TMA4267 Linear statistical models

20. march 2025

Today and next time

Three scientific publications (2004, 2005, 2012) illustrating the use of 2-level factorial experiments, and motivating the theory that we cover in TMA4267

Example 1

PROCESS BIOCHEMISTRY

Process Biochemistry 40 (2005) 779-788

www.elsevier.com/locate/procbio

Biosorption of chromium using factorial experimental design

Margarita Enid R. Carmona a,b,1, Mônica Antunes Pereira da Silva b,*, Selma G. Ferreira Leite b

^a Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ra No. 70-01, AA.56006 Medellin, Colombia ^b Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Bl. E, Ilha do Fundão, Rio de Janeiro 21949-990, RJ, Brazil

Received 10 October 2003; accepted 5 February 2004

https://doi.org/10.1016/j.procbio.2004.02.024

23 full factorial design, duplicated

Wikipedia:

Biosorption can be defined as the ability of biological materials to accumulate heavy metals from wastewater through metabolically mediated or physico-chemical pathways of uptake.^[2] Though using biomass in environmental cleanup has been in practice for a while, scientists and engineers are hoping this phenomenon will provide an economical alternative for removing toxic heavy metals from industrial wastewater and aid in environmental remediation.

- Aim: Removal of Cr³⁺ (and Cr⁶⁺)
- Design: 2³ factorial design
- Factors:

T: temperature (29 and 55 degrees celcius)

C: metal concentration (10 and 1200 mg/L)

pH: pH (2.0 and 6.0)

• Response: Efficiency of chromium removal after 6h exposition time

Table 2 Experimental factorial design results for Cr³⁺

Factor			Species				
\overline{T}	C	pН	Cr ³⁺				
		Removal efficiency (%) ^a		Average (%)			
1	1	1	75.2	74.8	75.0		
1	1	-1	11.4	5.4	8.4		
1	-1	1	62.7	56.4	59.6		
1	-1	-1	82.9	83.5	83.2		
-1	1	1	99.5	99.5	99.5		
-1	1	-1	2.5	17.3	9.9		
-1	-1	1	62.3	68.9	65.6		
-1	-1	-1	73.4	74.2	73.8		

^a Experiments in duplicate.

Main and interaction effects

From the note Design of experiments, J. Tyssedal

Definition of main effect:

For two-level designs we define the main effect of a factor as: Expected average response when the factor is on the high level – expected average response when the factor is at the low level.

Table 2 Experimental factorial design results for Cr³⁺

Factor			Species				
\overline{T}	\overline{C}	pН	Cr ³⁺				
			Remo efficie (%) ^a		Average (%)		
1	1	1	75.2	74.8	75.0		
1	1	-1	11.4	5.4	8.4		
1	-1	1	62.7	56.4	59.6		
1	-1	-1	82.9	83.5	83.2		
-1	1	1	99.5	99.5	99.5		
-1	1	-1	2.5	17.3	9.9		
-1	-1	1	62.3	68.9	65.6		
-1	-1	-1	73.4	74.2	73.8		

^a Experiments in duplicate.

Main and interaction effects

From the note Design of experiments, J. Tyssedal

Definition of main effect:

For two-level designs we define the main effect of a factor as: Expected average response when the factor is on the high level – expected average response when the factor is at the low level.

Definition

The interaction between two factors is defined as: Half the main effect of a factor when the other is on the high level – half the main effect of a factor when the other factor is at its low level.

Table 2 Experimental factorial design results for Cr³⁺

Factor		Species					
T C pH			Cr ³⁺				
			Remo	val	Average		
			efficie	ncy	(%)		
			(%) ^a				
1	1	1	75.2	74.8	75.0		
1	1	-1	11.4	5.4	8.4		
1	-1	1	62.7	56.4	59.6		
1	-1	-1	82.9	83.5	83.2		
-1	1	1	99.5	99.5	99.5		
-1	1	-1	2.5	17.3	9.9		
-1	-1	1	62.3	68.9	65.6		
-1	-1	-1	73.4	74.2	73.8		

^a Experiments in duplicate.

