )( )1

0 0 0
1

2

1 t t

n k
y t s

−

− −
 +

,

ˆ x X X x . 

 

Choice of a fitted model 

Let Y be the response and 
1 2 kx ,x , x be the explanatory variable. Explanatory variables with 

small or no influence on the response can give the model a bad prediction ability. 

Criteria for evaluating the adequacy of a model 

We have  

                     ( ) ( ) ( )
2 2 2

1 1 1

n n n

i i i i

i i i

y y y y y y
= = =

− = − + −  ˆ ˆ or 
T E R

SS SS SS= + . 
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In a good model 
i i

y y− ˆ should be small and 1 2
i i

y y y y i n−  − =ˆ , , , , . A measure of how 

much variation in the data that can be explained by the model is the coefficient of multiple 

determination: 

                                      

( )

( )

2

2 1

2

1

n

i

iR

n

T
i

i

y y
SS

R
SS

y y

=

=

−

= =

−





ˆ

. 

We have 20 1R  . 2 0 84R = . tells us that 84% of the variation in the data can be explained 

by the model. Note that 2 1R T E E

T T T

SS SS SS SS
R

SS SS SS

−
= = = − . 

A problem with 2R is that it will always increase when we increase the number of 

explanatory variables. Therefore, 
2

adjusted
R  has been introduced defined as  

                                   
( ) ( ) 2

2
1 1

1 1

1

E

adjusted
T T

SS

n k n s
R

SS SS

n

− + −
= − = −

−

. 

Therefore maximizing 
2

adjusted
R is equivalent to minimizing 2s . 

An example. Sour precipitation  

In order to study the influence of sour precipitation in Norwegian lakes, SFT in 1986 carried 

through an investigation where data from 1005 lakes were collected. In this example 26 

random lakes, 16 from Telemark and 10 from Trøndelag is chosen out. 

y  = Measured pH-value 

1
x = Content of 

4OS  

2
x = Content of 

3ON  

3
x = Content of Ca 

4
x =Content  of  latent aluminum 

5
x = Content of organic material 

6
x = Area  of water 

7
x = Location (0 – Telemark, 1-Trøndelag) 

 

The observed data is given below:  

      y  x1 x2   x3  x4   x5  x6  x7 

1  5.38 4.9 39 1.54  78 2.02 0.30  0 

2  5.68 4.1 75 1.55  17 2.98 1.85  0 
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3  5.04 3.5 80 0.83 157 3.40 0.25  0 

4  4.81 3.8 75 0.53 163 3.42 0.30  0 

5  4.92 3.8 90 0.82 105 3.41 0.25  0 

6  5.34 2.6 49 0.62 114 1.90 0.65  0 

7  5.74 2.7 79 1.08  15 2.53 1.15  0 

8  5.17 2.6 90 0.67  90 1.89 0.91  0 

9  5.02 2.4 64 0.41 107 0.97 0.60  0 

10 5.88 2.8 27 1.15  12 3.04 0.37  0 

11 5.36 3.4 13 0.89  93 2.95 0.58  0 

12 5.26 2.7 14 0.74  72 2.75 0.15  0 

13 5.69 3.2 13 1.03  99 3.34 0.53  0 

14 5.51 2.5 79 0.67  80 0.78 0.56  0 

15 5.25 1.5 77 0.33  72 0.11 1.08  0 

16 6.06 3.7 15 1.94   4 5.53 0.72  0 

17 6.08 1.9 16 1.05   0 5.63 0.48  1 

18 6.08 1.3  2 0.81   0 3.84 0.25  1 

19 6.20 2.2 32 1.40   7 3.77 1.87  1 

20 5.64 2.2 21 0.75  13 5.62 0.53  1 

21 5.75 1.6  7 0.79   2 3.95 0.35  1 

22 5.43 2.0 27 0.47  16 2.39 1.03  1 

23 5.82 1.8 17 0.74   3 3.08 0.32  1 

24 5.50 2.0  6 0.49  10 2.82 0.28  1 

25 5.62 1.5  3 0.36   7 1.71 0.10  1 

26 5.41 1.7  7 0.54   9 6.48 0.21  1 

 

In R we have the possibility of plotting pairs of columns like this: 

 

Figure7.  In this figure the response is plotted against each regression variable and each regression 

variable is plotted against other regression variables 

y
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From the figure it seems like there might be a relationship between y and 
2

x ,
3

x , 
4

x and 
5

x .  

We can also calculate the correlation between all pairs of two variables. The correlation between  

Y and 
1

x is calculated as: 

( )( )

( ) ( )
1

1 1

1

2 2

1

n

i i

i
Y x

i i

y y x x

r

y y x x

=

− −

=

− −


,

, for instance 

              y                    x1                    x2               x3                 x4                  x5                    x6                x7 

y   1.0000000 -0.33530173 -0.5703950  0.5263695 -0.8128681  0.40547721  0.2764476  0.4930767 

x1 -0.3353017  1.00000000  0.4090205  0.5830377  0.5144954 -0.02402104  0.0891068 -0.7029792 

x2 -0.5703950  0.40902048  1.0000000 -0.0585331  0.5973926 -0.47822779  0.3481284 -0.6470683 

x3  0.5263695  0.58303773 -0.0585331  1.0000000 -0.2453771  0.36579209  0.3744328 -0.2292290 

x4 -0.8128681  0.51449542  0.5973926 -0.2453771  1.0000000 -0.39443507 -0.1857614 -0.6966124 

x5  0.4054772 -0.02402104 -0.4782278  0.3657921 -0.3944351  1.00000000 -0.1519310  0.4444162 

x6  0.2764476  0.08910679  0.3481284  0.3744328 -0.1857614 -0.15193098  1.0000000 -0.1045081 

x7  0.4930767 -0.70297917 -0.6470683 -0.2292290 -0.6966124  0.44441622 -0.1045081  1.0000000 

 

It is clear that the variable that is the most correlated with the response is
4

x , but there is also some 

correlation between Y and
2

x ,
3

x , 
5

x and 
7

x .  

