Rep: Anova, 1 factor, 2 levels ∑ xj =0 E(1) with only 2 levels effect (coding is very simple, and easy to (Herpret y = Bo+ BIX+ E X=-1 for level I (low level) X=+1 for level 2 (high level) Bo = global mean B1 = K2 2B1 = effect of going from level I (low level)

to level 2 (high level) " main effect"

Aim: Estimate main effects of several 2-level factors, (and also interaction effects). Summing up:

- k factors, 2 levels each. Aim: estimate and test factor effects on factor effects on some measurable.

 For each factor, levels are coded as response y.

 -1 (10w) and +1 (high)
 - · 2k factor combinations
 - · model (no interactions)

Yi = Bo+ B_XXIi + B2X2i + -- + BKXVi + E;

E;~N(0,02) 2Bj = effect on E(Y) when xj changes from low to high level · Design matrix, one experimental run hald constant)

X has dim 2h x (k+1) #factor combination Circlescopt + k factors

Example k=3, $2^3=8$

Example
$$k=3$$
, $2^3=8$

$$X = \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & -1 & +1 \\ 1 & -1 & +1 & -1 \\ 1 & +1 & +1 & -1 \\ 1 & +1 & +1 & -1 \\ 1 & +1 & +1 & +1 \end{bmatrix}$$

Let $x = 0$ for each row

· One experimental run: Observe y for each row of x in random order.

· For one for with repetitions) experimental on: columns of X are orthogonal

$$\beta = (x_7 x_7)^{-1} x_7 y \sim MUN (\beta, \frac{\sigma^2 I}{n})$$
 equal vor, independent estimators

$$\hat{\beta}_{1} = \frac{1}{h} \left(\sum_{i: X_{i,1} = +1} y_{i} - \sum_{i: X_{i,1} = -1} y_{i} \right)$$

· Main effect factor A (x2): Â = 2 B2 etc.

Project examples:

SSE, SSR in 2k DOE

Recall lecture 17, orthogonal columns of X.

SSR = $\hat{\beta}_{1}^{2} \sum_{i} \chi_{i}^{2} + \hat{\beta}_{2}^{2} \sum_{i} \chi_{2i}^{2} + \cdots + \hat{\beta}_{ik}^{2} \sum_{i} \chi_{ki}^{2}$ here = n= $(\hat{\beta}_{1}^{2} + \hat{\beta}_{2}^{2} + \cdots + \hat{\beta}_{k}^{2})n$ $n\hat{\beta}_{1}^{2}$ is the variation explained by factor j. $\Rightarrow SSE = SST - SSR = \sum_{i} (y_{i} - \bar{y})^{2} - n\sum_{i=1}^{k} \hat{\beta}_{i}^{2}$.

Note: (conducted 22 factorial experiment in class, see Riode