Table 2 Experimental factorial design results for Cr³⁺

Factor		Species				
\overline{T}	\overline{C}	pН	Cr ³⁺			
		Remore efficie (%) ^a	Average (%)			
1	1	1	75.2	74.8	75.0	
1	1	-1	11.4	5.4	8.4	
1	-1	1	62.7	56.4	59.6	
1	-1	-1	82.9	83.5	83.2	
-1	1	1	99.5	99.5	99.5	
-1	1	-1	2.5	17.3	9.9	
-1	-1	1	62.3	68.9	65.6	
-1	-1	-1	73.4	74.2	73.8	

^a Experiments in duplicate.

Table 3
Statistical parameters for 2³ design

Factor	Species Cr ³⁺					
	Coefficient	Standard error	Effect			
Average	59.4	1.15	59.4			
T	-2.8	1.15	-5.6			
C	-11.2	1.15	-22.3			
pН	15.5	1.15	31.1			
TC	-3.7	1.15	-7.3			
<i>T</i> pH	-4.8	1.15	-9.6			
СрН	23.5	1.15	47.0			
<i>TC</i> pH	-0.94	1.15	-1.9			

Table 4
Analysis of variance — full model fitting for Cr³⁺

Factor	Statistics							
	Sum of squares	Degrees of freedom	Mean square (MS)	F_{o}	P-value			
\overline{T}	128.26	1	128.26	6.0	0.039397			
\boldsymbol{C}	1,995.86	1	1,995.86	94.1	0.000011			
pН	3,865.73	1	3,865.73	182.2	0.000001			
TC	215.36	1	215.36	10.1	0.012880			
<i>T</i> pH	369.60	1	369.60	17.4	0.003106			
<i>C</i> pH	8,840.70	1	8,840.70	416.7	0.000000			
TCpH	14.25	1	14.25	0.7	0.436193			
Error	169.73	8	21.22					
Total	15,599.47	15						

 $F_0 = MS_{FACTOR}/MS_{ERROR}$; $R^2 = 0.9891$; R^2 adj. = 0.9796.

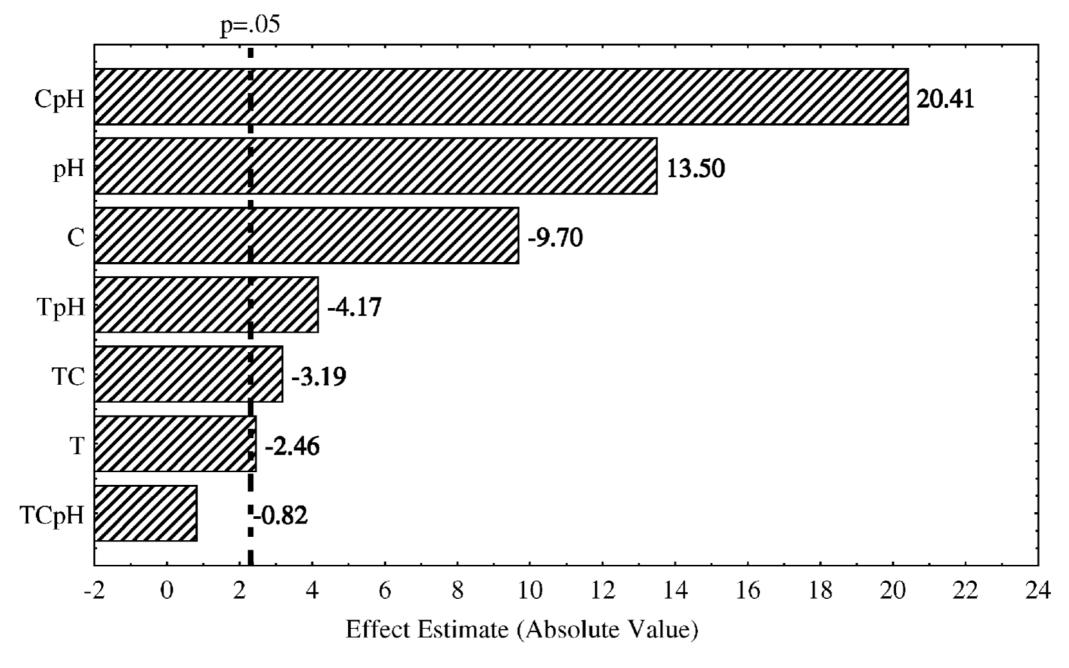


Fig. 1. Pareto chart of effects on the removal efficiency of Cr³⁺.