Using 
4

x  as the single regression variable we get the following output from R:  

              Estimate Std. Error  t value Pr(>|t|)     

(Intercept)  5.8259182  0.0619470  94.047   < 2e-16 *** 

x4          -0.0058244  0.0008519  -6.837   4.52e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.222 on 24 degrees of freedom 

Multiple R-squared: 0.6608,     Adjusted R-squared: 0.6466  

F-statistic: 46.75 on 1 and 24 DF,  p-value: 4.521e-07 

 

With the following analysis of variance table  

                      x4 Residuals 

Sum of Squares  2.303553  1.182693 

Deg. of Freedom        1        24 

 

Residual standard error: 0.2219885 

 

According to the t-test, the variable 
4

x  and the constant term is highly significant. Further we get that 

0 222s = . or 0.2219885 and 
224s =1.182693=

E
SS . 

2 R

T

SS
R

SS
= =0.6608 and 

2

adj
R =0.6466.  

R
SS

=2.303553 and 2 303553  1 182693=3.486245
T

SS = +.   .  
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If we try to estimate a model with
2

x ,
3

x , 
4

x ,
5

x and 
7

x  as the regression variables we get the 

following results:  

 

Coefficients: 

             Estimate Std. Error  t value  Pr(>|t|)     

(Intercept)  5.444654   0.205522  26.492  < 2e-16 *** 

x2          -0.002140   0.001620  -1.321  0.20139     

x3           0.468389   0.139062   3.368  0.00306 **  

x4          -0.003517   0.001256  -2.800  0.01107 *   

x5          -0.038055   0.033321  -1.142  0.26691     

x7           0.164354   0.155003   1.060  0.30163     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1815 on 20 degrees of freedom 

Multiple R-squared: 0.8111,     Adjusted R-squared: 0.7639  

F-statistic: 17.18 on 5 and 20 DF,  p-value: 1.237e-06 

 

We observe that with these variables in the model, 
3

x  and 
4

x  seem to be significant.  

Finally, with all the variables in the model 
1

x  and 
3

x  seem to be the significant ones while 
4

x

is not even close to being significant.   

 
 

Coefficients: 

              Estimate Std. Error  t value  Pr(>|t|)     

(Intercept)  5.6764334  0.1389162  40.862  < 2e-16 *** 

x1          -0.3150444  0.0587512  -5.362 4.27e-05 *** 

x2          -0.0018533  0.0012587  -1.472    0.158     

x3           0.9751745  0.1449075   6.730 2.62e-06 *** 

x4          -0.0002268  0.0010038  -0.226    0.824     

x5          -0.0334242  0.0225009  -1.485    0.155     

x6          -0.0039399  0.0724339  -0.054    0.957     

x7           0.0888722  0.1025724   0.866    0.398     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1165 on 18 degrees of freedom 

Multiple R-squared:  0.93,      Adjusted R-squared: 0.9027  

F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09 

 

This example shows that it is not an easy task to find the model that best explains the 

variation in the response. Fortunately, there are other methods than the ones above that are 

helpful when doing model selection. First, we will show some procedures based on 

significant tests that are useful to select variables to be in the model.  
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Variable selection methods 

 

The most common variable selection methods are forward selection, backward elimination, 

and stepwise regression. Normally these algorithms are performed as partial F-tests, adding 

or removing one variable at the time. We will now give an algorithmic presentation of these 

methods.  

 

Forward selection 

 

1. Start with only 
0

  in the model. 

2. Find ( ) ( ) ( ) ( ) 0 0 0
= = −

j R j R j R
j j j

max R max SS max SS SS,      . 

3. If  
( ) ( )

1 2

2 2

j m

n
j

E E

R R
max f

SS SS

n n



 
−

= 

− −

, ,
stop, no variable is entered into the model. 

4. If 
( )

1 2
 add x

2

m

n m
E

R
f

SS

n




−



−

, ,
to the modell. 

Find ( ) ( ) ( ) 0 0
 

= −
j m R m j R m

j m j m
max R max SS SS, , ,       and go to step 3. If 

( )
1 3

3

j m

n
j m

E

R
max f

SS

n



 
−




−

, ,
, no more variables are entered into the model. Otherwise proceed in 

the same way. Note that the degrees of freedom in the partial F-test is reduced by one for 

each variable that is entered into the model.  

 

Backward elimination 

 

Define ( )0 1 1j j j k
    

− +
= \ , , , , , . 

1. Start with all the variables in the model. 

2. Find ( ) ( ) ( ) 0 0 1 1j j R k R j j k
j j

min R min SS SS       
− +

= −
,

\ , , , , , , . 

3. If 
( ) ( )

1 1

1 1

j j m m

n k
j

E E

R R
min f

SS SS

n k n k



   
− −

= 

− − − −

 
, ,

\ \
stop, no variable is removed from the 

model. 

4. If 
( )

1 1

1

m m

n k

R
f

SSE

n k



  
− −



− −

, ,

\
,  remove 

m
x . 

Find  ( ) ( )  ( ) 0 1 1j m j R m m k R m j
j m j m

min R min SS SS        
− +

 
= − \ , , , , , , \ ,  

and go to step 3.  
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 If 
 ( )

1

j m j
j m

n k
E

min R
f

SS

n k



  


−


−



, ,

\ ,
 no more variables are taken out of the model.   

Otherwise proceed in the same way. Note that the degrees of freedom in the partial F-test is 

increased by one in each step.  

 

Stepwise regression 

 

This method combines forward selection and backward elimination. 

1. Start as with forward selection. Assume 
n

x  and 
m

x  are chosen as the first two variables to 

enter the model. 

2. Find  ( )j n m j
j n m
min R    
= ,

, \ and check if one of the variables 
n

x  or 
m

x  can be taken out 

as  with backward selection. 

3. Continue as with forward selection but check in each step if variables that are chosen 

to be in the model in earlier steps can be taken out.  

 

Since an F-test where the enumerator has one degrees of freedom is equivalent to a t-test for 

evaluating the significance of a parameter, t-tests could be used instead of F-tests. In R these 

three selection methods are performed based on criteria and not on significance evaluation. 

These criteria penalize large models. Default in R is the Akaike’s information criterion given 

as:  

                                           ( )2 2E
SS

AIC nln k
n

 
= + + 

 
 

and small values for AIC are to be preferred. Note that now also 2  is considered a 

parameter, therefore k+2.  An alternative that penalizes large models more is the Bayesian 

information criterion:  

                                              ( )( )2E
SS

BIC nln ln n k
n

 
= + + 

 
. 

Other methods are best subset regression, where one seek through the set of regression 

variables  and for each  1 2s s k=, , , ,  find the subset of s  regression variables that gives the 

best fit to the response measured in terms of criteria such as 2R ,
2

adjusted
R ,  AIC, BIC or 

Mallow’s- p
C .  

 

 

Mallows-
p

C  

 

The idea behind Mallows-
p

C is that most (all) models are wrong and therefore  

( ) ( )i i
E Y E Y ˆ .  Now writing  

                       ( ) ( ) ( ) ( )i i i i i i
Y E Y Y E Y E Y E Y− = − + −ˆ ˆ ˆ ˆ , 
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we get             

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
2 22

2
i i i i i i i i i i

E Y E Y E Y E Y E E Y E Y E Y E Y E Y E Y − = − + − + − −
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ . 

The last term is zero and we obtain  

                       ( )( ) ( ) ( )
2 2

i i i i
E Y E Y Var Y BiasY − = +
  
ˆ ˆ ˆ  

where ( ) ( )i i i
BiasY E Y E Y= −ˆ ˆ . 

We want to minimize  

( )( ) ( ) ( )
2 2

2 2 2
1 1 1

n n n
i i i i

i i i

Y E Y Var Y BiasY
E

  = = =

 −
  = +
 
  

  
ˆ ˆ ˆ

. 

 

Now ( ) ( )2 2

1 1

1
n n

i ii

i i

Var Y h k 
= =

= = + ˆ .  An estimate for Mallows-
p

C  is given by: 

 

                                
( )( )2 2

2

1
1

p

s n k
C k





− − −
= + +

ˆ

ˆ
.   

Correct model has 1
p

C k p= + = . 

 

2s  is an estimate for ( )i
Var Y in the model with p-parameters and 

2̂  is an estimate for 
2 .  Often it 

is the estimate of 
2 from the full model.  

 

As an example, forward regression is applied to the data set about sour precipitation using the 

default algorithm in R.  

 

>step(lm(y~1),y~1+x1+x2+x3+x4+x5+x6+x7, direction="forward") 

Start:  AIC=-50.24 

y ~ 1 

 

       Df Sum of Sq    RSS     AIC 

+ x4    1   2.30355 1.1827 -76.348 

+ x2    1   1.13425 2.3520 -58.474 

+ x3    1   0.96592 2.5203 -56.676 

+ x7    1   0.84759 2.6387 -55.484 

+ x5    1   0.57318 2.9131 -52.911 

+ x1    1   0.39195 3.0943 -51.342 

+ x6    1   0.26643 3.2198 -50.308 

<none>              3.4862 -50.241 

 

Step:  AIC=-76.35 

y ~ x4 

 

       Df Sum of Sq     RSS     AIC 
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+ x3    1   0.39645 0.78625 -84.963 

<none>              1.18269 -76.348 

+ x6    1   0.05682 1.12587 -75.628 

+ x2    1   0.03898 1.14372 -75.219 

+ x7    1   0.03627 1.14642 -75.158 

+ x1    1   0.03260 1.15010 -75.075 

+ x5    1   0.02973 1.15297 -75.010 

 

Step:  AIC=-84.96 

y ~ x4 + x3 

 

       Df Sum of Sq     RSS      AIC 

+ x1    1   0.46780 0.31844 -106.463 

+ x2    1   0.07316 0.71309  -85.502 

<none>              0.78625  -84.963 

+ x7    1   0.04413 0.74212  -84.465 

+ x6    1   0.00050 0.78575  -82.980 

+ x5    1   0.00035 0.78590  -82.975 

 

Step:  AIC=-106.46 

y ~ x4 + x3 + x1 

 

       Df Sum of Sq     RSS     AIC 

+ x2    1  0.041571 0.27687 -108.10 

<none>              0.31844 -106.46 

+ x7    1  0.010093 0.30835 -105.30 

+ x6    1  0.007048 0.31140 -105.04 

+ x5    1  0.003697 0.31475 -104.77 

 

Step:  AIC=-108.1 

y ~ x4 + x3 + x1 + x2 

 

       Df Sum of Sq     RSS     AIC 

+ x5    1 0.0223623 0.25451 -108.29 

<none>              0.27687 -108.10 

+ x6    1 0.0025490 0.27432 -106.34 

+ x7    1 0.0003829 0.27649 -106.14 

 

Step:  AIC=-108.29 

y ~ x4 + x3 + x1 + x2 + x5 

 