Example 2

Hazardous Materials

Journal of Hazardous Materials B135 (2006) 165–170

www.elsevier.com/locate/jhazmat

Journal of

Phosphate removal from water by fly ash: Factorial experimental design

Mevra Yalvac Can a,*, Ergun Yildiz b,1

^a Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34349 Istanbul, Tukey
 ^b Department of Environmental Engineering, Engineering Faculty, Ataturk University, 25240 Erzurum, Turkey

Received 5 July 2005; received in revised form 9 November 2005; accepted 14 November 2005 Available online 15 December 2005

https://doi.org/10.1016/j.jhazmat.2005.11.036

23 full factorial design

Example 2: Phosphate removal from water by fly ash: Factorial experimental design

Table 1 Values of operating variables used in the designed set of experiments

Operating variable	-1	1
x_1 (phosphate concentration) (mg l ⁻¹)	25	50
x_2 (fly ash dosage) (g l ⁻¹)	0.5	2
$x_3 (pH_0)$	2.9	5.5

Table 3
Experimental results of 2³ designs for the % E

Experiments	x_1	x_2	x_3	Y_1
1	-1	-1	-1	17.16
2	1	-1	-1	1.5
3	-1	1	-1	99.41
4	1	1	-1	41.22
5	-1	-1	1	26.4
6	1	-1	1	1.1
7	-1	1	1	99.6
8	1	1	1	49.56

Example 2: Phosphate removal from water by fly ash: Factorial experimental design

Table 1 Values of operating variables used in the designed set of experiments

Operating variable	-1	1
x_1 (phosphate concentration) (mg l ⁻¹)	25	50
x_2 (fly ash dosage) (g l ⁻¹)	0.5	2
$x_3 \text{ (pH}_0)$	2.9	5.5

Table 4 Results of regression analyzing for % E (Y_1)

	Coefficient	S.E.	t-value
Intercept	41.99375	0.134519	
x_1	-18.6488	0.134519	-138.633
x_2	30.45375	0.134519	226.3903
x_3	2.17125	0.134519	16.14086
x_1x_2	-8.40875	0.134519	-62.5098
$x_1x_2x_3$	2.22375	0.134519	16.53114

Example 3: Computational run time

Recall our 2² experiment:

y: computation run time of algorithm that samles m poisson variables and returns an average

A: for loop or built-in Poisson(m)

B: sum/length or built-in mean

Design:

	Α	В	AB
1	-1	-1	1
1	-1	1	-1
1	1	-1	-1
1	1	1	1

Problem: We have to use two different computers (for some reason...)

Blocking in 23: using example 1

2 blocking factors: try TCpH and CpH

- TCpH = 1, CpH = 1
- TCpH = -1, CpH = 1
- TCpH = 1, CpH = -1
- TCpH = -1, CpH = -1

Tmp Conc pH Tmp:Conc Tmp:pH Conc:pH Tmp:Conc:pH

1	1 1	1	1	1	1
1	1 -1	1	-1	-1	-1
1	-1 1	-1	1	-1	-1
1	-1 -1	-1	-1	1	1
-1	1 1	-1	-1	1	-1
-1	1 -1	-1	1	-1	1
-1	-1 1	1	-1	-1	1
-1	-1 -1	1	1	1	-1

Note: first column (T) equal in all blocks! Now temperature is also confounded...

Blocking in 23: using example 1

2 blocking factors: try TC and TpH

Tmp C	onc pl	1 Tmp:Conc	Tmp:pH	Conc:pH	<pre>Tmp:Conc:pH</pre>
-------	--------	------------	--------	---------	------------------------

1	1 1	1	1	1	1
1	1 -1	1	-1	-1	-1
1	-1 1	-1	1	-1	-1
1	-1 -1	-1	-1	1	1
-1	1 1	-1	-1	1	-1
-1	1 -1	-1	1	-1	1
-1	-1 1	1	-1	-1	1
-1	-1 -1	1	1	1	-1

Note: none of the main effects are confounded

Note: all two-factor interactions are confounded