       Df Sum of Sq     RSS     AIC 

<none>              0.25451 -108.29 

+ x7    1 0.0103492 0.24416 -107.37 

+ x6    1 0.0002081 0.25430 -106.31 

 

Call: 

lm(formula = y ~ x4 + x3 + x1 + x2 + x5) 
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Coefficients: 

(Intercept)      x4         x3          x1          x2           x5   

  5.7668186 -0.0006377  0.9292754  -0.3210916  -0.0021220   -0.0242642   

 

In the first step 
4

x  is added as the regression variable that gives the smallest AIC. Then 
3

x is 

the only variable that together with 
4

x  will reduce the AIC criterion, so 
3

x is added.  In the 

next step both 
1 2
 and x x are candidates to enter the model, but 

1
x is the one that reduces the 

AIC criterion the most.
2

 x  is entered in the next step and after that 
5

x . The procedure stops 

with 
1 2 3 4 5
, , and x x x x x, in the model.  

 

Performing backward elimination, we get the result below.  

 

> step(mod) 

Start:  AIC=-105.37 

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 

 

       Df Sum of Sq     RSS      AIC 

- x6    1   0.00004 0.24416 -107.369 

- x4    1   0.00069 0.24481 -107.299 

- x7    1   0.01018 0.25430 -106.311 

<none>              0.24412 -105.373 

- x2    1   0.02940 0.27352 -104.416 

- x5    1   0.02993 0.27405 -104.366 

- x1    1   0.38998 0.63410  -82.555 

- x3    1   0.61421 0.85833  -74.682 

 

Step:  AIC=-107.37 

y ~ x1 + x2 + x3 + x4 + x5 + x7 

 

       Df Sum of Sq     RSS      AIC 

- x4    1   0.00068 0.24484 -109.297 

- x7    1   0.01035 0.25451 -108.289 

<none>              0.24416 -107.369 

- x5    1   0.03233 0.27649 -106.136 

- x2    1   0.04480 0.28896 -104.988 

- x1    1   0.41435 0.65851  -83.572 

- x3    1   0.78768 1.03184  -71.896 

 

Step:  AIC=-109.3 

y ~ x1 + x2 + x3 + x5 + x7 

 

       Df Sum of Sq     RSS      AIC 

- x7    1   0.01674 0.26158 -109.577 

<none>              0.24484 -109.297 

- x5    1   0.03582 0.28066 -107.746 
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- x2    1   0.04690 0.29174 -106.740 

- x1    1   0.67174 0.91657  -76.975 

- x3    1   1.94498 2.18982  -54.331 

 

Step:  AIC=-109.58 

y ~ x1 + x2 + x3 + x5 

 

       Df Sum of Sq     RSS      AIC 

<none>              0.26158 -109.577 

- x5    1   0.02188 0.28346 -109.488 

- x2    1   0.07908 0.34066 -104.709 

- x1    1   1.23395 1.49553  -66.246 

- x3    1   1.93493 2.19651  -56.252 

 

Call: 

lm(formula = y ~ x1 + x2 + x3 + x5, data = sourprec) 

 

Coefficients: 

(Intercept)        x1           x2           x3           x5   

    5.77017    -0.35181     -0.00233      0.98990     -0.02400   

 

In the first step, taking out 
6

x reduces the AIC the most. In the next steps first 
4

x  and 

thereafter 
7

x  are taken out and we are left with 
1 2 3 5
,  and x x x x, in the model.  

 

Finally, if we perform stepwise regression we get:  

 

> step(lm(y~1),y~1+x1+x2+x3+x4+x5+x6+x7, direction="both") 

Start:  AIC=-50.24 

 

y ~ 1 

       Df Sum of Sq    RSS     AIC 

+ x4    1   2.30355 1.1827 -76.348 

+ x2    1   1.13425 2.3520 -58.474 

+ x3    1   0.96592 2.5203 -56.676 

+ x7    1   0.84759 2.6387 -55.484 

+ x5    1   0.57318 2.9131 -52.911 

+ x1    1   0.39195 3.0943 -51.342 

+ x6    1   0.26643 3.2198 -50.308 

<none>              3.4862 -50.241 

 

Step:  AIC=-76.35 

y ~ x4 

 

       Df Sum of Sq    RSS     AIC 

+ x3    1   0.39645 0.7862 -84.963 

<none>              1.1827 -76.348 

+ x6    1   0.05682 1.1259 -75.628 
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+ x2    1   0.03898 1.1437 -75.219 

+ x7    1   0.03627 1.1464 -75.158 

+ x1    1   0.03260 1.1501 -75.075 

+ x5    1   0.02973 1.1530 -75.010 

- x4    1   2.30355 3.4862 -50.241 

 

Step:  AIC=-84.96 

y ~ x4 + x3 

 

       Df Sum of Sq     RSS      AIC 

+ x1    1   0.46780 0.31844 -106.463 

+ x2    1   0.07316 0.71309  -85.502 

<none>              0.78625  -84.963 

+ x7    1   0.04413 0.74212  -84.465 

+ x6    1   0.00050 0.78575  -82.980 

+ x5    1   0.00035 0.78590  -82.975 

- x3    1   0.39645 1.18269  -76.348 

- x4    1   1.73408 2.52033  -56.676 

 

Step:  AIC=-106.46 

y ~ x4 + x3 + x1 

 

       Df Sum of Sq     RSS      AIC 

+ x2    1   0.04157 0.27687 -108.100 

- x4    1   0.02365 0.34210 -106.600 

<none>              0.31844 -106.463 

+ x7    1   0.01009 0.30835 -105.300 

+ x6    1   0.00705 0.31140 -105.044 

+ x5    1   0.00370 0.31475 -104.766 

- x1    1   0.46780 0.78625  -84.963 

- x3    1   0.83165 1.15010  -75.075 

 

Step:  AIC=-108.1 

y ~ x4 + x3 + x1 + x2 

 

       Df Sum of Sq     RSS      AIC 

- x4    1   0.00659 0.28346 -109.488 

+ x5    1   0.02236 0.25451 -108.289 

<none>              0.27687 -108.100 

- x2    1   0.04157 0.31844 -106.463 

+ x6    1   0.00255 0.27432 -106.340 

+ x7    1   0.00038 0.27649 -106.136 

- x1    1   0.43622 0.71309  -85.502 

- x3    1   0.82188 1.09875  -74.262 

 

Step:  AIC=-109.49 

y ~ x3 + x1 + x2 
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       Df Sum of Sq     RSS      AIC 

+ x5    1   0.02188 0.26158 -109.577 

<none>              0.28346 -109.488 

+ x4    1   0.00659 0.27687 -108.100 

+ x6    1   0.00391 0.27955 -107.849 

+ x7    1   0.00280 0.28066 -107.746 

- x2    1   0.05864 0.34210 -106.600 

- x1    1   1.21835 1.50181  -68.137 

- x3    1   2.02498 2.30844  -56.960 

 

Step:  AIC=-109.58 

y ~ x3 + x1 + x2 + x5 

 

       Df Sum of Sq     RSS      AIC 

<none>              0.26158 -109.577 

- x5    1   0.02188 0.28346 -109.488 

+ x7    1   0.01674 0.24484 -109.297 

+ x4    1   0.00707 0.25451 -108.289 

+ x6    1   0.00079 0.26079 -107.656 

- x2    1   0.07908 0.34066 -104.709 

- x1    1   1.23395 1.49553  -66.246 

- x3    1   1.93493 2.19651  -56.252 

 

Call: 

lm(formula = y ~ x3 + x1 + x2 + x5) 

 

Coefficients: 

(Intercept)     x3           x1           x2           x5   

    5.77017  0.98990     -0.35181     -0.00233     -0.02400   

 

As expected, 
4

x  is entered in the model in the first step, but with 
1 2 3
,  and x x x also in the 

model
4

x  is taken out and we end up with the same model as we did when performing 

backward elimination.  

 

As should be noted there is no way of removing variable once entered when doing forward 

selection. Also, in common with stepwise regression, it may in the beginning be difficult for 

variable to be judged significant when using the F-test since the variation in the response 

caused by the rest of the regression variables is included in the error variance. Therefore, one 

often runs the procedure several times with different choice of  . If possible, it may be an 

advantage to use backward elimination. The advantage of the forward selection and stepwise 

regression algorithms is that they are more general applicable. To my knowledge there are no 

algorithms implemented for using F-tests or (t-tests) in R. However, backward elimination 

can be performed the following way where we first start with the full model. 

 

> mod=lm(y~x1+x2+x3+x4+x5+x6+x7,data=sourprec) 

> summary(mod) 
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lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = sourprec) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.15266 -0.09355  0.01429  0.06801  0.17755  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.6764334  0.1389162  40.862  < 2e-16 *** 

x1          -0.3150444  0.0587512  -5.362 4.27e-05 *** 

x2          -0.0018533  0.0012587  -1.472    0.158     

x3           0.9751745  0.1449075   6.730 2.62e-06 *** 

x4          -0.0002268  0.0010038  -0.226    0.824     

x5          -0.0334242  0.0225009  -1.485    0.155     

x6          -0.0039399  0.0724339  -0.054    0.957     

x7           0.0888722  0.1025724   0.866    0.398     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1165 on 18 degrees of freedom 

Multiple R-squared:  0.93,      Adjusted R-squared: 0.9027  

F-statistic: 34.15 on 7 and 18 DF,  p-value: 3.904e-09 

  

The least significant one is
6

x . Therefore, in the next step we can use the command update: 

 

> mod1=(update(mod,.~.-x6)) 

Call: 

lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x7, data = sourprec) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.15269 -0.09218  0.01337  0.06853  0.17636  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.6757654  0.1346927  42.139  < 2e-16 *** 

x1          -0.3142383  0.0553395  -5.678 1.79e-05 *** 

x2          -0.0018918  0.0010132  -1.867   0.0774 .   

x3           0.9714256  0.1240784   7.829 2.31e-07 *** 

x4          -0.0002239  0.0009757  -0.229   0.8210     

x5          -0.0330468  0.0208352  -1.586   0.1292     

x7           0.0877409  0.0977709   0.897   0.3807     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1134 on 19 degrees of freedom 

Multiple R-squared:  0.93,      Adjusted R-squared: 0.9078  

F-statistic: 42.05 on 6 and 19 DF, p-value: 5.683e-10 

 

By continuing the updating, we end up with the model: 
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Model 1 

Call: 

lm(formula = y ~ x1 + x2 + x3, data = sourprec) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.19867 -0.09314  0.03027  0.07030  0.18855  

 

Coefficients: 

             Estimate   Std.Error  t value  Pr(>|t|)     

(Intercept)  5.6990584  0.0697816  81.670  < 2e-16 *** 

x1          -0.3489065  0.0358803  -9.724 2.00e-09 *** 

x2          -0.0018364  0.0008608  -2.133   0.0443 *   

x3           0.9548356  0.0761644  12.537 1.71e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1135 on 22 degrees of freedom 

Multiple R-squared: 0.9187,     Adjusted R-squared: 0.9076  

F-statistic: 82.86 on 3 and 22 DF, p-value: 3.821e-12 

 

From backward elimination and stepwise regression using the AIC-criterion we get:  

 

Model 2 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.7701749  0.0871028  66.246  < 2e-16 *** 

x1          -0.3518082  0.0353467  -9.953 2.10e-09 *** 

x2          -0.0023299  0.0009247  -2.520   0.0199 *   

x3           0.9899007  0.0794240  12.463 3.61e-11 *** 

x5          -0.0239962  0.0181057  -1.325   0.1993     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1116 on 21 degrees of freedom 

Multiple R-squared: 0.925,      Adjusted R-squared: 0.9107  

F-statistic: 64.72 on 4 and 21 DF,  p-value: 1.659e-11 

 

And from the forward selection method using AIC 

 

Model 3 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.7668186  0.0881546  65.417  < 2e-16 *** 

x1          -0.3210916  0.0545427  -5.887 9.29e-06 *** 

x2          -0.0021220  0.0009753  -2.176   0.0417 *   

x3           0.9292754  0.1142848   8.131 9.06e-08 *** 

x4          -0.0006377  0.0008557  -0.745   0.4647     
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x5          -0.0242642  0.0183040  -1.326   0.1999     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1128 on 20 degrees of freedom 

Multiple R-squared: 0.927,      Adjusted R-squared: 0.9087  

F-statistic: 50.79 on 5 and 20 DF,  p-value: 1.100e-10 

 

Ranked according to
2

adjusted
R  model 2 is better than model 3 which again is better than model 

1. But model 3 has two non-significant terms and model 2 has one. The two candidate models 

would in practice be model 1 and 2. 

      Now regardless of if we include the amount of organic material or not, we have arrived at 

a model saying that adding 
4OS and

3ON  makes the lakes more sour and adding Ca makes it 

less sour which should be in agreement with common knowledge. But what about the content 

of latent aluminum that is so highly correlated with the ph value. The explanation is simply 

that in sour lakes aluminum will be released from the rock. Therefore, sour lakes cause a high 

amount of aluminum, not the other way around. 

 

Diagnostic checks of regression models.  

 

The model we arrive at when performing regression analysis depends, strongly on the quality 

of the data we have i. e. the observations for the response and the regression variables. To 

thrust that the model is useful, we should check the quality of these. We will now discuss 

some problems that may arise and some methods that can be used to detect if such problems 

are present in our data.  

  

Multicollinearity 

 

Multicollinearity arises when two or more columns in the X -matrix are strongly correlated 

(almost linear dependent). Multicollinearity can sometimes be discovered by estimating the 

correlation between regression variables. The correlation between regression variable 
i

x and 

j
x  is given by:  

                                

( )( )

( ) ( )

1

22

1 1

n

ik i jk j

k
ij

n n

ik i jk j

k k

x x x x

r

x x x x

=

= =

− −

=

− −



 

. 

Multicollinearity often occurs when the variation interval of two or more variables are 

approximately equal.  

An example is if ( ) 20 95 1 05  =1,2, , the column with 1's,  and 
ki k k

x i n x x . , . , ,  are strongly 

correlated. A good measure of multicollinearity is given by the variance inflation factor, VIF.  
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2

1
VIF

1
j

R
=

−
  

where 
2

j
R  is the multiple determination coefficient when regression variable 

j
x

 
is regressed 

on the other regression variables. If you ever meet the word tolerance, it is given by 1-
2

j
R . 

VIF should be less than 10. If multicollinearity occurs one should consider:  

 

1. Remove columns. 

2. Collect more data. 

3. Respecify the model. For instance if multicollinearity occurs between the three  

regression variables 
1 2 3

 and x x x, , a new variable 1 2 3

3

x x x+ +
 or 

1 2 3
x x x  may solve the 

problem. 

4. Center variables i.e. use 
i

x x−  instead of 
i

x if one works with polynomial models.  

 

There are also several statistical methods like Principal component regression (PCR), Partial 

least square (PLS) and Ridge regression for handling such problems. These are, however, 

beyond the scope of this course. 

 

Observations with influence 

Influential points are points that when removed from the dataset could cause a large change 

in the fit. The performance of variable selection methods may depend heavily on influential 

observation. Therefore, it is a good idea to check for leverage points and the Cook’s distance 

before starting a variable selection procedure.  

Leverage points 

We have
1

n

i ij j ii i ij j

j= j ì

ˆ ŷ = h y = h y + h y


=   y Hy . If 
iih  is large 

iy  could have a large 

influence on
iŷ . 

Now rank ( )H = 1k+ =tr ( )H =
1

n

ii

i=

h . 

Hence the average value of 
1

ii

k+
h

n
= . Observations where 

( )1
ii

2 k+
h >

n
 are said to be 

leverage points. Note that if t

ix
 
is the i-th row in the X -matrix, then ( )

1
t t

ii i ih
−

= x X X x . 

Hence for an observation with a high leverage, the uncertainty in the estimator for the 

expected value of the response will be relatively high, and a corresponding prediction interval 

will be relatively wide.  
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Leverage points are entirely determined by the values in the X -matrix and need not 

necessarily influence our estimated coefficients. A check for this is done by the Cook’s 

distance,
iD . 

First: ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
t t t

t

i i i i i i
ˆ ˆ ˆ ˆ

− − − − − −
− − = − − = − −y y y y Xb Xb Xb Xb b b X X b b . The 

( )i−   notation means that the i-th set of observations ( )1i i i ky ,x ,…,x  is taken out.  

The Cook’s distances 
iD  is defined as 

iD =
( )( ) ( )( )

2

t
t

i i
ˆ ˆ ˆ ˆ

ˆp

− −
− −   X X

, 1 2i , , ,n= . 

Usually, we consider an observation ( )1i i i ky ,x ,…,x  to be influential if 1iD  . 

 

Study of residuals  

 

We expect the residuals from a good model to be uncorrelated with mean zero and constant 

variance. Now, if we have the correct model we can argue as follows:  

                            ( ) ( )= − = − = − ˆˆ Y Y I H Y I H . 

Thereby        ( ) ( ) ( )E E 0= = ˆ ˆI- H , 

and                ( ) ( ) ( ) ( )2ttCov E  = =
 

 ˆ I- H I- H I- H . 

 

which shows that  
1 2 n
  ˆ ˆ ˆ, , , are not uncorrelated. Further we get  

                           ( ) ( )2 1
i ii

Var h = −ˆ . 

Hence the variances of  
1 2 n
  ˆ ˆ ˆ, , ,  need not be equal either. 

 

Since 1
1

i

ii

Var
h





 
= 

 − 

ˆ
 we often use 

1

i
i

ii

e
r

s h
=

−
in the study of the residuals . These 

residuals are often said to be the standardized residuals. Some books call them studentized. 

 

The residuals  1 2
i i i i

Y Y i n
−

= − =
,
ˆ , , , ,  where i i

Y
−,

ˆ  is the estimator for the i-th fitted value 

when the observation ( )1i i i ky ,x ,…,x
 
is taken out are called the Press residuals . These can be 

shown to be equal to 
1

i

ii
h



−

ˆ
   and     ( )

( )

( )

( )

( )

2 2

2 2

1

11 1

i ii

i

iiii ii

Var h
Var

hh h

  


−
= = =

−− −

ˆ
. 

 

 Hence  
( ) ( ) ( )1 1

1

i i i

iii ii

ii

hSd h

h

  

 
= =

− −

−

ˆ ˆ
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Now assume we estimate 2 by 
( )
2

i
S

−
 which is the estimator for the variance when 

( )1i i i ky ,x ,…,x is taken out. Then i i i i
Y Y

−
= −

,
ˆ  and ( )

2

i
S

−
 are independent and  

the residuals  

                                                        
1

i

i ii
S h



−
−

ˆ
 

 

is t-distributed with n-k-2 degrees of freedom and can be used to investigate if the expected 

value of a residual is different from zero, i.e. if we have an outlier. The residuals 
1

i

i ii

e

s h
−

−
 

are called R-studentized, sometimes external studentized.  

 

To summarize. Check of residuals provide information about: 

 

1. Outliers 

2. Heterogenity in variance 

3. Misspecification of models (or if other variables should be included) 

4. Normal distribution 

 

There are extremely many diagnostic tools developed for regression models and one can 

easily be confused about the importance of the information provided from each of them.  

In practice it is most common to check for multicollinearity, check the Cook’s distance and 

perform residuals plots. The most common residual plots are plot of residuals against fitted 

values to check for heterogeneity in variance, against other regression variables to see if they 

should be included and normal plot to check for normally distributed data and outliers. 

 

 

Example. Sour precipitation 

 

Let us return to our example about sour precipitation. The correlation matrix between pairs of 

variables indicated some high correlations between 
7x  and other regression variables, but no 

clear sign of multicollinearity. The VIF-factor is in the R-library car and not in the basic R-

package. This library car can be downloaded to any personal PC for free.  

 

The critical value for the leverage is for this data set 
2 8

0 62
26


= . . From the plot below there 

may be one observation with too high leverage. However, from the Cook’s distance there 
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does not seem to be any observation that is really influential on our estimated coefficients. 

 
                                 Leverages                                                     Cook’s distances 

 

Next is shown a plot of residuals against fitted values and a normal plot. The residuals are 

obtained using 
1 2,  x x and

3x as regression variables, since these were the only three significant 

ones. Examining the plots, the variance does not seem to depend on the value of the fitted 

model and the normal plot is close to a straight line. The box plot reveal that the median of 

the residuals is above zero, but part from that there is no observation that is close to being an 

outlier.  

 

 
       Plot of residuals against fitted values                             Normal plot of residuals 
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                     Boxplot of the residuals 

 

 

                   Plot of residuals against
4x                                   Plot of residuals against

5x  

 

Finally plots of the residuals against 
4x and 

5x  (content of aluminum and organic material) do 

not show any particular pattern and there is no obvious reason to include these in the model 

given that using 
1 2,  x x and

3x  already are there. Hence these diagnostic tools give no reason to 

not trust our model.  

 

To get an impression of what might happen if we had observations of poor quality, we have 

added 1 to one of the response values, while all the rest is kept unchanged. We estimate the 

same model.  
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                           Cook’s distances                                 Plot of residuals against fitted values 

 

We observe that the Cook’s distance does not classify this observation as being strongly 

influential, while the normal plot finds one residual that does not fit into the assumption of 

having mean equal to zero and residuals being normally distributed. The boxplot of the 

residuals clearly signals an outlier.  All the plots signal a very special observation.  

 
                     Normal plot of residuals                                         Box plot of residuals 
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If we look at the estimated models we get: 

Original data set:  

lm(formula = y ~ x1 + x2 + x3, data = sour) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.6990584  0.0697816  81.670  < 2e-16 *** 

x1          -0.3489065  0.0358803  -9.724 2.00e-09 *** 

x2          -0.0018364  0.0008608  -2.133   0.0443 *   

x3           0.9548356  0.0761644  12.537 1.71e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1135 on 22 degrees of freedom 

Multiple R-squared: 0.9187,     Adjusted R-squared: 0.9076  

F-statistic: 82.86 on 3 and 22 DF,  p-value: 3.821e-12 

 

manipulated data set 

lm(formula = y ~ x1 + x2 + x3, data = sour1) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.7446812  0.1624766  35.357  < 2e-16 *** 

x1          -0.3882316  0.0835422  -4.647 0.000124 *** 

x2           0.0002539  0.0020043   0.127 0.900338     

x3           0.9718510  0.1773381   5.480 1.66e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2643 on 22 degrees of freedom 

Multiple R-squared: 0.6522,     Adjusted R-squared: 0.6048  

F-statistic: 13.75 on 3 and 22 DF, p-value: 2.874e-05 

 

We observe that the estimated coefficients have not changed much and that is why the observation is 

not identified as an influential observation. The estimated standard deviations of the coefficients, 

however, have changed dramatically and 
2x  is no longer significant.  This illustrates that residual 

plots may provide information in addition to the leverages and the Cook’s distances.  A correct 

procedure would now be to try find out why observation number 14 is an outlier. Is it just a wrong 

recording? If a good reason is found the data are reanalyzed with the corresponding observation taken 

out or corrected.  

 

To illustrate some other situations that may occur we show normal plots performed on data from a 

distribution with heavy tails and data from a skew distribution.  If we have data from a distribution 

with lighter tails than the normal distribution and with expected value equal to 0, the form of the 

normal-plot would be an approximate mirror-image from the one from a heavy tailed distribution, 

mirrored around the line y=x.   
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Data from a distribution with heavy tails.                                     Data from a skew distribution 

 

 

 

 

Other methods for choosing the best model 

 

Calculating the PRESS-residuals (Predictive sum of squares) i i i i
y y

−
= −*

, is an example of 

doing leave one out cross validation. These residuals measure how good the i-th observation 

of the response can be estimated or predicted in terms of the other observations.  

The model with the “best prediction ability” should be the one that minimizes 
1

n

i

i


=

 *  or 

( )
2

1

n

i

i


=

 * =PRESS, eventually the one that maximizes 

( )
2

2 11

n

i

i
pred

T

R
SS


== −
 *

 

 

2s  is an estimate for ( )i
Var Y in the model with p-parameters and 

2̂  is an estimate for 
2 .  Often it 

is the estimate of 
2 from the full model.  

 

Categorical or Indicator variables 

 

Suppose  

                             
0 1 1 2 2 3i i i i i

Y x x Z    = + + + +  
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Where the variable Z is a categorical variable with l categories. Such regression problems are 

normally best solved by introducing 1l −  indicator variables. For instance if we have three 

different catalyst the regression model can be:  

 

                           
0 1 1 2 2 3 1 4 2i i i i i i

Y x x Z Z     = + + + + +  1 2i n= , , ,  

 

where the columns 
1 2
 and Z Z   are   

1 2

1 0

1 0

1 0

0 1

0 1

0 1

0 0

0 0

0 0

Z Z

 

The ( )1 0, combination corresponds to catalyst 1, the ( )0 1,  to catalyst 2 and the ( )0 0,

combination to catalyst 3. 

The model is then:  

                                         ( )0 3 1 1 2 2i i i i
Y x x    = + + + +    for catalyst 1 

                                  ( )0 4 1 1 2 2i i i i
Y x x    = + + + +    for catalyst 2 

and                        

                                    
0 1 1 2 2i i i i

Y x x   = + + +             for catalyst 3 . 

 

If we believe the coefficients for the continuous variables depend on the level of the category 

variables, we introduce product terms. Suppose we construct the model 

 

                
0 1 1 2 2 3 1 4 2 5 1 1 6 2 2i i i i i i i i i i

Y x x Z Z x z x z       = + + + + + + +  1 2i n= , , ,  

Then we have  

                        ( ) ( )0 3 1 5 1 2 2i i i i
Y x x     = + + + + +    for catalyst 1 

                         ( ) ( )0 4 1 1 2 6 2i i i i
Y x x     = + + + + +  for catalyst 2 

                         
0 1 1 2 2i i i i

Y x x   = + + +                        for catalyst 3 
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Orthogonal columns in the Design matrix 

 

Let the design matrix  1 2
1

k
=X , x , x , , x . 

If 
1

0 i.e. 0  
n

t

p q pi qi

i

x x p q
=

= = x x , we say that the columns 
p

x and 
q

x are orthogonal. If all the 

columns are orthogonal we have:  

                             ( ) 1 1

0 0

0 0

0

0 0

t

t

k k

n 
 
 =
 
 
 

t
x x

X X

x x

 and 

( )
( )

( )

1
1

1 1 1

1

1

1 0 0

0 0

0 0

n

i
t i

t

t
t

k k
k

n
Y

−
=

−

−

  
  
  
 = =  
  
  
     



 t t
x x

ˆ x YX X X Y

x x x Y

. 

We observe that the estimator for 
j

  only depends upon 
j

x  and Y .  In addition, we get  

( ) ( )
2 2 2 2 2 2 2 2

0 1 1 0 1 1 2 2

1 1 1 1 1

n n n n n

R i i k ki i i k ki

i i i i i

SS y y b b x b x b b x b x b x
= = = = =

= − = + + − = + + +    ˆ or  

( ) ( ) ( ) ( )0 1 1 0 2 0 0R k R R R k
SS SS SS SS        = + + +

,
, ,  where  

( ) 2 2

0

1

 =1,2, ,
n

R j j ji

i

SS b x j n 
=

=  , . 

 

 

 

 

Regression analysis can easily fill a whole course or more. In cases where you find that more 

knowledge is needed than what is covered here you may benefit from checking out one or 

more of these books: 

 

Draper, N. R. & Smith, H. Applied Regression Analysis. Third edition. 

Montgomery, D. C. Peck, E. A. & Vining, G. G. Introduction to Linear Regression Analysis, 

Third Edition. 

Abraham, B & Ledolter, J.  Introduction to Regression Modeling  

 

If you want to to increase your theoretical skills these books may be good choices:  

 

Rencher, A. C. &  Schaalje, G. B.  Linear Models in Statistics. 

Seber, G. A. F.  Linear Regression Analysis 

 


